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DISTRIBUTED CONSENSUS CONTROL
FOR DISCRETE-TIME LINEAR MULTI-AGENT SYSTEMS
WITH REDUCED-ORDER OBSERVER

Wenhai Chen, Lixin Gao, Xiaole Xu and Bingbing Xu

In this paper, we investigate multi-agent consensus problem with discrete-time linear dy-
namics under directed interaction topology. By assumption that all agents can only access
the measured outputs of its neighbor agents and itself, a kind of distributed reduced-order
observer-based protocols are proposed to solve the consensus problem. A multi-step algorithm
is provided to construct the gain matrices involved in the protocols. By using of graph theory,
modified discrete-time algebraic Riccati equation and Lyapunov method, the proposed proto-
cols can be proved to solve the discrete-time consensus problem. Furthermore, the proposed
protocol is generalized to solve the model-reference consensus problem. Finally, a simulation
example is given to illustrate the effectiveness of our obtained results.
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1. INTRODUCTION

In recent years, more and more scholars have paid their attention on the coordination
control for its useful applications, including consensus, formation, flocking, and coverage
[22, 28]. Among them, consensus control is well-accepted as one of the most important
and fundamental issues in the fields of automata theory and coordination control of
multi-agent systems, which aims to find the control law that enables a group of agents to
reach an agreement on some quantities [16, 21]. Numerous interesting results for multi-
agent consensus problems have been obtained (see [1, 22] and the references therein).

Discrete dynamical systems can be used to model and analyze many real-world prob-
lems. In real situation, the interaction among agents may only occur at discrete sampling
instant, due to the extensive application of digital sensors and controllers. Therefore, it
is significant to study the discrete-time consensus algorithms in real application. The
distributed state-feedback protocols were proposed by [10, 23] to solve discrete-time con-
sensus problem with general linear dynamics. The consensus problems via sampled-data
control were reported in [6, 17]. A unified framework was established by [20] to deal
with the consensus for the discrete-time delayed multi-agent system.
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However it is often difficult or even unavailable to obtain the full state information
in many circumstances. To achieve control objective, state-observers are often adopted
in the protocols to estimate these unmeasurable state variables. In the past decade,
the state estimation problems have been intensively studied for complex networks with
various kinds of incomplete measurements. In [4, 8, 11, 12, 13, 14], the observer-based
consensus problems with first- or seconder-order dynamics have been investigated. The
adaptive observer-based consensus protocols for seconder-order multi-agent systems were
proposed by [15, 27]. For multi-agent systems with general linear dynamics, a unified
framework was provided by [18] for the observer-based consensus protocols. In [29],
the authors proposed three different architectures of controllers and observers to solve
the leader-following multi-agent consensus problems. The approach of [29] were devel-
oped to solve the discrete-time consensus problem by [9]. The distributed reduced-order
observer-based protocols were proposed by [19] for both continuous-time and discrete-
time multi-agent systems. In [7], another reduced-order observer design approach is
proposed to solve the consensus problem with continuous-time general linear dynamics
under directed switching topology. In [26], the discrete-time leader-following consensus
problem was investigated via the observer-based protocols under switching topologies.
The full-order observer and reduced-order observer-based consensus protocols were pro-
vided in [24] to solve discrete-time leader-following consensus problem. In [5], the authors
investigated H∞ consensus problem for discrete-time multi-agent systems with general
linear dynamics via dynamic output feedback method.

Motivated by the above works, we investigate the multi-agent consensus problem
with discrete-time general linear dynamics under directed interaction topology. Both
the leaderless and leader-following cases are discussed. By assumption that the output
information can be accessible, a reduced-order state-observer is adopted for each follow-
ing agent. A multi-step algorithm is provided to construct the protocol’s gain matrices.
Following that, the distributed consensus protocols are constructed, which is the main
contribution of this paper. This paper is a extension of the preliminary conference paper
[25], in which only a special case was addressed. Based on theory of matrix and Riccati
equation, a multi-step algorithm is provided to construct the gain matrices involved in
the protocols. Then, a sufficient condition for consensus is established. Certainly, as a
special case, the consensus condition for the well-known second-order multi-agent sys-
tem can be obtained directly. In comparison with the existed references, our proposed
design approach has several advantages.

The rest of the paper is organized as follows. Section 2 gives preliminaries and the
problem formulation. In section 3, a kind of distributed reduced-order observer-based
protocols are provided to solve the leaderless consensus problem, which is the main result
of this paper. Following that, the proposed approach is generalized to solve the model-
reference consensus problem in section 4. Section 5 provides a simulation example to
illustrate our obtained result, and finally, the concluding remarks are given in section 6.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Notations and graph theory

The notations of this paper are standard. Denote Rm×n and Cm×n as the set of m× n
real matrices and complex matrices. For a complex number s, s̄ represents its conjugate.
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Let I be the n-order unit matrix . 1n ∈ Rn is the column vector with all elements equal
to one. For matrix A, AT and AH denote respectively its transpose matrix and conjugate
transpose matrix. A matrix is said to be Schur-stable if all its eigenvalues are inside
unit circle. For a symmetric matrix, P > 0 means that P is a positive definite matrix.
⊗ represents Kronecker product, which satisfies (A⊗B)(C ⊗D) = (AC)⊗ (BD).

The interaction relationships among N agents are described by a directed weighted
diagraph G = (ν, ε,W ), where ν = {v1, v2, . . . , vN} is the set of vertices and ε ⊆ ν × ν
is the set of edges. The index set of neighbors for vertex i is denoted by Ni = {j ∈
ν|(vi, vj) ∈ ε}. W = [wij ]N×N represents weighted adjacency matrix associated with
digraph G, where wij > 0 if (i, j) ∈ ε and wij = 0 otherwise. The degree matrix
D = diag{d1, d2, . . . , dN} of digraph G is a diagonal matrix with diagonal elements
di =

∑N
j=1 wij . Correspondingly, the Laplacian matrix related with graph G is defined

as L = D−W . In the sequel, let Γ = I−D−1W , which will play a key role in consensus
analysis. Since 0 is an eigenvalue of Laplacian matrix L, 0 is an eigenvalue of Γ. Let λi,
i = 1, 2, . . . , N be ith eigenvalue of Γ with λ1 = 0 too.

Definition 2.1. A covering circle C̄(c0, r0) related to matrix Γ is a closed circle in the
complex plane centered at c0 + 0j, c0 ∈ R and λ(Γ) ∈ C̄(c0, r0) for all λ(Γ) 6= 0.

Remark 2.2. The concept covering circle can be referred to [9]. Obviously, D−1W is
a row-stochastic matrix. According to the result of [19], we know that 1 is an eigenvalue
of D−1W with 1N and a nonnegative vector rT ∈ R1×N , respectively, as the corre-
sponding right and left eigenvectors, and all other eigenvalues of D−1W are in the open
unit disk. Furthermore, 1 is a simple eigenvalue of D−1W if and only if G contains a
directed spanning tree. Since the interaction topology G contains a directed spanning
tree, 0 is one simple eigenvalue of matrix Γ, and all its other eigenvalues lie within the
disk of radius 1 centered at the point 1 + 0j. Furthermore, we know that there must
exist a covering circle with r0

c0
< 1 for matrix Γ.

2.2. Problem formulation and preliminary results

Consider the multi-agent system consisting of N identical agents, whose dynamics is
modeled by the following discrete-time linear system

xi(k + 1) = Axi(k) +Bui(k),
yi(k) = Cxi(k), (1)

where xi(k) ∈ Rn, ui(k) ∈ Rp and yi(k) ∈ Rq are, respectively, the state variable,
control input and measured output of agent i. A, B and C are constant matrices
with appropriate dimensions. It is always assumed that (A, B, C) is stabilizable and
detectable. For simplicity, C is assumed to have full row rank, that is, rank(C) = q.

The discrete-time multi-agent system is said to achieve consensus, if the state vari-
ables of all agents satisfy limk→∞ (xi(k)− xj(k)) = 0, i, j = 1, 2, . . . , N for any initial
state. We say that the protocol ui(k) can solve the consensus problem, if the closed-loop
system achieves consensus.

For agent i, assume that {i}
⋃
Ni , {j1, j2, . . . , jl}. Then, a state feedback

ui = ki(xj1 , . . . , xjl
) (2)
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is said to be a protocol with topology G, that is, the control law ui is distributed. Since
only the output information can be available, the state feedback (2) can not be applied
directly in our problem. To do this, the local observers are adopted by the agents to
estimate state information. Because part of state information is contained in the output
information, the state information may be reconstructed via the reduced-order observers.
Here, we are interested to the reduced-order observer. The main aim of this paper is to
construct a distributed reduced-order observer-based consensus protocol ui(k) to solve
the consensus problem.

Now, we introduce some preliminary results which will be used later. Consider the
modified discrete-time algebraic Ricatti equations(MDARE)

APAT − P − δAPB(I +BTPB)−1BTPAT +Q = 0 (3)

where Q is any given positive definite matrix. Since Q is positive definite, (A,Q1/2) must
be detectable. The solvability of the modified discrete-time algebraic Riccati equation
is addressed by the following lemma.

Lemma 2.3. (Franceschetti et al. [3]) If (A,Q
1
2 ) is detectable, (A, B) is stablizable,

then there exists a δc ∈ [0, 1) such that the modified discrete time algebraic Riccati
equation (3) has a unique positive-definite solution P for any δc < δ ≤ 1. Furthermore,
P = limk→∞ Pk for any initial condition P0 ≥ 0, where Pk satisfies

Pk+1 = ATPkA− δATPkB(I +BTPkB)−1BTPkA+Q. (4)

Remark 2.4. The MDARE (3) is reduced respectively to the well-known discrete-time
Riccati equation (DARE) and Stain equation as δ = 1 and δ = 0. The Stain equation
has a unique positive-definite solution if A is Schur-stable. It is well-known that the
discrete-time Riccati equation has a unique positive-definite solution, while (A, B) is
stablizable. If matrix A has some eigenvalues with magnitude larger than 1, it is easy to
see that 0 < δc < 1. Moreover, if the matrix A has no eigenvalues with magnitude larger
than 1 and (A, B) is stablizable, MDARE (3) has a unique positive-definite solution P
for any δ satisfying 0 < δ ≤ 1. More details for issue δc can be referred to [3].

3. CONSENSUS PROTOCOL WITH REDUCED-ORDER STATE-OBSERVER

In this section, we propose the following reduced-order observer-based consensus protocol
for agent i, which is composed of a reduced-order state observer and a neighbor-based
feedback control law.

• A reduced-order observer for agent i is

zi(k + 1) = (TA−GCA)M2zi(k) + [(TA−GCA)M2G

+ (TA−GCA)M1]yi(k) + (T −GC)Bui(k)
ȳi(k) = zi(k) +Gyi(k)

(5)

where zi(k) is the protocol state, ȳi(k) is the restructured variable of Tx(k), G ∈
R(n−q)×q, T ∈ R(n−q)×n, M1 ∈ Rn×q and M2 ∈ Rn×(n−q) are given gain matrices
to be designed.
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• Distributed feedback control law for agent i is

ui(k) =−K1(M1yi(k) +M2ȳi(k))

− c

di
K[M1

∑
j∈Ni

wij(yi(k)− yj(k))−M2

∑
j∈Ni

wij(ȳi(k)− ȳj(k))] (6)

where K1 and K are the designed gain matrices, c > 0 is the coupling parameter.

The following algorithm is provided to design the gain matrices G, T , M1, M2, K1

and K used in the protocols (5) and (6).

Algorithm 3.1. For (A, B, C), suppose that (A,B) is stabilizable, (A, C) is de-
tectable, C is full row rank. Then, matrices G, T , M1, M2, K1 and K are constructed
as follows:

(1) Choose T such that
»

C
T

–
is nonsingular. Then, M1 and M2 are obtained by com-

puting [M1 M2] =
[

C
T

]
−1.

(2) Choose K1 such that Ã = A−BK1 is Schur-stable.

(3) For a given positive definite matrix Q and small enough positive constant δ, solve
the following modified discrete-time algebraic Riccati equation

ÃTPÃ− P − δÃTPB(I +BTPB)−1BTPÃ+Q = 0 (7)

to get the unique positive definite solution P . Then, the gain matrix K can be
designed as K = (I +BTPB)−1BTPÃ.

(4) Choose G such that TAM2 −GCAM2 is Schur-stable.

Remark 3.2. Since C has full row rank, the matrix T can be chosen easily such that
[CT , TT ]T is nonsingular. Because (A, B) is stabilizable, it is easy to see that (Ã, B) is
stabilizable too. Note that Ã is Shur-stable. According to Remark 2.4, MDARE (7) has
a unique positive definite solution P with any 0 < δ ≤ 1. The pair (A, C) is detectable
if and only if Rank

»
sI −A

C

–
= n for any s ∈ C : Re(s) ≥ 0 [2]. On the other hand,

we have sI − CAM1 −CAM2

−TAM1 sI − TAM2

I 0

 =

 [ C
T

]
0

0 I

[ sI −A
C

] [
M1 M2

]
.

While (A, C) is detectable, we haveRank
»

sI − TAM2

−CAM2

–
= n−q, that is, (TAM2, CAM2)

is detectable. For the detectable pair (TAM2, CAM2), we can use the pole assignment
algorithm to construct G such that TAM2 − GCAM2 is Schur-stable. Another well-
known approach to construc G is based on the discrete-time algebraic Riccati equation.
Let Ā = TAM2 and C̄ = CAM2. For Q̄ > 0, solve the following DARE

ĀP̄ ĀT − P̄ − ĀP̄ C̄T (I + C̄P̄ C̄T )−1C̄P̄ ĀT + Q̄ = 0 (8)

to get the unique positive definite solution P̄ . Then, the gain matrix G can be designed
as G = ĀP̄ C̄T (I + C̄P̄ C̄T )−1.
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Now, we present our main result as follows.

Theorem 3.3. For multi-agent system (1) whose interaction topology G contains a di-
rected spanning tree, if matrix Γ has a covering circle C̄(c0, r0) with 0 < r0

c0
< 1, then

the discrete-time consensus problem can be solved via the protocols (5) and (6). Fur-
thermore, the gain matrices G, T , M1, M2, K1 and K can be constructed by Algorithm
3.1 with δ satisfying

r0
c0
≤
√

1− δ, (9)

and the coupling strength c being chosen by

c =
1
c0
. (10)

P r o o f . Denote ei(k) = Txi(k)− ȳi(k) and e(k) = [eT
1 (k), . . . , eT

n (k)]T . Then, it is easy
to obtain

ei(k + 1) = Txi(k + 1)− (zi(k + 1) +Gyi(k + 1))
= TAxi(k) + TBui(k)− (TA−GCA)M2zi(k)− (T −GC)Bui(k)

+ [(TA−GCA)M2G+ (TA−GCA)M1]yi(k)−GCAxi(k)−GCBui(k)
= (TAM2 −GCAM2)ei(k).

(11)

Then, we can get the following error dynamics of observer system

e(k + 1) = [I ⊗ (TAM2 −GCAM2)]e(k). (12)

Let x(k) = [xT
1 (k), xT

2 (k), . . . , xT
n (k)]T . By the definition of M1 and M2, we have M1C+

M2T = I. By (1) and (6), we can get

xi(k + 1) = Axi(k) +Bui(k)
= Ax1(k)−BK1(M1yi(k) +M2ȳi(k))

− c

di
BK[M1

∑
j∈Ni

wij(yi(k)− yj(k)) +M2

∑
j∈Ni

wij(ȳi(k)− ȳj(k)]

= (A−BK1)xi(k)− c

di
BK

∑
j∈Ni

wij(xi(k)− xj(k))

+BK1M2ei(k) +
c

di
BKM2

∑
j∈Ni

wij(ei(k)− ej(k)),

(13)

equivalently,

x(k + 1) = [I ⊗ Ã− Γ⊗ (cBK)]x(k) + [I ⊗BK1M2 + Γ⊗ (cBKM2)]e(k). (14)

By (12) and (14), we get the following equivalent dynamics for the closed loop system[
x(k + 1)
e(k + 1)

]
=
[
I ⊗ Ã− Γ⊗ (cBK) I ⊗BK1M2 + Γ⊗ (cBKM2)

0 I ⊗ (TAM2 −GCAM2)

] [
x(k)
e(k)

]
.

(15)
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By noticing that Γ1 = 0, there must exist a Schur transform orthogonal matrix with
form U = [ 1√

N
1, U1] such that

UT ΓU =
(

0 α
0 ∆

)
, Γ̄,

where ∆ ∈ C(N−1)×(N−1) is upper triangular matrix whose diagonal entries are the
nonzero eigenvalues of Γ. Let x̄(k) = (UT ⊗ In)x(k) and ē(k) = (UT ⊗ In−q)e(k). Then,
system (13) can be expressed as the following equivalent system[

x̄(k + 1)
ē(k + 1)

]
=
[
I ⊗ Ã− Γ̄⊗ (cBK) I ⊗BK1M2 + Γ̄⊗ (cBKM2)

0 I ⊗ (TAM2 −GCAM2)

] [
x̄(k)
ē(k)

]
(16)

which can be divided into two subsystems[
x̄0(k + 1)
ē0(k + 1)

]
=
[
Ã BK1M2

0 TAM2 −GCAM2

] [
x̄0(k)
ē0(k)

]
−α⊗(cBK)x̄1(k)+α⊗(cBKM2)ē1(k)

(17)
and[

x̄1(k + 1)
ē1(k + 1)

]
=
[
I ⊗ Ã−∆⊗ (cBK) I ⊗BK1M2 + ∆⊗ (cBKM2)

0 I ⊗ (TAM2 −GCAM2)

] [
x̄1(k)
ē1(k)

]
(18)

where x̄ = [x̄0T , x̄1T ]T and ē = [ē0T , ē1T ]T with x̄0 and ē0 being their first n and n− p
components respectively.

It is easy to see that system (18) is Schur-stable if all matrices Ã − cλiBK, i =
2, 3, . . . , N and TAM2 − GCAM2 are Schur-stable. Now, we prove subsystem (18) is
Schur-stable. Under the condition of this theorem, we have |cλi − 1| ≤

√
1− δ (i =

2, 3, . . . , N). For any s satisfying |s− 1| ≤
√

1− δ, we have

(Ã− sBK)HP (Ã− sBK)− P
= ÃTPÃ− (s+ s̄)ÃTPB(I +BTPB)−1BTPÃ+ ss∗KTBTPBK − P
= ÃTPÃ− P − (s+ s̄− ss̄)ÃTPB(I +BTPB)−1BTPÃ− |s|2KTK

= ÃTPÃ− P − (1− |s− 1|2)ÃTPB(I +BTPB)−1BTPÃ− |s|2KTK

≤ ÃTPÃ− P − δÃTPB(I +BTPB)−1BTPÃ

≤ −Q < 0,

(19)

which implies that matrix Ã − sBK is Schur-stable. Thus, system (18) is Schur-stable
under the condition of Theorem 3.3, that is, limk→∞ x̄1(k) = 0 and limk→∞ ē1(k) = 0.
Then, we have

x(k) = (U ⊗ In)x̄(k) = [
1√
N

1,⊗In, U1 ⊗ In]
[
x̄0(k)
x̄1(k)

]
→ [

1√
N

1⊗ In, U1 ⊗ In]
[
x̄0(k)

0

]
= 1⊗ [

1√
N
x̄0(k)], as k →∞,

which means that the multi-agent system achieves consensus. �
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Now, we probe the special case that K1 = 0. In this case, the consensus protocol for
agent i contains a observer with form (5) and a feedback control law (6) with degenerated
form

ui(k) = − c

di
K[M1

∑
j∈Ni

wij(yi(k)− yj(k))−M2

∑
j∈Ni

wij(ȳi(k)− ȳj(k))]. (20)

Corollary 3.4. For multi-agent system (1) whose interaction topology G contains a
directed spanning tree, if matrix Γ has a covering circle C̄(c0, r0) satisfying

0 <
r0
c0
<
√

1− δc, (21)

then the discrete-time consensus problem can be solved by the protocols (5) and (20).
Moreover, gain matrices G, T , M1, M2 and K involved in the protocols are constructed
by Step 1, 3, 4 of Algorithm 3.1 with K1 = 0 and δ satisfying

r0
c0
≤
√

1− δ <
√

1− δc, (22)

and the coupling strength c being chosen as

c =
1
c0
.

P r o o f . According to the proof of Theorem 3.3, it is easy to see that the multi-agent
system can achieve consensus via the protocols (5) and (20) if all matrices A− cλiBK,
i = 2, 3, . . . , N and TAM2 −GCAM2 are Schur-stable. From (22), we have 1 > δ > δc,
which means that

ATPA− P − δATPB(I +BTPB)−1BTPA+Q = 0 (23)

has a unique positive definite solution of P . Then, K = (I + BTPB)−1BTPA. Under
the given condition, we can also prove that A− cλiBK, i = 2, 3, . . . , N are Schur-stable
similar as (19). The other detailed proof is omitted here. �

Remark 3.5. Essentially, protocols (20) is only based on the relative state errors of a
agent with its neighbors. Most existed references investigated the consensus protocols
with this formula. In continuous-time case, the consensus protocols with this formula
can be successful to solve the consensus problem. Unfortunately, protocols (20) may not
be successful to solve the discrete-time consensus problem while the system matrices
A is unstable. As for protocols (6), while the parameter δ involved in MDARE (7) is
selected small enough, the discrete-time consensus problem can be solve successfully.
In comparison with protocols (6), protocols (20) can be generalized to leader-following
consensus problem easily, which will be discussed in the next section.

The design approach to construct the discrete-time reduced-order observer-based pro-
tocols has been proposed by [19]. In comparison with the design approaches provided
in [19], our proposed design approach has advantages at least in two respects: (1) Ac-
cording to Theorem 8.M6 in [2], to construct the consensus protocols successfully by the
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approaches proposed in [19], (A, C) need to be observable. By the design approach of
this paper, it only requires that (A, C) is detectable. (2) It is easy to get a T such that
[CT , TT ]T is nonsingular in this paper. But in [19], it needs to solve a Sylvester equa-
tion to get T to make [CT , TT ]T nonsingular. Unfortunately, the obtained T can not
guarantee the [CT , TT ]T must be nonsingular. It needs to solve the Sylvester equation
again until [CT , TT ]T is nonsingular. Additionally, it requires that the system matrix A
has no eigenvalues with magnitude larger than 1 in [19], but it need not this limitation
in our approach.

4. CONSENSUS WITH RESPECT TO A REFERENCE STATE

In many real situation, we expect that all the agent’s states coverage to a common
reference state, which is called as model-reference consensus problem. The dynamics of
following agents is still expressed by (1), and the dynamics of reference state xr is

xr(k + 1) = Axr(k) +Bur(k),
yr(k) = Cxr(k). (24)

The reference state is assumed only available by a subset of the following agents. But
the input ur(k) is regarded as a common policy, which is assumed to be known by all
the following agents. In many references such as [9, 16, 24, 29], ur is assumed to be
ur = 0.

The proposed reduced-order observer-based distributed consensus protocol for agent
i concludes an observer with same form (5) and a feedback control law with form

ui(k) = ur(k)− c

di + gi
K[M1

∑
j∈Ni

wij(yi(k)− yj(k)) + gi(yi(k)− Cxr(k))

+M2

∑
j∈Ni

wij(ȳi(k)− ȳj(k)) + gi(ȳi(k)− Txr(k)]
(25)

where gi is the weighted constant. gi > 0 if agent i is connected to the leader, otherwise
gi = 0. Let Gd = diag{g1, g2, . . . , gN}.

With the reduced-order observer-based protocol, the model-reference consensus prob-
lem is said to be solved if the state of any agent satisfies that limt→∞ (xi(t)− xr(t)) = 0,
i,= 1, 2, . . . , N for any initial state.

Let ei(k) = Txi(k) − ȳi(k) and e(k) = [eT
1 (k), . . . , eT

n (k)]T . Similar as (11), we also
have

e(k + 1) = [I ⊗ (TAM2 −GCAM2)]e(k). (26)

Let ξi = xi − xr and ξ = [ξT
1 , ξ

T
2 , . . . , ξ

T
N ]T . By (1), (5), (24) and (25), we have

ξi(k + 1) = Aξi(k) +B(ui(k)− ur(k))

= Aξi(k)− c

di + gi
BK[M1

∑
j∈Ni

wij(yi(k)− yj(k)) + gi(yi(k)− yr(k))

+M2

∑
j∈Ni

wij(ȳi(k)− ȳj(k)) + gi(ȳi(k)− Txr)(k)]
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= Aξi(k)− c

di + gi
BK[

∑
j∈Ni

wij(ξi(k)− ξj(k)) + giξi(k)

+M2[
∑
j∈Ni

wij(ei(k)− ej(k)) + gi(t)ei(k)] (27)

equivalently,

ξ(k + 1) = [I ⊗A−H ⊗ (cBK)]ξ + [H ⊗ (cBKM2)]e(k) (28)

where H = (D + Gd)−1(D + Gd −W ). The interaction topology Ḡ contains graph G,
vertex vr and edges from other vertices to vertex vr. To achieve consensus, it is necessary
that the interaction topology Ḡ contains a directed spanning tree with root vr. More
discussion of Ḡ and its covering circle can be referred to [24]

By (26) and (28), we get the error dynamics for the closed loop system as[
ξ(k + 1)
e(k + 1)

]
=
[
I ⊗A−H ⊗ (cBK) H ⊗ (cBKM2)

0 I ⊗ (TAM2 −GCAM2)

] [
ξ(k)
e(k)

]
. (29)

The multi-agent system achieves consensus if the error dynamical system (29) is stable.
Similarly as Corollary 3.4, the following theorem can be obtained easily, and the proof
is omitted.

Theorem 4.1. For multi-agent system (1) whose interaction topology Ḡ contains a
directed spanning tree with root vr, if matrix H has a covering circle C̄(c0, r0) satisfying

0 <
r0
c0
<
√

1− δc, (30)

then the discrete-time the model-reference consensus can be solved by the protocols (5)
and (25). Moreover, the gain matrices G, T , M1, M2 and K are constructed by Step 1,
3, 4 of Algorithm 3.1 with k1 = 0 and δ satisfying

r0
c0
≤
√

1− δ <
√

1− δc, (31)

and the coupling strength c can be chosen as

c =
1
c0
.

5. SIMULATION EXAMPLE

In this section, we provide an example to illustrate our result. Consider a multi-agent
system consisting of N = 4 following agents. The dynamical systems for agents and
leader are modeled by (1) and (24) respectively, whose system matrices are

A =

 0 1 0
0 0 1
−1 0 1.5

 , B =

 0
1
4

 , C = [0, 5, 1].
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The Laplacian matrix L for the interaction graph G is given by

L =

 2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


Let δi(t) = xi − 1

N

∑N
j=1 xj and δi(t) = xi − x0 be the state consensus error for agent i

in leaderless case and leader-following case respectively. In the simulation example, we

always take T =
»

0 1 0
1 0 0

–
.Then, one has M1 =

24 0
0
1

35and M2 =

24 0 1
1 0
−5 0

35.

Case 1: We use the proposed protocols (5) and (20) to solve the consensus problem,
which constructed by Algorithm 3.1. Take K1 = 0. There exists covering circle C̄(c0, r0)
related to matrix Γ with c0 = 1.25 and r0 = 0.25. Solve the Riccati equation (7) with
δ = 1− r2

0
c2
0

and Q = I to get a positive definite solution

P =

[
1.2703 −0.0146 0.0955
−0.0146 2.2670 −0.0127
0.09557 −0.0127 2.2519

]
.

Then K = [−0.2295, 0.0094, 0.4008]. Take G =

»
0.1536

−0.0307

–
and c = 1

c0
. Therefore, the

protocols (5) and (20) are constructed successfully. The three components of error
trajectories are depicted in Figure 1, which shows that the multi-agent system can reach
consensus under the protocols (5) and (20).
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Fig. 1. Trajectories of three error components by the protocols (5)

and (20).
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Case 2: Take another interaction graph G whose Laplacian matrix is given by

L =

 9 −2 −1 −6
−1 1 0 0

0 −2 2 0
0 0 −3 3

 .
There exists a covering circle C̄(c0, r0) related to matrix Γ with c0 = 0.9793 and
r0 = 0.7725, which has the smallest r0

c0
. By taking δ = 1 − r2

0
c2
0

and K1 = 0, the
Riccati equation (7) can not be solvable. Therefore, protocols (5) and (20) can not be
constructed successfully in this case.

Case 3: But, under the same interaction topology as Case 3, take K1 = [−0.2281,
0.0255, 0.4007] such that Ã = A−BK1 is Schur-stable. Then, the Riccati equation (7)
with δ = 1− r2

0
c2
0

and Q = I has a positive definite solution

P =

[
1.1237 −0.0269 0.3057
−0.0269 2.0798 −0.0594
0.30574 −0.0594 1.7712

]
.

Then K = [−0.0064, 0.0140, 0.0124]. c = 1
c0

. The other parameters are chosen as
Case 1. Therefore, protocols (5) and (6) is constructed successfully. The three compo-
nents of error trajectories are depicted in Figure 2, which shows that the multi-agent
system can reach consensus under the protocols (5) and (6).
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Fig. 2. Trajectories of three error components by the protocols (5)

and (6) .
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Case 4: For reference state tracking case, matrices L and Gd related with the inter-
action graph Ḡ are given by

L =

 2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 , Gd = diag{0, 4, 0, 5}.

There exists a covering circle C̄(c0, r0) related to matrix H with c0 = 0.8474 and r0 =
0.5322. Solve the Riccati equation (7) with δ = 1 − r2

0
c2
0

and Q = I to get a positive
definite solution

P =

[
11.9805 6.2883 −13.6724
6.2883 9.5390 −3.4460

−13.6724 −3.4460 26.8235

]
.

Then K = [−0.2520, −0.1174, 0.3677]. The other parameters are chosen as Case 1. By
using protocols (5) and (25), the three components of error trajectories are depicted in
Figure 3, which shows that the multi-agent system can reach consensus
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Fig. 3. Trajectories of three error components by the protocols (5)
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6. CONCLUSION

This paper investigated the multi-agent consensus problems with discrete-time gen-
eral linear dynamics under directed interaction topology. The proposed distributed
reduced-order observer-based consensus protocols were constructed by solving a mod-
ified discrete-time Riccati equation. With help of graph theory, matrix theory and
Lyapunov method, a sufficient consensus condition has been established. More general-
ized cases, such as adaptive gain design, non-linear dynamics and time delays, will be
investigated in our future works.
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