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CAUCHY-LIKE FUNCTIONAL EQUATION
BASED ON A CLASS OF UNINORMS

Feng Qin

Commuting is an important property in any two-step information merging procedure where
the results should not depend on the order in which the single steps are performed. In the
case of bisymmetric aggregation operators with the neutral elements, Saminger, Mesiar and
Dubois, already reduced characterization of commuting n-ary operators to resolving the unary
distributive functional equations. And then the full characterizations of these equations are
obtained under the assumption that the unary function is non-decreasing and distributive over
special aggregation operators, for examples, continuous t-norms, continuous t-conorms and two
classes of uninorms. Along this way of thinking, in this paper, we will investigate and fully
characterize the following unary distributive functional equation f(U(x, y)) = U(f(x), f(y)),
where f : [0, 1] → [0, 1] is an unknown function but unnecessarily non-decreasing, a uninorm
U ∈ Umin has a continuously underlying t-norm TU and a continuously underlying t-conorm SU .
Our investigation shows that the key point is a transformation from this functional equation to
the several known ones. Moreover, this equation has also non-monotone solutions completely
different with already obtained ones. Finally, our results extend the previous ones about the
Cauchy-like equation f(A(x, y)) = B(f(x), f(y)), where A and B are some continuous t-norm
or t-conorm.
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1. INTRODUCTION

The aggregation of information inherent to the human thinking is viewed as the process
of merging all collected data into a concrete representative value. More specifically,
the aggregation process is carried out as a two-stepped procedure whereby several local
fusion operations are performed in parallel and then the results are merged into a global
result [21]. It may happen that in practice the two steps can be exchanged because there
is no reason to perform either of the steps first [24]. Thus one would expect the two
procedures yield the same results in any sensible approach, and then operations are said
to be commuting.

In fact, early examples of commuting appear in probability theory for the merging
of probability distributions. Suppose two joint probability distributions are merged by
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combining degrees of probability point-wisely. It is natural that the marginals of the
resulting joint probability function are the aggregates of the marginals of the original
joint probabilities. To fulfill this requirement the aggregation operation must commute
with the addition operation involved in the derivation of the marginals. McConway
showed that a weighted arithmetic mean is the only possible aggregation operation for
probability functions [15].

After this, the commuting aggregation operators caught more and more attention.
For instances, they are used to preserve the transitivity when aggregating preference
matrices or fuzzy relations [8, 23, 25] or some form of additivity when aggregating set
functions [9]. Specially, when Saminger, Mesiar, and Dubois [24] investigated the prop-
erty of commuting for aggregation operators in connection with their relationship to
bisymmetry, they gave out a full characterization of commuting operators in case that
one of them is bisymmetric with some neutral element and further showed that these op-
erators can be attained through functions distributive over the bisymmetric aggregation
operator with neutral element involved. Thus the characterization of commuting n-ary
operators is reduced to resolving the unary distributive functional equations. Note that
a full characterization of all bisymmetric aggregation operators with neutral elements, in
particular if the neutral elements are from the open interval, is still missing [3, 6, 7, 10]
and the characterization of the set of unary functions distributing with such operators
is heavily influenced by the structure of the underlying operators [17, 20]. Hence they
only focused on several special subclasses of bisymmetric aggregation operators with
neutral elements, namely on continuous t-norms, continuous t-conorms and two par-
ticular classes of uninorms. For these two particular classes of uninorms, they got the
full characterizations of the unary distributive functional equations under the assump-
tion that the unary function is non-decreasing. Indeed, it is very difficult to obtain the
full characterization of these equations without any additional condition because they
are bound up with the famous Cauchy functional equation [1, 2] which has not been
completely solved so far [3, 16, 18]. Along this way of thinking, in this paper, we will
investigate the following functional equation

f(U(x, y)) = U(f(x), f(y)), (x, y) ∈ [0, 1]2, (1)

where f : [0, 1]→ [0, 1] is an unknown function but unnecessarily non-decreasing, a uni-
norm U ∈ Umin has a continuously underlying t-norm TU and a continuously underlying
t-conorm SU . Our investigation shows that the key point is a transformation from this
functional equation to the several known ones. Moreover, this equation has also non-
monotone solutions completely different with already obtained ones. Finally, our results
extend the previous ones about the Cauchy-like equation f(A(x, y)) = B(f(x), f(y)),
where A and B are some continuous t-norm or t-conorm.

On the other hand, it is often appropriate to amalgamate numerical statistical data
into means variances, etc., by means of standard integration, so it can be appropriate to
amalgamate similar data by means of monotone integrals related to monotone measures
that are not necessarily additive [4, 10]. In particular, one can consider data with values
in a real interval [0, 1] on which a pseudo-addition induces a structure characteristic for
the data. Then, in order to construct an appropriate integral, one introduces a pseudo-
multiplication that must be distributive with respect to the given pseudo-addition [5].
The distributivity property is expressed by the above Eq. (1).
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The paper is organized as follows. In Section 2, we present some results concerning
basic fuzzy logic connectives. In Section 3, some results about the Cauchy-like functional
equation based on continuous t-norms or continuous t-conorms are recalled. From Sec-
tion 4 to Section 6, the main sections of this paper, we will investigate and describe all
solutions of Eq. (1). To illustrate structures of solutions of Eq. (1), in Section 7, an
example is constructed. Finally, Conclusion is in Section 8.

2. PRELIMINARIES

Definition 2.1. (Gottwald [12], Klement et al. [14]) A binary operation T : [0, 1]2 →
[0, 1] is called a t-norm if it is associative, commutative, increasing and has neutral
element 1, namely, it holds T (x, 1) = T (1, x) = x for all x ∈ [0, 1].

Definition 2.2. (Klement et al. [14]) A t-norm T is said to be

(i) continuous, if for all convergent sequences (xn)n∈N, (yn)n∈N ∈ [0, 1]N, we have
T (limn→∞ xn, limn→∞ yn) = limn→∞ T (xn, yn);

(ii) Archimedean, if for every x, y ∈ (0, 1), there exists some n ∈ N such that xnT < y,
where x1

T = x, x2
T = T (x, x), · · · , xnT = T (xn−1

T , x);

(iii) strict, if T is continuous and strictly monotone, i. e., T (x, y) > T (x, z) whenever
x ∈ (0, 1] and y > z;

(iv) nilpotent, if T is continuous and if for each x ∈ (0, 1) there exists some n ∈ N that
xnT = 0.

Remark 2.3. (Klement et al. [14])

(i) A continuous t-norm T is Archimedean if and only if it holds T (x, x) < x for all
x ∈ (0, 1).

(ii) If a t-norm T is strict or nilpotent, then it must be Archimedean. The converse is
also true when it is continuous.

Theorem 2.4. (Klement et al. [14]) For a function T : [0, 1]2 → [0, 1], the following
statements are equivalent:

(i) T is a continuous Archimedean t-norm.

(ii) T has a continuous additive generator, i. e., there exists a continuous, strictly
decreasing function t : [0, 1] → [0,∞] with t(1) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1]. (2)

Remark 2.5. (Gottwald [12], Grabish et al. [13])

(i) A t-norm T is strict if and only if each continuous additive generator t of T satisfies
t(0) =∞.
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(ii) A t-norm T is nilpotent if and only if each continuous additive generator t of T
satisfies t(0) <∞.

Theorem 2.6. (Klement et al. [14]) T is a continuous t-norm, if and only if

(i) T = min, or

(ii) T is continuously Archimedean, or

(iii) there exists a family {(am, bm), Tm}m∈A such that T is the ordinal sum of this
family denoted by T = (< am, bm, Tm >)m∈A. In other words, it holds for all
x, y ∈ [0, 1],

T (x, y) =

{
am + (bm − am)Tm

(
x−am

bm−am
, y−am

bm−am

)
if (x, y) ∈ [am, bm]2,

min(x, y) otherwise,

where {(am, bm)}m∈A is a countable family of non-overlapping, open, proper subin-
tervals of [0, 1] with each Tm being a continuously Archimedean t-norm, and A is a
finite or countable infinite index set. For every m ∈ A, (am, bm) is called an open
generating subinterval of T , and Tm is called a correspondingly generating t-norm
on (am, bm) (or [am, bm]) of T .

Definition 2.7. (Klement et al. [14]) A binary operation S : [0, 1]2 → [0, 1] is called a
t-conorm if it is associative, commutative, increasing and has neutral element 0, namely,
it holds S(x, 0) = S(0, x) = x for all x ∈ [0, 1].

Definition 2.8. (Gottwald [12]) A t-conorm S is said to be

(i) continuous, if for all convergent sequences (xn)n∈N, (yn)n∈N ∈ [0, 1]N, we have
S( lim

n→∞
xn, lim

n→∞
yn) = lim

n→∞
S(xn, yn);

(ii) Archimedean, if for every x, y ∈ (0, 1), there exists some n ∈ N such that xnS > y,
where x1

S = x, x2
S = S(x, x), · · · , xnS = S(xn−1

S , x);

(iii) strict, if S is continuous and strictly monotone, i. e., S(x, y) < S(x, z) whenever
x ∈ [0, 1) and y < z;

(iv) nilpotent, if S is continuous and if for each x ∈ (0, 1) there exists some n ∈ N that
xnS = 1.

Remark 2.9. (Gottwald [12], Klement et al. [14]) By the duality between t-norms and
t-conorms, we easily obtain the following properties.

(i) A continuous t-conorm S is Archimedean if and only if it holds S(x, x) > x for all
x ∈ (0, 1).

(ii) If a t-conorm S is strict or nilpotent, then it must be Archimedean. The converse
is also true when it is continuous.

Theorem 2.10. (Klement et al. [14]) For a function S : [0, 1]2 → [0, 1], the following
statements are equivalent:
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(i) S is a continuous Archimedean t-conorm.

(ii) S has a continuous additive generator, i. e., there exists a continuous, strictly
increasing function s : [0, 1]→ [0,∞] with s(0) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

S(x, y) = s−1(min(s(x) + s(y), s(1))), x, y ∈ [0, 1]. (3)

Remark 2.11. (Fodor and Roubens [10]) By the duality between t-norms and t-
conorms, we easily obtain the following properties.

(i) A t-conorm S is strict if and only if each continuous additive generator s of S
satisfies s(1) =∞.

(ii) A t-conorm S is nilpotent if and only if each continuous additive generator s of S
satisfies s(1) <∞.

Theorem 2.12. (Klement et al. [14]) S is a continuous t-conorm, if and only if

(i) S = max, or

(ii) S is continuously Archimedean, or

(iii) there exists a family {(am, bm), Sm}m∈B such that S is the ordinal sum of this
family denoted by S = (< am, bm, Sm >)m∈B . In other words, it holds for all
x, y ∈ [0, 1]

S(x, y) =

{
am + (bm − am)Sm

(
x−am

bm−am
, y−am

bm−am

)
if (x, y) ∈ [am, bm]2,

max(x, y) otherwise,

where {(am, bm)}m∈B is a countable family of non-overlapping, open, proper subin-
tervals of [0, 1] with each Sm being a continuously Archimedean t-conorm, and B
is a finite or countable infinite index set. For every m ∈ B, (am, bm) is called an
open generating subinterval of S, and Sm is called a correspondingly generating
t-conorm on (am, bm) (or [am, bm]) of S.

Definition 2.13. (Fodor et al. [11], Ruiz and Torrens [22], Yager and Ryalkov[26]) A
uninorm U is a binary operator U : [0, 1]2 → [0, 1], which is commutative, associative,
non-decreasing in each variable and there exists some element e ∈ [0, 1] called neutral
element such that U(e, x) = x for all x ∈ [0, 1].

It is clear that the binary operator U becomes a t-norm when e = 1 while U a t-
conorm when e = 0. For any other value e ∈ (0, 1) the operation works as a t-norm in
the square [0, e]2, and as a t-conorm in [e, 1]2, and its values are between min and max
in the set of points A(e) given by

A(e) = [0, e)× (e, 1] ∪ (e, 1]× [0, e). (4)

We will denote a uninorm with neutral element e and a underlying t-norm TU and a
underlying t-conorm SU by U = 〈TU , e, SU 〉. In fact, it holds that

TU (x, y) =
U(ex, ey)

e
, SU (x, y) =

U(e+ (1− e)x, e+ (1− e)y)− e
1− e

(5)
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for all 0 < e < 1. For any uninorm we have U(0, 1) ∈ {0, 1} and a uninorm is called
conjunctive when U(0, 1) = 0 and disjunctive when U(0, 1) = 1.

Theorem 2.14. (Fodor et al. [11]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral
element e ∈ (0, 1). Then, the sections x 7→ (x, 1) and x 7→ (x, 0) are continuous at each
point except perhaps at e if and only if U is given by one of the following formulas.

(i) If U(0, 1) = 0, then

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

min{x, y} otherwise.

(ii) If U(0, 1) = 1, then

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e
y−e
1−e ) if (x, y) ∈ [e, 1]2,

max{x, y} otherwise.

In the following, the set of uninorms in Case (i) be denoted by Umin and the set of
uninorms in Case (ii) by Umax.

3. SOME RESULTS ABOUT THE CAUCHY-LIKE FUNCTIONAL EQUATION
BASED ON CONTINUOUS T-NORMS OR CONTINUOUS T-CONORMS

Note that the main results in Ref. [18], i. e., Theorem 4.17, only consider the case that
S1 and S2 are continuous but not Archimedean t-conorms. In fact, they hold for all
continuous t-conorms. Therefore, the conditions that S1 and S2 are not Archimedean
can be dropped. Then, set I(x, y) = fx(y) and apply this theorem, we can obtain the
following characterizations of the Cauchy-like functional equations based on continuous
t-conorms.

Theorem 3.1. (Benvenuti and Vivona [5], Qin and Baczyński [18]) Consider two con-
tinuous t-conorms S1 and S2, and a unary function f : [0, 1] → [0, 1]. The triple of
functions (S1, S2, f) satisfies

f(S1(x, y)) = S2(f(x), f(y)) (6)

for all x, y ∈ [0, 1] if and only if f is non-decreasing, preserves the idempotent property,
and has the following form in every generating subinterval (αm, βm) of S1,

(i) If S1 is strict on its own generating subinterval (αm, βm) with the additive gener-
ator sm and S2 on the generating subinterval (cj , dj) has the additive generator
sj , then we have one of the following two subcases.

(a) f(x) = r, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm), where r is
idempotent and satisfies f(αm) ≤ r ≤ f(βm).
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(b)

f(x) = cj + (dj − cj) · s−1
j

(
min

(
c · sm

(
x− αm
βm − αm

)
, sj(1)

))
(7)

for any x ∈ (αm, βm) and some constant c ∈ (0,∞), if there exists some
x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

(ii) If S1 is nilpotent on its own generating subinterval (αm, βm) with the additive gen-
erator sm and S2 on the generating subinterval (cj , dj) has the additive generator
sj , then we have one of the following two subcases.

(a) f(x) = βm, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm).

(b) f(x) has the form Eq. (7) for any x ∈ (αm, βm) and some constant c ∈
[ sj(1)
sm(1) ,∞), if there exists some x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

By the duality between t-norms and t-conorms, we easily obtain the following theo-
rem.

Theorem 3.2. (Saminger-Platz et al. [24]) Consider two continuous norms T1 and T2,
and a unary function f : [0, 1]→ [0, 1]. The triple of functions (T1, T2, f) satisfies

f(T1(x, y)) = T2(f(x), f(y)) (8)

for all x, y ∈ [0, 1] if and only if f is non-decreasing, preserves the idempotent property,
and has the following form in every generating subinterval (αm, βm) of T1,

(i) If T1 is strict on its own generating subinterval (αm, βm) with the additive genera-
tor tm and T2 on the generating subinterval (cj , dj) has the additive generator tj ,
then we have one of the following two subcases.

(a) f(x) = r, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm), where r is
idempotent and satisfies f(αm) ≤ r ≤ f(βm).

(b)

f(x) = cj + (dj − cj) · t−1
j

(
min

(
c · tm

(
x− αm
βm − αm

)
, tj(0)

))
(9)

for any x ∈ (αm, βm) and some constant c ∈ (0,∞), if there exists some
x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

(ii) If T1 is nilpotent on its own generating subinterval (αm, βm) with the additive gen-
erator tm and T2 on the generating subinterval (cj , dj) has the additive generator
tj , then we have one of the following two subcases.

(a) f(x) = βm, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm).

(b) f(x) has the form Eq. (9) for any x ∈ (αm, βm) and some constant c ∈
[ tj(0)tm(0) ,∞), if there exists some x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

Generalizing the results of Ref. [19] by means of the method of Ref. [18], we directly
obtain the following theorem.
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Theorem 3.3. Consider a continuous t-norm T and a continuous t-conorm S, and a
unary function f : [0, 1]→ [0, 1]. The triple of functions (T, S, f) satisfies

f(T (x, y)) = S(f(x), f(y)) (10)

for all x, y ∈ [0, 1] if and only if f is non-increasing, preserves the idempotent property,
and has the following form in every generating subinterval (αm, βm) of T ,

(i) If T is strict on its own generating subinterval (αm, βm) with the additive generator
tm and S on the generating subinterval (cj , dj) has the additive generator sj , then
we have one of the following two subcases.

(a) f(x) = r, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm), where r is
idempotent and satisfies f(βm) ≤ r ≤ f(αm).

(b)

f(x) = cj + (dj − cj) · s−1
j

(
min

(
c · tm

(
x− αm
βm − αm

)
, sj(1)

))
(11)

for any x ∈ (αm, βm) and some constant c ∈ (0,∞), if there exists some
x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

(ii) If T is nilpotent on its own generating subinterval (αm, βm) with the additive
generator tm and S on the generating subinterval (cj , dj) has the additive generator
sj , then we have one of the following two subcases.

(a) f(x) = αm, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm).
(b) f(x) has the form Eq. (11) for any x ∈ (αm, βm) and some constant c ∈

[ sj(1)
tm(0) ,∞), if there exists some x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

By the duality between t-norms and t-conorms, we have the following theorem.

Theorem 3.4. Consider a continuous t-norm T and a continuous t-conorm S, and a
unary function f : [0, 1]→ [0, 1]. The triple of functions (T, S, f) satisfies

f(S(x, y)) = T (f(x), f(y)) (12)

for all x, y ∈ [0, 1] if and only if f is non-increasing, preserves the idempotent property,
and has the following form in every generating subinterval (αm, βm) of S,

(i) If S is strict on its own generating subinterval (αm, βm) with the additive generator
sm and T on the generating subinterval (cj , dj) has the additive generator tj , then
we have one of the following two subcases.

(a) f(x) = r, if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm), where r is
idempotent and satisfies f(βm) ≤ r ≤ f(αm).

(b)

f(x) = cj + (dj − cj) · t−1
j

(
min

(
c · sm

(
x− αm
βm − αm

)
, tj(0)

))
(13)

for any x ∈ (αm, βm) and some constant c ∈ (0,∞), if there exists some
x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).
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(ii) If S is nilpotent on its own generating subinterval (αm, βm) with the additive
generator sm and T on the generating subinterval (cj , dj) has the additive generator
tj , then we have one of the following two subcases.

(a) f(x) = βm if it holds that f(x) 6∈ (cj , dj) for any x ∈ (αm, βm).

(b) f(x) has the form Eq. (13) for any x ∈ (αm, βm) and some constant c ∈
[ tj(1)sm(0) ,∞), if there exists some x0 ∈ (αm, βm) such that f(x0) ∈ (cj , dj).

4. TWO KEY LEMMAS

From now on, we investigate and characterize the functional equation

f(U(x, y)) = U(f(x), f(y)), (14)

where f : [0, 1]→ [0, 1] is an unknown function but unnecessarily non-decreasing, a uni-
norm U ∈ Umin has a continuously underlying t-norm TU and a continuously underlying
t-conorm SU . Our method are also suit for a uninorm U ∈ Umax and there are similar
results, but considering the limited length of the paper, they are omitted. For the sake
of convenience, write Ran(f) = {f(x)|x ∈ [0, 1]} and Id(U) = {x ∈ [0, 1]|U(x, x) = x}.

Lemma 4.1. (Saminger-Platz et al. [24]) Consider a uninorm U ∈ Umin with neutral
element e ∈ (0, 1), and a unary function f : [0, 1] → [0, 1]. If f satisfies Eq. (14), then
all of the following statements hold.

(i) If x ∈ Id(U), then f(x) ∈ Id(U).

(ii) If x ∈ [0, 1], then U(f(e), f(x)) = f(x).

(iii) If e ∈ Ran(f), then f(e) = e.

Remark 4.2. Ref. [24] has already shown Lemma 4.1 holds under hypothesis that f
is monotone. But monotonicity is not used in its proof progress. Hence these results
hold without any restriction on f w.r.t. its monotonicity. That is, Lemma 4.1 is right
without its proof. Moreover, it also shows that f preserves idempotency and f(e) plays
the neutral element in Ran(f).

Now, let us investigate Eq. (14) under the assumption that there exists some x0 ∈
[0, e) such that f(x0) < e, but as seen later this assumption is not essential.

Lemma 4.3. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], and there exists some x0 ∈ [0, e) such that f(x0) < e. If f
satisfies Eq. (14), then it holds that f(x) < e for all x ∈ [0, x0].

P r o o f . Take any x ∈ [0, x0], then we know from hypotheses and structure of U that
there exists some x′ ∈ [0, e] such that x = U(x′, x0). Note that f(x0) < e, then we
have from structure of U and Eq. (14) that f(x) = f(U(x′, x0)) = U(f(x′), f(x0)) ≤
min(f(x′), f(x0)) ≤ f(x0) < e. �
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Due to Lemma 4.3, define E = {x ∈ [0, e)|f(x) < e}, then we stipulate

α = supE. (15)

It is obvious that α ≤ e. Now, we claim that α is an idempotent element of U , namely,
U(α, α) = α. In fact, the result is clearly right when α = e. Now, we assume α < e
and take x ∈ (α, e). It follows from definition of α that f(x) ≥ e. Thus we imply from
Eq. (14) that f(U(x, x)) = U(f(x), f(x)) ≥ f(x) ≥ e, which means U(x, x) 6∈ E, i. e.,
U(x, x) ≥ α. Let x→ α and apply continuity of U on the region [0, e]2, then we obtain
U(α, α) ≥ α. On the other hand, we know from α < e that U(α, α) ≤ α. Therefore it
holds that U(α, α) = α. It is here pointed out that the case α = 0 do include the above
excluded case that f(x0) ≥ e for all x0 ∈ [0, e). Hence, in next discussion, we will cancel
this restriction that there exists some x0 ∈ [0, e) such that f(x0) < e.

Next, depending on the order relation between α and e, we need to consider two
cases: (I) α < e and (II) α = e. We firstly consider the case α < e.

5. CASE (I)

Lemma 5.1. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbol α defined above by Eq. (15) and fulfilling α < e.
If f satisfies Eq. (14), then all of the following statements hold.

(i) f |[0,α) is increasing, Ran(f |[0,α)) ⊆ [0, e).

(ii) f |(α,e) is decreasing, Ran(f |(α,e)) ⊆ [f(1), 1].

(iii) f |[e,1] is increasing, Ran(f |(e,1]) ⊆ [e, f(1)].

P r o o f . (i) Suppose x, y ∈ [0, α) and x < y, then we have from definition of α that
f(x) < e and f(y) < e. Applying structure of U , then there exists some x′ ∈ [0, e)
such that x = U(x′, y). Hence it follows from Eq. (14) that f(x) = f(U(x′, y)) =
U(f(x′), f(y)) ≤ min(f(x′), f(y)) ≤ f(y). Thus we have just proven that f |[0,α) is
increasing. Further, we get from definition of α that Ran(f |[0,α)) ⊆ [0, e).

(ii) At first, let us show f(x) ≥ f(1) ≥ e for x ∈ (α, e). Obviously, then we know
from structure of U and x ∈ (α, e) that x = U(x, 1). Thus it follows from Eq. (14)
that f(x) = f(U(x, 1)) = U(f(x), f(1)). Now we claim f(1) ≥ e. Otherwise we assume
f(1) < e, then we obtain f(x) = U(f(x), f(1)) = min(f(x), f(1)) ≤ f(1) < e. On
the other hand, it follows from definition of α that f(x) ≥ e, this is a contradiction.
So f(1) ≥ e, applying again structure of U , we must obtain f(x) = U(f(x), f(1)) ≥
max(f(x), f(1)) ≥ f(1) ≥ e.

Suppose x, y ∈ (α, e) and x < y, then we know from definition of α that f(x) ≥ e
and f(y) ≥ e. And then, by means of structure of U and idempotent elements α and
e, there exists some x′ ∈ (α, e) such that x = U(x′, y). Further we have from Eq. (14)
that f(x) = f(U(x′, y)) = U(f(x′), f(y)) ≥ max(f(x′), f(y)) ≥ f(y), which means that
f |(α,e) is decreasing. Finally we obtain that Ran(f |(α,e)) ⊆ [f(1), 1].

(iii) To finish proof, we must show that f(x) ≥ e holds for all x ∈ (e, 1]. Otherwise
we assume that there exists some x0 ∈ (e, 1] such that f(x0) < e. Note that α < e,
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then we take y0 ∈ (α, e) and then we obtain from definition of α that f(y0) ≥ e. Using
structure of U , we get y0 = U(x0, y0). Hence it follows from Eq. (14) and structure of
U that f(y0) = f(U(x0, y0)) = U(f(x0), f(y0)) = min(f(x0), f(y0)) ≤ f(x0) < e, this is
a contradiction.

Suppose x, y ∈ (e, 1] and x < y, then we know from the previous proof that f(x) ≥ e
and f(y) ≥ e. By virtue of structure of U , there exists some x′ ∈ (e, 1] such that
y = U(x′, x). Hence we know from Eq. (14) and structure of U that f(y) = f(U(x′, x)) =
U(f(x′), f(x)) ≥ max(f(x′), f(x)) ≥ f(x). This shows that f |(e,1] is increasing, and then
we know that Ran(f |(e,1]) ⊆ [e, f(1)]. �

Lemma 5.2. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbol α defined above by Eq. (15) and fulfilling α < e.
If f satisfies Eq. (14), then one of the following three statements hold.

(i) If f(α) < e, then f(α) = max(Ran(f |[0,α])).

(ii) If f(α) > e, then f(α) = max(Ran(f |[0,1])).

(iii) f(α) = e.

P r o o f . (i) Suppose f(α) < e and take x ∈ [0, α), then we have from definition and the
idempotent element α that f(x) < e and U(x, α) = x. Hence it follows from Eq. (14)
that f(x) = f(U(x, α)) = U(f(x), f(α)) ≤ min(f(x), f(α)) ≤ f(α). Further we have
f(α) = max(Ran(f |[0,α])).

(ii) Suppose f(α) > e and take x ∈ (α, e), then we have from definition and the
idempotent element α that f(x) ≥ e and U(x, α) = α. Hence it follows from Eq. (14)
that f(α) = f(U(x, α)) = U(f(x), f(α)) ≥ max(f(x), f(α)) ≥ f(x). Further we have
from Lemma 5.1 that f(α) = max(Ran(f |[0,1])). �

Suppose x, y < α, define two functions φ : [0, α] → [0, 1] and ϕ : [0, e] → [0, 1] by
the formulas φ(x) = x

α and ϕ(x) = x
e , respectively. Then there exists some contin-

uous t-norm T1 such that two sides of Eq. (14) are respectively written as U(x, y) =
φ−1T1(φ(x), φ(y)) and U(f(x), f(y)) = ϕ−1TU (ϕ(f(x)), ϕ(f(y))). Therefore, for any
x, y < e, Eq. (14) can be rewritten as f(φ−1T1(φ(x), φ(y))) = ϕ−1TU (ϕ(f(x)), ϕ(f(y))),
from which we get (ϕ1 ◦ f ◦ φ−1)(T1(φ(x), φ(y))) = TU (ϕ(f(x)), ϕ(f(y))). By routine
substitutions

g = ϕ ◦ f ◦ φ−1, a = φ(x), b = φ(y), (16)

we have the Cauchy like functional equation

g(T1(a, b)) = TU (g(a), g(b)) for a, b ∈ [0, 1], (17)

where g : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (14)
when x, y < α is reduced to characterize all solutions of Eq. (17). Fortunately, the full
characterization of this case can be found in Theorem 3.2.

Suppose α < x, y < e, define yet two functions φ′ : [α, e] → [0, 1] and ϕ′ : [f(1), 1] →
[0, 1] by the formulas φ′(x) = x−α

e−α and ϕ′(x) = x−f(1)
1−f(1) , respectively. Then there
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exists a continuous t-norm T2 and a continuous t-conorm S1 such that two sides of
Eq.(14) are respectively written as U(x, y) = (φ′)−1T2(φ′(x), φ′(y)) and U(f(x), f(y)) =
(ϕ′)−1S1(ϕ′(f(x)), ϕ′(f(y))). Hence, for any α < x, y < e, Eq. (14) is rewritten as
f((φ′)−1T2(φ′(x), φ′(y))) = (ϕ′)−1S1(ϕ′(f(x)), ϕ′(f(y))), from which we get (ϕ′ ◦ f ◦
(φ′)−1)(T2(φ′(x), φ′(y))) = S1(ϕ′(f(x)), ϕ′(f(y))). By routine substitutions

g′ = ϕ′ ◦ f ◦ (φ′)−1, a′ = φ′(x), b′ = φ′(y), (18)

we have the Cauchy like functional equation

g′(T2(a′, b′)) = S1(g′(a′), g′(b′)), for a′, b′ ∈ [0, 1], (19)

where g′ : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (8)
when α < x, y < e is reduced to characterize all solutions of Eq. (19). Fortunately, the
full characterization of this case can be found in Theorem 3.3.

Suppose x, y > e, define also two functions ψ : [e, 1] → [0, 1] and ω : [e, f(1)] →
[0, 1] by the formulas φ(x) = x−e

1−e and ω(x) = x−e
f(1)−e respectively. Then there exists

some continuous t-norm T ′2 such that two sides of Eq. (14) are respectively written as
U(x, y) = ψ−1SU (ψ(x), ψ(y)) and U(f(x), f(y)) = ω−1T ′2(ω(f(x)), ω(f(y))). There-
fore, for any (x, y) ∈ (e, 1]2, Eq. (14) can be rewritten as f(ψ−1SU (ψ(x), ψ(y))) =
ω−1T ′2(ω(f(x)), ω(f(y))), from which we get (ω◦f ◦ψ−1)(SU (ψ(x), ψ(y))) = T ′2(ω(f(x)),
ω(f(y))). By routine substitutions,

h = ω ◦ f ◦ ψ−1, c = ψ(x), d = ψ(y), (20)

we have the Cauchy like functional equation

h(SU (c, d)) = T ′2(h(c), h(d)), for c, d ∈ [0, 1], (21)

where h : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (8)
when (x, y) ∈ [e, 1]2 is reduced to characterize all solutions of Eq. (21). Fortunately, this
case can be found in Theorem 3.4.

According to the above analyse and lemmas, we have the following theorem.

Theorem 5.3. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], and the symbols α, g, g′, h defined above by Eq.(15), (16),
(18) and (20) respectively and fulfilling α < e. Then f satisfies Eq. (14) if and only if
all of the following statements hold.

(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).

(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,α) is increasing, g satisfies Eq. (17), Ran(f |[0,α)) ⊆ [0, e).

(iv) f |(α,e) is decreasing, g′ satisfies Eq. (19), Ran(f |(α,e)) ⊆ [f(1), 1].

(v) f |(e,1] is increasing, h satisfies Eq. (21), Ran(f |(e,1]) ⊆ [e, f(1)].
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(vi) One of the following three statements hold:

(a) If f(α) < e, then f(α) = max(Ran(f |[0,α])),
(b) If f(α) > e, then f(α) = max(Ran(f |[0,1])),
(c) f(α) = e.

P r o o f . According to Lemmas 5.1, 5.2 and the above analyses, it is easy to show
necessity. To finish proof, we need only check sufficiency. In virtue of hypotheses (i) and
(ii), we know easily that all of f(0), f(α) and f(1) are idempotent elements of U . Next,
there are the following several cases to consider.

(A) Suppose either x = e or x = α or y = e or y = α, it holds that Eq. (14) since
hypothesis (iv), e is neutral element of U and α is idempotent.

(B) Suppose x, y < e, then we obtain from hypothesis (iii) that Eq. (14).
(C) Suppose α < x, y < e, then we have from hypothesis (iv) that Eq. (14).
(D) Suppose e < x, y < 1, then we get from hypothesis (v) that Eq. (14).
(E) Suppose x < α < y and y 6= e, then it follows from hypotheses (iii) (iv)

and (v) that f(x) < e ≤ f(y). We know from structure of U that U(f(x), f(y)) =
min(f(x), f(y)) = f(x). It follows from the idempotent element α and structure of U
that U(x, y) = x. Hence, we have f(U(x, y)) = f(x) = min(f(x), f(y)) = U(f(x), f(y))
and then we obtain Eq. (14).

(F) Suppose α < x < e < y, then we have from hypotheses (iv) and (v) that
f(x) ≥ f(1) ≥ f(y) ≥ e. And then later, applying structure of U , we get U(f(x), f(y)) =
max(f(x), f(y)) = f(x). Further we obtain from the neutral element e and structure
of U that U(x, y) = x. Therefore it holds that f(U(x, y)) = f(x) = max(f(x), f(y)) =
U(f(x), f(y)), thus we have Eq. (14).

The remaining cases clearly hold. �

6. CASE (II)

In this section, we discuss Eq. (14) under the condition α = e and the assumption that
there exists some some y0 ∈ (e, 1] such that f(y0) < e, but as seen later this assumption
is not essential.

Lemma 6.1. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbol α defined above by Eq.(15) and fulfilling α = e
and there exists some y0 ∈ (e, 1] such that f(y0) < e. If f satisfies Eq. (14), then it
holds that f(y) < e for all y ∈ [y0, 1].

P r o o f . Take y ∈ [y0, 1], then we know from hypotheses and structure of U that there
exist some y′ ∈ (e, 1] such that y = U(y′, y0). Note that hypothesis f(y0) < e, then we
have f(y) = f(U(y′, y0)) = U(f(y′), f(y0)) ≤ min(f(y′), f(y0)) ≤ f(y0) < e. �

Due to Lemma 6.1, define F = {x ∈ (e, 1]|f(x) < e}, then we stipulate

β = inf F. (22)
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It is obvious that e ≤ β. Now, we claim that β is an idempotent element of U , namely,
U(β, β) = β. In fact, the result is clearly right when β = e. Hence, we assume β > e
and take x ∈ (e, β). It follows from definition of β that f(x) ≥ e. Then we imply from
Eq. (14) that f(U(x, x)) = U(f(x), f(x)) ≥ f(x) ≥ e, which shows U(x, x) 6∈ F , i. e.,
U(x, x) ≤ β. Let x→ β and apply continuity of U on the region [e, 1]2, then we obtain
U(β, β) ≤ β. On the other hand, we know from β > e that U(β, β) ≥ β. Therefore it
holds that U(β, β) = β. It is here pointed out that the case β = 1 do include the above
excluded case that f(x) ≥ e for all x ∈ (e, 1]. Hence, in next discussion, we will cancel
this restriction that there exists some y0 ∈ (e, 1] such that f(y0) < e.

Next, depending on the order relation between β and e, we need to consider two
subcases: (i) β = e and (ii) β > e. At first, let us consider the subcase β = e.

6.1. Subcase: β = e

Lemma 6.2. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbols α and β defined above by Eq.(15) and Eq.(22)
respectively and fulfilling α = β = e. If f satisfies Eq. (14), then the following two
statements hold.

(i) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)].

(ii) f |(e,1] is decreasing, Ran(f |(e,1]) ⊆ [f(1), e).

P r o o f . (i) Suppose x, y ∈ [0, e) and x < y, then we know from α = e that f(x) < e
and f(y) < e. In virtue of structure of U , there exists some x′ ∈ [0, e) such that
x = U(x′, y). Hence it follows from Eq. (14) that f(x) = f(U(x′, y)) = U(f(x′), f(y)) ≤
min(f(x′), f(y)) ≤ f(y). This means that f |[0,e) is increasing.

Take x ∈ [0, e) and y = 1, then we know from α = e that f(x) < e. In virtue
of structure of U , we have x = U(x, 1). Hence it follows from Eq. (14) that f(x) =
f(U(x, 1)) = U(f(x), f(1)) ≤ min(f(x), f(1)) ≤ f(1). We further obtain Ran(f |[0,e)) ⊆
[0, f(1)].

(ii) The proof is omitted since it is completely similar to Case (i). �

Suppose x, y ∈ [0, e), define two functions φ1 : [0, e]→ [0, 1] and ϕ1 : [0, f(1)]→ [0, 1]
by the formulas φ1(x) = x

e and ϕ1(x) = x
f(1) respectively. Then there exists some

continuous t-norm T3 such that both sides of Eq. (14) can be written as U(x, y) =
φ−1

1 TU (φ1(x), φ1(y)) and U(f(x), f(y)) = ϕ−1
1 T3(ϕ1(f(x)), ϕ1(f(y))). Thus, for x, y ∈

[0, e), Eq. (14) can be rewritten as f(φ−1
1 TU (φ1(x), φ1(y))) = ϕ−1

1 T3(ϕ1(f(x)), ϕ1(f(y))),
from which we get (ϕ1◦f ◦φ−1

1 )(TU (φ1(x), φ1(y))) = T3(ϕ1(f(x)), ϕ1(f(y))). By routine
substitution

g1 = ϕ1 ◦ f ◦ φ−1
1 , a1 = φ1(x), b1 = φ1(y), (23)

we have the Cauchy like functional equation

g1(TU (a1, b1)) = T3(g1(a1), g1(b1)), for a1, b1 ∈ [0, 1], (24)
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where g1 : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (14)
when x, y ∈ [0, e] is reduced to characterize all solutions of Eq. (24). Fortunately, the
full characterization of this case can be found in Theorem 3.2.

Suppose x, y > e, define two functions ψ1 : [e, 1] → [0, 1] and ω1 : [f(1), e] → [0, 1]
by the formulas ψ1(x) = x−e

1−e and ω1(x) = x−f(1)
e−f(1) respectively. Then there exists some

continuous t-norm T4 such that two sides of Eq. (14) are respectively written as U(x, y) =
ψ−1

1 SU (ψ1(x), ψ1(y)) and U(f(x), f(y)) = ω−1
1 T4(ω1(f(x)), ω1(f(y))). Thus, for any

(x, y) ∈ [e, 1]2, Eq. (14) can be rewritten as f(ψ−1
1 SU (ψ1(x), ψ1(y))) = ω−1

1 T4(ω1(f(x)),
ω1(f(y))), from which we get (ω1 ◦ f ◦ ψ−1

1 )SU (ψ1(x), ψ1(y))) = T4(ω1

(f(x)), ω1(f(y))). By routine substitution

h1 = ω1 ◦ f ◦ ψ−1
1 , c1 = ψ1(x), d1 = ψ1(y), (25)

we have the Cauchy like functional equation

h1(SU (c1, d1)) = T4(h1(c1), h1(d1)), for c1, d1 ∈ [0, 1], (26)

where h1 : [0, 1]→ [0, 1] is an unknown function. This means that resolving of Eq. (14)
when (x, y) ∈ [e, 1]2 is reduced to characterize all solutions of Eq. (26). Fortunately, the
full characterization of this case can be found in Theorem 3.4.

Theorem 6.3. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], and the symbols α, β g1, h1 are defined above by Eq.(15),
(22), (23) and (25) respectively and fulfilling α = β = e. Then f satisfies Eq. (14) if and
only if all of the following statements hold.

(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).

(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,e) is increasing, g1 satisfies Eq. (24), Ran(f |[0,e)) ⊆ [0, f(1)].

(iv) f |(e,1] is decreasing, h1 satisfies Eq. (26), Ran(f |(e,1]) ⊆ [f(1), e).

P r o o f . By means of Lemma 6.2 and the above analysis, it is easy to obtain necessity.
Hence it is enough to show sufficiency. Indeed, it follows from conditions (i) and (ii)
that both f(1) and f(e) are idempotent elements of U . To continue our progress, there
are following five cases to discuss.

(A) Suppose x = e or y = e, then it follows from hypothesis (ii) that Eq. (14) since
e is neutral element of U .

(B) Suppose x, y < e, then we get from hypotheses (iii) and (iv) that f(x), f(y) ≤
f(1) < e. Using again hypothesis (iii), we know that Eq. (14) holds.

(C) Suppose x, y > e, then we know from hypothesis (iv) that Eq. (8) holds.
(D) Suppose x < e < y, then it follows from hypotheses (iii) and (iv) that f(x) ≤

f(1) ≤ f(y) < e. Applying structure of U , we obtain U(f(x), f(y)) = min(f(x), f(y)) =
f(x). Note that e is the neutral of U , then we have from structure of U that U(x, y) = x.
Therefore it holds that f(U(x, y)) = f(x) = min(f(x), f(y)) = U(f(x), f(y)), that is,
Eq. (14) holds.

(E) Suppose y < e < x, similar to Case (D), it obviously holds that Eq. (14). �
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Remark 6.4. Take f(1) = f(e) in Theorem 6.3, then we get a part of Proposition 33
in Ref. [24].

Next, consider the remaining case β > e.

6.2. Subcase: β > e

Lemma 6.5. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbols α and β defined above by Eq.(15) and Eq.(22)
respectively and fulfilling α = e < β. If f satisfies Eq. (14), then all of the following
statements hold.

(i) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)].

(ii) f |(e,β) is increasing, Ran(f |(e,β)) ⊆ [e, 1].

(iii) f |(β,1] is decreasing, Ran(f |(β,1]) ⊆ [f(1), e).

P r o o f . We omit proofs of monotonicity of Cases (i), (ii) and (iii) since they are similar
to these of Lemma 6.2. Therefore we only prove the remaining statements.

(i) Take x ∈ [0, e) and y = 1, then we know from α = e and structure of U that
f(x) < e and U(x, 1) = x. Hence it follows from Eq. (14) thatf(x) = f(U(x, 1)) =

U(f(x), f(1)) = min(f(x), f(1)) ≤ f(1).

(ii) By definitions of β, the result obviously holds.

(iii) By definitions of β and monotonicity of f |(β,1], we have Ran(f |(β,1]) ⊆ [f(1), e).
�

Lemma 6.6. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbols α and β defined above by Eq.(15) and Eq.(22)
respectively and fulfilling α = e < β. If f satisfies Eq. (14), then one of the following
statements holds.

(i) If f(β) < e, then f(β) = max(Ran(f |[β,1])).

(ii) If f(β) > e, then f(β) = max(Ran(f |[0,1])).

(iii) f(β) = e.

P r o o f . We omit proofs since they are similar to these of Lemma 5.2. �

Suppose x, y ∈ [0, e), define two functions φ2 : [0, e]→ [0, 1] and ϕ2 : [0, f(1)]→ [0, 1]
by the formulas φ2(x) = x

e and ϕ2(x) = x
f(1) respectively. Then there exists some

continuous t-norm T5 such that both sides of Eq. (14) can be written as U(x, y) =
φ−1

2 TU (φ2(x), φ2(y)) and U(f(x), f(y)) = ϕ−1
2 T5(ϕ2(f(x)), ϕ2(f(y))). Hence, for x, y ∈

[0, e), Eq. (14) can be rewritten as f(φ−1
2 TU (φ2(x), φ2(y))) = ϕ−1

2 T5(ϕ2(f(x)), ϕ2(f(y))),
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from which we get (ϕ2◦f ◦φ−1
2 )(TU (φ2(x), φ2(y))) = T5(ϕ2(f(x)), ϕ2(f(y))). By routine

substitution
g2 = ϕ2 ◦ f ◦ φ−1

2 , a2 = φ2(x), b2 = φ2(y), (27)

we have the Cauchy like functional equation

g2(TU (a2, b2)) = T5(g2(a2), g2(b2)), for a2, b2 ∈ [0, 1], (28)

where g2 : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (14)
when x, y ∈ [0, e] is reduced to characterize all solutions of Eq. (28). Fortunately, the
full characterization of this case can be found in Theorem 3.2.

Suppose x, y ∈ (e, β), define two functions φ′2 : [e, β]→ [0, 1] and ϕ′2 : [e, 1]→ [0, 1] by
the formulas φ′2(x) = x−e

β−e and ϕ′2(x) = x−e
1−e respectively. Then there exists some

continuous t-conorm S3 such that two sides of Eq. (14) can be written as U(x, y) =
(φ′2)−1S3(φ′2(x), φ′2(y)) and U(f(x), f(y)) = (ϕ′2)−1SU (ϕ′2(f(x)), ϕ′2(f(y)). Therefore,
for x, y ∈ (e, β), Eq. (14) can be rewritten as f((φ′2)−1S3(φ′2(x), φ′2(y))) = (ϕ′2)−1SU (ϕ′2(f
(x)), ϕ′2(f(y)), from which we have (ϕ′2◦f◦(φ′2)−1)(S3(φ′2(x), φ′2(y))) = SU (ϕ′2(f(x)), ϕ′2(
f(y))). By routine substitution

g′2 = ϕ′2 ◦ f ◦ (φ′2)−1, a′2 = φ′2(x), b′2 = φ′2(y), (29)

we have the Cauchy like functional equation

g′2(S3(a′2, b
′
2)) = SU (g′2(a′2), g′2(b′2)), for a′2, b

′
2 ∈ [0, 1], (30)

where g′2 : [0, 1] → [0, 1] is an unknown function. This means that resolving of Eq. (14)
when x, y ∈ [e, β) is reduced to characterize all solutions of Eq. (30). Fortunately, the
full characterization of this case can be found in Theorem 3.1.

Suppose x, y ∈ (β, 1], define two functions ψ2 : [β, 1]→ [0, 1] and ω2 : [f(1), e]→ [0, 1]
by the formulas ψ2(x) = x−β

1−β and ω2(x) = x−f(1)
e−f(1) respectively. Then there exist a contin-

uous t-conorm S4 and a continuous t-norm T6 such that two sides of Eq. (14) are respec-
tively written as U(x, y) = ψ−1

2 S4(ψ2(x), ψ2(y)) and U(f(x), f(y)) = ω−1
2 T6(ω2(f(x)), ω2

(f(y))). Therefore, for any (x, y) ∈ [β, 1]2, Eq. (14) can be rewritten as f(ψ−1
2 S4(ψ2(x), ψ2

(y))) = ω−1
2 T6(ω2(f(x)), ω2(f(y))), from which we have (ω2◦f◦ψ−1

2 )(S4(ψ2(x), ψ2(y))) =
T6(ω2(f(x)), ω2(f(y))). By routine substitution

h2 = ω2 ◦ f ◦ ψ−1
2 , c2 = ψ2(x), b2 = ψ2(y), (31)

we have the Cauchy like functional equation

h2(S4(c2, d2)) = T6(h2(c2), h2(d2)), for c2, d2 ∈ [0, 1], (32)

where h2 : [0, 1]→ [0, 1] is an unknown function. This means that resolving of Eq. (14)
when (x, y) ∈ [β, 1]2 is reduced to characterize all solutions of Eq. (32). Fortunately, the
full characterization of this case can be found in Theorem 3.4.

Theorem 6.7. Consider a uninorm U ∈ Umin with neutral element e ∈ (0, 1), a unary
function f : [0, 1] → [0, 1], the symbols α, β, g2, g′2, h2 defined above by Eq.(15),
Eq.(22), Eq.(27), Eq.(29) and Eq.(31) respectively and fulfilling α = e < β. Then f
satisfies Eq. (14) if and only if all of the following statements hold.
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(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).

(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,e) is increasing, g2 satisfies Eq. (28), Ran(f |[0,e)) ⊆ [0, f(1)].

(iv) f |(e,β) is increasing, g′2 satisfies Eq. (30), Ran(f |(e,β)) ⊆ [e, 1].

(v) f |(β,1] is decreasing, h2 satisfies Eq. (32), Ran(f |(β,1]) ⊆ [f(1), e).

(vi) One of the following three statements hold:

(a) If f(β) < e, then f(β) = max(Ran(f |[β,1])).
(b) If f(β) > e, then f(β) = max(Ran(f |[0,1])).
(c) f(β) = e.

P r o o f . The proof is omitted because it is similar to that of Theorem 5.3. �

7. EXAMPLE

Example 7.1. Consider the following uninorm U ∈ Umin with neutral element e = 1
2 ,

U(x, y) =



8x+ 8y − 8xy − 7, if (x, y) ∈ [ 78 , 1]2,
7x+ 7y − 8xy − 21

4 , if (x, y) ∈ [ 34 ,
7
8 ]2,

max(x, y), if (x, y) ∈ [ 12 , 1]2 \ ([ 78 , 1]2 ∪ [ 34 ,
7
8 ]2),

1
8 (8x− 1)(8y − 1) + 1

8 , if (x, y) ∈ [ 18 ,
1
4 ]2,

8xy, if (x, y) ∈ [0, 1
8 ]2,

min(x, y), otherwise.

Then we know

TU (x, y) =


4xy, if (x, y) ∈ [0, 1

4 ]2,
1
4 (4x− 1)(4y − 1) + 1

4 , if (x, y) ∈ [ 14 ,
1
2 ]2,

min(x, y), otherwise,

and

SU (x, y) =


8(x+ 1) + 8(y + 1)− 4(x+ 1)(y + 1)− 15, if (x, y) ∈ [ 34 , 1]2,
7(x+ 1) + 7(y + 1)− 4(x+ 1)(y + 1)− 23

2 , if (x, y) ∈ [ 12 ,
3
4 ]2,

max(x, y), otherwise.

In fact, TU and SU are two ordinal sums with twice the product as summands and twice
the probabilistic sum as summands respectively. Let us recall that the product TP = xy
has a additive generator t(x) = − lnx while the probabilistic sum SU = x+ y − xy has
a additive generator s(x) = − ln(1− x).
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(i) Take α = 1
8 , then we know from Theorem 5.3 that

f(x) =


1
8 , if x ∈ [0, 1

8 ],
1, if x ∈ ( 1

8 ,
1
2 ),

1
2 , if x = 1

2 ,
3
4 , if x ∈ ( 1

2 , 1],

is a non-monotone solution of Eq. (8).
(ii) Take α = e = β = 1

2 , then we know from Theorem 6.3 that

f(x) =


1
8 , if x ∈ [0, 1

2 ),
1
2 , if x = 1

2 ,
1
4 , if x ∈ ( 1

2 , 1],

is a non-monotone solution of Eq. (8).
(iii) Take α = e = 1

2 , β = 7
8 , then we know from Theorem 6.7 that

f(x) =


1
8 , if x ∈ [0, 1

2 ),
3
4 , if x ∈ [ 12 ,

7
8 ],

1
4 , if x ∈ ( 7

8 , 1],

is a non-monotone solution of Eq. (8).

8. CONCLUSION

To investigate property of commuting for bisymmetric aggregation operators with neu-
tral element, according to Saminger, Mesiar and Dubois’s suggestion [24], in this pa-
per, we have investigated and fully characterized the following functional equation
f(U(x, y)) = U(f(x), f(y)), where f : [0, 1] → [0, 1] is an unknown function but un-
necessarily non-decreasing, a uninorm U ∈ Umin has a continuously underlying t-norm
TU and a continuously underlying t-conorm SU . Our investigation shows this equa-
tion has also non-monotone solutions completely different with already obtained ones.
These results are an important step towards obtaining a complete characterization of
the above-mentioned other unary distributive functional equations. Obviously, there
are several unary distribute functions not to be consider in this direction. Thus, future
work will be devoted to deal with f(U(x, y)) = U(f(x, y)), where f : [0, 1]→ [0, 1] is an
unknown function but unnecessarily non-decreasing, and U comes from the other kind
of special uninorms.
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