Kybernetika 51 no. 5, 856-873, 2015

Sum-of-squares based observer design for polynomial systems with a known fixed time delay

Branislav RehákDOI: 10.14736/kyb-2015-5-0856

Abstract:

An observer for a system with polynomial nonlinearities is designed. The system is assumed to exhibit a time delay whose value is supposed to be constant and known. The design is carried out using the sum-of-squares method. The key point is defining a suitable Lyapunov-Krasovskii functional. The resulting observer is in form of a polynomial in the observable variables. The results are illustrated by two examples.

Keywords:

observer, sum-of-squares polynomial, polynomial system

Classification:

93B51

References:

  1. A. Alessandri: Observer design for nonlinear systems by using input-to-state stability. In: Proc. 43rd IEEE Conference on Decision and Control, Bahamas 2004, pp. 3892-3897.   DOI:10.1109/cdc.2004.1429345
  2. A. Ataei and Q. Wang: Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6 (2012), 203-215.   DOI:10.1049/iet-cta.2011.0143
  3. A. Benabdallah: A separation principle for the stabilization of a class of time delay nonlinear systems. Kybernetika 51 (2015), 99-111.   DOI:10.14736/kyb-2015-1-0099
  4. F. Cacace, A. Germani and C. Manes: An observer for a class of nonlinear systems with time varying observation delay. Systems Control Lett. 59 (2010), 305-312.   DOI:10.1016/j.sysconle.2010.03.005
  5. Y. Dong, J. Liu and S. Mei: Observer design for a class of nonlinear discrete-time systems with time-delay. Kybernetika 49 (2013), 341-358.   CrossRef
  6. E. Fridman and M. Dambrine: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 2258-2264.   DOI:10.1016/j.automatica.2009.05.020
  7. E. Fridman, M. Dambrine and N. Yeganefar: On input-to-state stability of systems with time-delay: A matrix inequalities approach. Automatica 44 (2008), 2364-2369.   DOI:10.1016/j.automatica.2008.01.012
  8. E. Fridman: Tutorial on Lyapunov-based methods for time-delay systems. European J. Control 20 (2014), 271-283.   DOI:10.1016/j.ejcon.2014.10.001
  9. H. Gao, T. Chen and J. Lam: A new delay system approach to network-based control. Automatica 44 (2008), 39-52.   DOI:10.1016/j.automatica.2007.04.020
  10. A. Germani, C. Manes and P. Pepe: An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37 (2001), 459-478.   CrossRef
  11. K. Gu, V. L. Kharitonov and J. Chen: Stability of Time-delay Systems. Birkhäuser, 2003.   DOI:10.1007/978-1-4612-0039-0
  12. W. Ch. Huang, H. F. Sun and J. P. Zeng: Robust control synthesis of polynomial nonlinear systems using sum of squares technique. Acta Automatica Sinica 39 (2013), 799-805.   DOI:10.1016/s1874-1029(13)60055-5
  13. H. Ichihara: Observer design for polynomial systems using convex optimization. In: Proc. 46th IEEE Conference on Decision and Control New Orleans 2007, pp. 5309-5314.   DOI:10.1109/cdc.2007.4434155
  14. H. Ichihara: Optimal control for polynomial systems using matrix sum of squares relaxations. IEEE Trans. Automat. Control 54 (2009), 1048-1053.   CrossRef
  15. H. Ito, P. Pepe and Z.-P. Jiang: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica {\mi49} (2013), 3246-3257.   CrossRef
  16. Z. W. Jarvis-Wloszek: Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization. PhD Thesis, University of California, Berkeley 2003.   CrossRef
  17. N. Kazantzis and R. A. Wright: Nonlinear observer design in the presence of delayed process output measurements. In: Proc. 2003 American Control Conference, Denver 2003, pp. 2120-2125.   DOI:10.1109/acc.2003.1243387
  18. H. K. Lam: Output-feedback sampled-data polynomial controller for nonlinear systems. Automatica 47 (2011), 2457-2461.   DOI:10.1016/j.automatica.2011.08.009
  19. Y. S. Lee, Y. S. Moon, W. H. Kwon and P. Park: Delay-dependent robust $H_{\infty}$ control for uncertain systems with a state delay. Automatica 40, (2004), 65-72.   DOI:10.1016/j.automatica.2003.07.004
  20. J. Löfberg: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Automat. Control 54, (2009), 1007-1011.   DOI:10.1109/tac.2009.2017144
  21. H. Marquez: Nonlinear Control Systems. John Wiley and Sons, New Jersey 2003.   CrossRef
  22. L. A. Márquez, C. Moog and M. Velasco Villa: Observability and observers for nonlinear systems with time delay. Kybernetika 38 (2002), 445-456.   CrossRef
  23. E. Nobuyama, T. Aoyagi and Y. Kami: A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems. In: Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics (Dr. Andreas Mueller, ed.), 2011.   DOI:10.5772/17576
  24. A. Papachristodoulou, M. M. Peet and S. Lall: Analysis of polynomial systems with time delays via the sum of squares decomposition. IEEE Trans. Automat. Control 54 (2009), 1061-1067.   DOI:10.1109/tac.2009.2017168
  25. P. G. Park and J. W. Ko: Stability and robust stability for systems with a time-varying delay. Automatica 43 (2007), 1855-1858.   DOI:10.1016/j.automatica.2007.02.022
  26. C. Peng: Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality. IET Control Theory Appl. 6 (2012), 448-453.   DOI:10.1049/iet-cta.2011.0109
  27. S. Prajna, A. Papachristodoulou and F. Wu: Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. In: 5th Asian Control Conference 2004, pp. 157-165.   CrossRef
  28. B. Rehák: Observer design for a polynomial system with time delays via sum-of-squares. In: 6th IEEE International Conference on Cybernetics and Intelligent Systems, Manila and Pico de Loro 2013, pp. 54-59.   DOI:10.1109/iccis.2013.6751578
  29. B. Rehák: Sum-of-squares based observer design for a polynomial system with unknown time delays. ICCA, Taichung 2014, PP. 479-484.   DOI:10.1109/icca.2014.6870967
  30. O. Sename and C. Briat: $H_\infty$ observer design for uncertain time-delay systems. In: European Control Conference 2007, Kos 2007, pp. 5123-5130.   CrossRef
  31. K. Subbarao and P. C. Muralidhar: A state observer for LTI systems with delayed outputs: Time-varying delay. American Control Conference, Seattle 2008, pp. 3029-3033.   DOI:10.1109/acc.2008.4586957
  32. A. R. Teel, L. Moreau and D. Nešić: A note on the robustness of input-to-state stability. In: Proc. 40th IEEE Conference on Decision and Control, Orlando 2001, pp. 875-880.   DOI:10.1109/cdc.2001.980217
  33. J. Theis: Sum-of-Squares Applications in Nonlinear Controller Synthesis. PhD Thesis, University of California, Berkeley 2012.   CrossRef
  34. G. Zhao and J. Wang: Reset observers for linear time-varying delay systems: Delay-dependent approach. J. Franklin Institute 351 (2014), 5133-5147.   DOI:10.1016/j.jfranklin.2014.08.011
  35. X.-M. Zhang and Q.-L. Han: Robust $H_\infty$ filtering for a class of uncertain linear systems with time-varying delay. Automatica 44 (2008), 157-166.   DOI:10.1016/j.automatica.2007.04.024
  36. L. Zhou, X. Xiao and G. Lu: Observers for a class of nonlinear systems with time delay. Asian J. Control 11 (2009), 688-693.   DOI:10.1002/asjc.150