Kybernetika 51 no. 4, 699-711, 2015

On almost equitable uninorms

Gang Li, Hua-Wen Liu and János FodorDOI: 10.14736/kyb-2015-4-0699


Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.


uninorm, aggregation functions, representable uninorm, negation, contradictory information


06F05, 03E72, 03B52


  1. H. Bustince, J. Montero and R. Mesiar: Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777.   DOI:10.1016/j.fss.2008.09.018
  2. B. De Baets: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642.   DOI:10.1016/s0377-2217(98)00325-7
  3. B. De Baets and J. Fodor: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100.   DOI:10.1007/s005000050057
  4. B.De Baets and J. Fodor: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136.   DOI:10.1016/s0165-0114(98)00265-6
  5. B. De Baets, N. Kwasnikowska and E. Kerre: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague 1997, pp. 215-220.   CrossRef
  6. D. Hliněná, M. Kalina and P. Král': A class of implications related to Yager's $f-$implications. Information Sciences 260 (2014), 171-184.   CrossRef
  7. P. Drygaś: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226.   CrossRef
  8. P. Drygaś: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196.   CrossRef
  9. P. Drygaś: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157.   DOI:10.1016/j.fss.2009.09.017
  10. P. Drygaś, D. Ruiz-Aguilera and J. Torrens: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. (submitted).   CrossRef
  11. J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.   DOI:10.1007/978-94-017-1648-2
  12. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  13. J. Fodor and B. De Baets: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99.   DOI:10.1016/j.fss.2011.12.001
  14. D. M. Gabbay and G. Metcalfe: Fuzzy logics based on $[0,1)$-continuous uninorms. Arch. Math. Log. 46 (2007), 425-449.   DOI:10.1007/s00153-007-0047-1
  15. G. Li and H.-W. Liu: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets and Systems (2015).   DOI:10.1016/j.fss.2015.01.019
  16. G. Li, H.-W. Liu and J. Fodor: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604.   DOI:10.1142/s0218488514500299
  17. S. Hu and Z. Li: The structure of continuous uninorms. Fuzzy Sets Syst. 124 (2001), 43-52.   DOI:10.1016/s0165-0114(00)00044-0
  18. M. Mas, M. Monserrat, D. Ruiz-Aguilera and J. Torrens: Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets and Syst. 261 (2015), 20-32.   DOI:10.1016/j.fss.2014.05.012
  19. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  20. M. Petrík and R. Mesiar: On the structure of special classes of uninorms. Fuzzy Sets Syst. 240 (2014), 22-38.   DOI:10.1016/j.fss.2013.09.013
  21. A. Pradera: Uninorms and non-contradiction. In: Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, eds.), Springer 2008, pp. 50-61.   DOI:10.1007/978-3-540-88269-5_6
  22. A. Pradera and E. Trillas: Aggregation, non-contradiction and excluded-middle. Mathware Soft Comput. XIII (2006), 189-201.   CrossRef
  23. A. Pradera and E. Trillas: Aggregation operators from the ancient NC and EM point of view. Kybernetika 42 (2006), 243-260.   CrossRef
  24. A. Pradera, G. Beliakov and H. Bustince: Aggregation functions and contradictory information. Fuzzy Sets Syst. 191 (2012), 41-61.   DOI:10.1016/j.fss.2011.10.007
  25. F. Qin and B. Zhao: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458.   DOI:10.1016/j.fss.2005.04.010
  26. D. Ruiz and J. Torrens: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190.   DOI:10.1109/tfuzz.2005.864087
  27. D. Ruiz-Aguilera, J. Torrens, B. De Baets and J. C. Fodor: Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, eds.), Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434.   DOI:10.1007/978-3-642-14049-5_44
  28. D. Ruiz-Aguilera and J. Torrens: S- and R-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Syst. 160 (2009), 832-852.   DOI:10.1016/j.fss.2008.05.015
  29. A. Xie and H. Liu: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72.   DOI:10.1016/j.fss.2012.05.008
  30. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  31. R. Yager and A. Rybalov: Bipolar aggregation using the Uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70.   DOI:10.1007/s10700-010-9096-8
  32. R. Yager: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175.   DOI:10.1016/s0165-0114(00)00027-0