Kybernetika 51 no. 5, 874-889, 2015

Output feedback regulation for large-scale uncertain nonlinear systems with time delays

Shutang Liu, Weiyong Yu and Fangfang ZhangDOI: 10.14736/kyb-2015-5-0874


This paper is concerned with the problem of global state regulation by output feedback for large-scale uncertain nonlinear systems with time delays in the states and inputs. The systems are assumed to be bounded by a more general form than a class of feedforward systems satisfying a linear growth condition in the unmeasurable states multiplying by unknown growth rates and continuous functions of the inputs or delayed inputs. Using the dynamic gain scaling technique and choosing the appropriate Lyapunov-Krasovskii functionals, we explicitly construct the universal output feedback controllers such that all the states of the closed-loop system are globally bounded and the states of large-scale uncertain systems converge to zero.


output feedback, large-scale systems, time-delay systems, global regulation, uncertain nonlinear systems


34K35, 62F35, 93A15, 93B52, 93C10, 93C23


  1. H.-L. Choi and J.-T. Lim: Stabilisation of non-linear systems with unknown growth rate by adaptive output feedback. Int. J. Systems Sci. 41 (2010), 673-678.   DOI:10.1080/00207720903144529
  2. W. Guan: Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delay. Int. J. Systems Sci. 43 (2012), 682-690.   DOI:10.1080/00207721.2010.518252
  3. J. K. Hale and S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York 1993.   DOI:10.1007/978-1-4612-4342-7
  4. C. C. Hua, Q. G. Wang and X. P. Guan: Memoryless state feedback controller design for time delay systems with matched uncertain nonlinearities. IEEE Trans. Automat. Control 53 (2008), 801-807.   DOI:10.1109/tac.2008.917658
  5. M. Jankovic: Control Lyapunov-Razumikhin functions and robust stabilizationof time delay systems. IEEE Trans. Automat. Control 46 (2001), 1048-1060.   DOI:10.1109/9.935057
  6. X. Jiao and T. L. Shen: Adaptive feedback control of nonlinear time-delay systems: The Lasalle-Razumikhinbased Approach. IEEE Trans. Automat. Control 50 (2005), 1909-1913.   DOI:10.1109/tac.2005.854652
  7. H. K. Khalil and A. Saberi: Adaptive stabilization of a class of nonlinear systems using high-gain feedback. IEEE Trans. Automat. Control 32 (1987), 1031-1035.   DOI:10.1109/tac.1987.1104481
  8. H. K. Khalil: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.   CrossRef
  9. M.-S. Koo, H.-L. Choi and J.-T. Lim: Output feedback regulation of a chain of integrators with an unbounded time-varying delay in the input. IEEE Trans. Automat. Control 57 (2012), 2662-2667.   DOI:10.1109/tac.2012.2190207
  10. P. Krishnamurthy and F. Khorrami: A hign-gain scalling technique for adaptive output feedback control of feedforward systems. IEEE Trans. Automat. Control 49 (2004), 2286-2292.   DOI:10.1109/tac.2004.838476
  11. P. Krishnamurthy and F. Khorrami: Feedforward systems with iss appended dynamics: adaptive output-feedback stabilization and disturbance attenuation. IEEE Trans. Automat. Control 53 (2008), 405-412.   DOI:10.1109/tac.2007.914231
  12. H. Lei and W. Lin: Universal output feedback control of nonlinear systems with unknown growth rate. Automatica 42 (2006), 1783-1789.   DOI:10.1016/j.automatica.2006.05.006
  13. H. Lei and W. Lin: Adaptive regulation of uncertain nonlinear systems by output feedback: A universal control approach. Systems Control Lett. 56 (2007), 529-537.   DOI:10.1016/j.sysconle.2007.03.002
  14. M. S. Mahmoud: Decentralized stabilization of interconnected systems with time-varying delays. IEEE Trans. Automat. Control 54 (2009), 2663-2668.   DOI:10.1109/tac.2009.2031572
  15. L. Praly and Z. P. Jiang: Linear output feedback with dynamic hign gain for nonlinear systems. Systems Control Lett. 53 (2004), 107-116.   DOI:10.1016/j.sysconle.2004.02.025
  16. C. J. Qian and W. Lin: Output feedback control of a class of nonlinear systems: a non-separation principle paradigm. IEEE Transaction on Automatic Control 47 (2002), 1710-1715.   DOI:10.1109/tac.2002.803542
  17. R. Sepulchre, M. Jankovie and P. V.Kokotovic: Constructive Nonlinear Control. Springer-Verlag, London 1997.   DOI:10.1007/978-1-4471-0967-9
  18. F. Shang, Y. G. Liu and C. H. Zhang: Adaptive output feedback stabilization for a class of nonlinear systems with inherent nonlinearities and uncertainties. Int. J. Robust and Nonlinear Control 21 (2011), 157-176.   DOI:10.1002/rnc.1583
  19. S. C. Tong, Y. M. Li and H. G. Zhang:  IEEE Trans. Neural Networks 22 (2011), 1073-1086.   DOI:10.1109/tnn.2011.2146274
  20. H. S. Wu: Decentralised adaptive robust control of uncertain large-scale non-linear dynamical systems with time-varying delays. IET Control Theory and Applications 6 (2012), 629-640.   DOI:10.1049/iet-cta.2011.0015
  21. X. D. Ye: Decentralized adaptive stabilization of large-scale nonlinear timedelay systems with unknown high-frequency-gain signs. IEEE Trans. Automat. Control 56 (2011), 1473-1478.   DOI:10.1109/tac.2011.2132270
  22. X. F. Zhang, H. Y. Gao and C. H. Zhang: Global asymptotic stabilization of feedforward nonlinear systems with a delay in the input. Int. J. Systems Sci. 37 (2006), 141-148.   DOI:10.1080/00207720600566248
  23. X. F. Zhang, L. Baron, Q. G. Liu and E.-K. Boukas: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Automat. Control 56 (2011), 692-697.   DOI:10.1109/tac.2010.2097150
  24. X. F. Zhang, C. H. Zhang and Y. Z. Wang: Decentralized output feedback stabilization for a class of large-scale feedforward nonlinear time-delay systems. Int. J. Robust and Nonlinear Control 24 (2013), 17, 2628-2639.   DOI:10.1002/rnc.3013
  25. X. F. Zhang, L. Liu, G. Feng and C. H. Zhang: Output feedback control of large-scale nonlinear time-delay systems in lower triangular form. Automatica 49 (2013), 3476-3483.   DOI:10.1016/j.automatica.2013.08.026
  26. X. Zhang and Y. Lin: Global adaptive stabilisation of feedforward systems by smooth output feedback. IET Control Theory Appl. 6 (2012), 2134-2141.   DOI:10.1049/iet-cta.2011.0501