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NOTE ON STABILITY ESTIMATION IN AVERAGE
MARKOV CONTROL PROCESSES

Jaime Mart́ınez Sánchez and Elena Zaitseva

We study the stability of average optimal control of general discrete-time Markov processes.
Under certain ergodicity and Lipschitz conditions the stability index is bounded by a con-
stant times the Prokhorov distance between distributions of random vectors determinating the
“original and the perturbated” control processes.
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1. SETTING OF THE PROBLEM

Let on a Borel space (X,BX) two following Markov control processes be given:

xt = F (xt−1, at, ξt), t = 1, 2, . . . , (1.1)

x̃t = F (x̃t−1, ãt, ξ̃t), t = 1, 2, . . . , (1.2)

where at ∈ A(xt−1) ⊂ A, ãt ∈ A(x̃t−1) ⊂ A are the controls (actions) forming the con-
trol policies π = (a1, a2, . . . ), π̃ = (ã1, ã2, . . . ) (see, e. g., [4, 8] for definitions); {ξt} and
{ξ̃t} are sequences of i.i.d. random vectors in a separable metric space (S, r). In what
follows the distributions of ξ1 and ξ̃1 are denoted by µ and µ̃ respectively.

We will suppose that A is a Borel space with a metric d and that A(x) is compact
for every x ∈ X. Denoting

K := {(x, a) : x ∈ X, a ∈ A(x)}

(equipped with the metric ν := max{ρ, d}, where ρ is a metric in X), let c : K → R be
a given bounded measurable one-step cost function.

For any initial state x ∈ X and control policy π ∈ Π (Π is the set of all control
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policies, see [4]) the average per unit of time costs are as follows:

J(x, π) := lim sup
n→∞

1
n

n∑
t=1

Eπx c(xt−1, at), x ∈ X; (1.3)

J̃(x, π) := lim sup
n→∞

1
n

n∑
t=1

Eπx c(x̃t−1, ãt), x ∈ X. (1.4)

The following assertion is well-known (see e. g. [8]).

Proposition 1. Under Assumptions 2.1 and 2.2 given in the next section, there exist
stationary optimal policies f∗ and f̃∗ such that J(x, f∗), J̃(x, f̃∗) do not depend on
x ∈ X; and

J∗ := J(f∗) = inf
π∈Π

J(x, π); J̃∗ := J̃(f̃∗) = inf
π∈Π

J̃(x, π), x ∈ X. (1.5)

To set the stability estimation problem, first, suppose that process (1.2) is interpreted as
an “available approximation” to process (1.1) (i. e. µ̃ is an approximation to µ). Second,
the policy f̃∗ (optimal with respect to (1.4)) is applied to control the “original” process
(1.1) (instead of “unavailable” optimal policy f∗).

Following the definitions given in [5, 6, 7, 9], we introduce the stability index:

∆ := J(f̃∗)− J(f∗) ≥ 0, (1.6)

where J is the average cost defined in (1.3). This definition means that ∆ represents an
extra cost paid for using f̃∗ instead of the optimal policy f∗.

Under Lyapunov-like ergodicity hypotheses and certain Lipschitz conditions in [5] it
was proved (for the processes with unbounded costs c) that

∆ ≤ K κ(µ, µ̃), (1.7)

where K is an explicitly calculated constant, and κ is the Kantorovich metric. The
convergence in κ is equivalent to the weak convergence plus the convergence of first
absolute moments (see, e. g. [10]).

Unfortunately, the Lyapunov-like conditions (or “drift conditions”; Assumption 1 in
[5]) used there, in the particular case of a bounded cost c lead to too strong ergodicity
hypotheses (known as “minorization conditions”, see e. g. [4, 6]). Particularly, in [4] it is
shown that under the minorization conditions the average cost optimization problem can
be reduced to optimization of the expected total discounted cost. When the one-stage
cost c is bounded, the problem of estimation of the stability index for the discounted
total costs is indeed very simple.

The aim of the present paper is making advantage of boundedness of c and using the
well-known ergodicity condition given in Assumption 2.1 below (see, e. g. [1, 8]) to prove
the “stability inequality” as in (1.7), but with the Lévy–Prokhorov distance `π(µ, µ̃) on
its right-hand side.
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The Lévy–Prokhorov metric on the space of probability distributions on (S,BS) (BS
is the Borel σ−algebra) is defined as follows (see [2]):

`π(µ, η) := inf {ε > 0 : µ(B) ≤ η (Bε) + ε, η(B) ≤ µ (Bε) + ε; for all B ∈ BS} ,

where Bε := {s ∈ S : r(s,B) < ε}.
It is well-known ((see, e. g. [2]) that `π metrizes the weak convergence of distributions.

2. ASSUMPTIONS AND THE RESULT

We will denote: k := (x, a) ∈ K. Let for k = (x, a) ∈ K, B ∈ BX (where BX denotes
the Borel σ−algebra),

p(B|k) := P (F (x, a, ξ1) ∈ B), p̃(B|k) := P (F (x, a, ξ̃1) ∈ B)

be the transition probabilities of process (1.1) and (1.2), respectively.
We recall that for probability measures p and p′ on (X,BX) the total variation norm

‖p− p′‖ is

sup
{∣∣∣∣∫

X

ϕdp−
∫
X

ϕdp′
∣∣∣∣ : ϕ : X → R with ‖ϕ‖∞ ≤ 1

}
.

Also in the below assumptions we use the Hausdorff distance h between compact
subsets of the metric space (A, d):

h(C,D) := max
{

sup
x1∈C

inf
x2∈D

d(x1, x2), sup
x2∈D

inf
x1∈C

d(x2, x1)
}
.

The ergodicity conditions given in the Assumption 2.1 below were intensively ex-
ploited in the literature on Markov control processes with the average cost (for example,
they can be found in the paper [1] and the book [8]).

Assumption 2.1. (Ergodicity conditions) There exists a number λ < 1 such that,

sup
k,k′∈K

‖p(·|k)− p(·|k′)‖ ≤ 2λ;

sup
k,k′∈K

‖p̃(·|k)− p̃(·|k′)‖ ≤ 2λ;

where ‖ · ‖ is the total variation norm.

Assumption 2.2. (Lipschitz conditions; the same as in the paper [5]) There exist finite
constants L0, L, L1 and L∗ such that for all x, x′ ∈ X, k, k′ ∈ K, s, s′ ∈ S,

(a) h(A(x), A(x′)) ≤ L0ρ(x, x′), (h is the Hausdorff metric);

(b) |c(k)− c(k′)| ≤ L1ν(k, k′);

(c) ‖F (k, ξ1)− F (k′, ξ1)‖ ≤ Lν(k, k′);
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(d) ρ(F (k, s), F (k, s′)) ≤ L∗r(s, s′);

(e) for each x ∈ X and a bounded measurable function

u : X → R, the map a→ Eu[F (x, a, ξ̃)] is continuous on A(x).

Now we are in position to formulate the main result of the paper.

Theorem 1. Under Assumptions 2.1 and 2.2,

∆ ≤ K `π(µ, µ̃), (2.1)

where

K = 8
(

1 +
2

1− λ

)[
(1 + L0)L∗

(
L1 +

2bL
1− λ

)
+

2b
1− λ

]
, (2.2)

and in (2.2) the constant K is calculated through the constants involved in Assumptions
2.1 and 2.2. Also b := sup(x,a)∈K |c(x, a)|.

Remark 1. If “a contractive parameter” λ ↑ 1 then, K in (2.2) is of order M(1−λ)−2.
This is better comparing with the constant K in (1.7), which is of order M ′(1 − λ)−3

(see [5]).

Let us consider the important case when S = Rm and the “approximating distribu-
tion” µ̃ (defining process (1.2)) is the empirical distribution

µ̃ ≡ µ̂n(ξ1, . . . , ξn) :=
1
n

n∑
i=1

δξi
(δ is the Dirac measure)

obtained from i.i.d. realizations of the random vectors ξt in process (1.1). The following
result is a direct consequence of inequality (2.1) and the bound on the rate of convergence
of E`π(µ, µ̂n) obtained in [3].

Corollary 1. Let γ be any fixed number such that γ > max(2,m), and

α :=
mγ

(γ −m)(γ − 2)
.

Suppose that E‖ξ1‖α <∞ and in (2.1) µ̃ = µ̂n. Then there is M <∞ such that

E∆ ≤Mn−1/γ , n = 1, 2, . . . .

Remark 2. The following natural question arises: Is Assumption 2.1 essential in order
to the stability bound (2.1) be true? In the paper [5] an example of MCP’s as in (1.1)
and (1.2) with a bounded cost c was constructed in which `π(µ, µ̃) → 0, while the
stability index ∆ in (1.6) keeps to be greater than 1. It is easy to check that for this
example (Example 1 in [5]) Assumption 2.1 is not satisfied.
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3. SOME EXAMPLES

Example 1. (Borrowed from [1]) Let X = S = R, A(x) = A, x ∈ X, with A being a
compact set in R. We set:

xt = H(xt−1, at) +G(xt−1)ξt, t ≥ 1;

x̃t = H(x̃t−1, ãt) +G(x̃t−1)ξ̃t, t ≥ 1;

where ξt ∼ Norm (a, σ), ξ̃t ∼ Norm (ã, σ̃); H : R × A → R, G : R → R are bounded
Lipschitzian functions and G(·) > 0. In [1] it is stated that Assumption 2.1 is satisfaced
for these MCP’s. It is not difficult to verify Assumption 2.2. Thus, inequality (2.1)
can be applied for this example, provided that the cost c is bounded and Lipschitzian.
(And if needed the constant K in (2.2) could be evaluated.) In the particular case when

σ = σ̃ = 1 and |a− ã| ≤ 2/3, then in (2.1), `π(µ, µ̃) ≤
√

3
2 |a− ã|

1/2.

Example 2. (Water release control model) In this simplest model (see, e. g. [8]) the
processes of water stocks are described as follows:

xt = min{xt−1 − at + ξt, V }, t ≥ 1;

x̃t = min{x̃t−1 − ãt + ξ̃t, V }, t ≥ 1;

where V < ∞ is the capacity of a reservoir, at ∈ A(xt) := [0, xt], t ≥ 1 are water
consumptions, and {ξt}, {ξ̃t} are i.i.d. nonnegative random variables representing water
inflow. Correspondingly, X = [0, V ], S = [0,∞) and the one-step cost is supposed to be
Lipschitzian (for instance, c(x, a) := c0a where c0 is the cost of unit of water).

Suppose that random variables ξ1 and ξ̃1 have bounded, Lipschitzian on [0, V ] den-
sities g and g̃, which are strictly positive in some open interval (0,Γ) ⊃ (0, V ]. Then
a positive constant β can found such that p(B|x, a) ≥ βδV ; p̃(B|x, a) ≥ βδV for all
(x, a) ∈ K, B ∈ B[0,V ] (δV is the Dirac measure). Therefore (see [8]) Assumption 2.1
holds for this example. It is also easy to verify the fulfillment of Assumption 2.2. For
all these reasons inequality (2.1) is applicable. As it could be seen from the proof of the
above theorem, using the properties of the Dudley metric [2], the following rough, but
simpler inequality holds:

∆ ≤ K

2

∫ ∞
0

|g(s)− g̃(s)|ds.

Example 3. (Controlled random walk on a circle) Let X = S = A = [0, 1); A(x) ≡ A;

xt = atxt−1 + ξt(mod1), x̃t = ãtξ̃t−1 + ξ̃t(mod1), t ≥ 1.

Then supposing the existence of smooth enough, positive densities of ξ1 and ξ̃1 one can
easily check Assumptions 2.1 and 2.2 (provided that c is Lipschitzian).
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4. THE PROOF OF THE THEOREM

To prove inequality (2.1) we take advantage of method proposed in the paper [5]. Never-
theless we need to modify this technique. In [5] the combination of certain Lyapunov-like
conditions and the results of the paper [11] allows to use contractive properties of the
operators related to the average cost optimality equations. It appeared that these oper-
ators are contractive with respect the uniform weighted norm in the space of real-valued
functions on X. Under Assumption 2.1 we have to use the span seminorm in the space
of bounded functions and the well-known fact (see, e. g. [8]) about the contractibility
with respect of such seminorm.

Let B denote the space of all measurable bounded functions u : X → R. For u ∈
B we will use the supremum norm ‖u‖∞ := supx∈X |u(x)|, and the span seminorm
‖u‖sp := supx∈X u(x) − infx∈X u(x). It is clear that ‖u + β‖sp = ‖u‖sp for any β ∈ R,
and ‖u‖sp ≤ 2‖u‖∞. In what follows the random vectors ξ1 and ξ̃1 in (1.1), (1.2) are
denoted by ξ and ξ̃.

Using the notation from (1.5) we define two following operators T, T̃ : B→ B :

Tu(x) := inf
a∈A(x)

{c(x, a)− J∗ + Eu[F (x, a, ξ)]} , x ∈ X; (4.1)

T̃ u(x) := inf
a∈A(x)

{
c(x, a)− J̃∗ + Eu[F (x, a, ξ̃)]

}
, x ∈ X. (4.2)

It is well-known (see, e. g. [8]) that under Assumption 2.1, for every u, v ∈ B,

‖Tu− Tv‖sp ≤ λ‖u− v‖sp, ‖T̃ u− T̃ v‖sp ≤ λ‖u− v‖sp, (4.3)

and therefore there exist functions h, h̃ ∈ B that are solutions of the corresponding
optimality equations:

h = Th, h̃ = T̃ h̃. (4.4)

Since for any β, β′ ∈ R, h+ β and h̃+ β′ are also solutions of (4.4) we can choose (in
what follows) h and h̃ in (4.4) in such way that,

‖h‖sp = ‖h‖∞, ‖h− h̃‖sp = ‖h− h̃‖∞. (4.5)

Then from (4.3) it follows that

‖h− h̃‖sp ≤ 2‖Th− T̃ h‖∞ + λ‖h− h̃‖∞,

or in view of (4.1) and (4.2),

‖h− h̃‖∞ ≤
2

1− λ

[
|J∗ − J̃∗| + Q

]
, (4.6)

where
Q := sup

k∈K

∣∣∣Eh[F (k, ξ)]− Eh[F (k, ξ̃)]
∣∣∣ . (4.7)
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Let f := f̃∗ denote the stationary policy optimal for process (1.2), and {xt, t ≥ 0}
be the Markov process induced by the application of the policy f to the control process
(1.1).

Using the Markov property of {xt} and the optimality equations (4.4) by simple
calculations we obtain that for each t ≥ 1, x ∈ X

Efx h(xt) = Efx h(xt−1) − Eπx c
(
xt−1, f(xt−1)

)
+ J∗

+ Efx

[
H
(
xt−1, f(xt−1)

)
− inf

a∈A(xt−1)
H(xt−1, a)

]
, (4.8)

where

H(x, a) := c(x, a) + Eh[F (x, a, ξ)]− J∗, (x, a) ∈ K. (4.9)

Summing equalities (4.8) over t = 1, 2, . . . , n, dividing by n and taking lim sup (when
n→∞) we get that

J(x, f) = J∗ + lim sup
n→∞

1
n

n∑
t=1

Efx
[
H
(
xt−1, f(xt−1)

)
− inf
a∈A(xt−1)

H(xt−1, a)
]
. (4.10)

Similarly to (4.9) let

H̃(x, a) := c(x, a) + Eh̃ [F (x, a, ξ̃)] − J̃∗, (x, a) ∈ K. (4.11)

Since for the optimal for process (1.2) policy f̃∗ the action at = f̃∗(xt−1) yields the
infimum of H̃(xt−1, a) over a ∈ A(xt−1) we get that in (4.10)

It := H
(
xt−1, f(xt−1)

)
− inf
a∈A(xt−1)

H(xt−1, a)

= H
(
xt−1, f(xt−1)

)
− H̃

(
xt−1, f(xt−1)

)
+ inf
a∈A(xt−1)

H̃(xt−1, a)− inf
a∈A(xt−1)

H(xt−1, a).

Using this equality and (4.9), (4.11) we find that

|It| ≤ 2|J∗ − J̃∗|+ 2 sup
a∈A(xt−1)

∣∣Eh[F (xt−1, a, ξ)]− Eh̃[F (xt−1, a, ξ̃)]
∣∣, (4.12)

and the last term on the right-hand side of (4.12) is less (see (4.7)) than 2Q+2‖h− h̃‖∞.
Comparing (1.6), (4.10), (4.6) and the last inequalities we obtain that

∆ ≤ 2
(

1 +
2

1− λ

) [
|J∗ − J̃∗|+Q

]
. (4.13)

Next step is to find a bound for |J∗ − J̃∗| expressed in terms of Q. We choose some
sequence {αn} ⊂ (0, 1) such that αn ↑ 1, and for each n we define the total discounted
cost

Vαn(x, π) := Eπx

∞∑
t=1

αt−1
n c(xt−1, at), x ∈ X, π ∈ Π
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for the MCP (1.1). Let also V ∗αn
be the corresponding value function, and hn(x) :=

V ∗αn
(x)− V ∗αn

(z), where z ∈ X is an arbitrary but fixed state.
Applying the standard vanishing discount approach and using arguments quite similar

to those given in the last part of the proof in Section 4 in [5], we find that

|J∗ − J̃∗| ≤ lim sup
n→∞

sup
k∈K

∣∣Ehn[F (k, ξ)] − Ehn[F (k, ξ̃)]
∣∣. (4.14)

It is well-known (see, e. g., [1]) that Assumption 2.1 implies that for every stationary
policy f ′ and each x ∈ X, for t = 1, 2, . . .∣∣∣∣Ef ′x c(xt−1, f

′(xt−1))−
∫
X

c(x, f ′(x))qf ′(dx)
∣∣∣∣ ≤ 2bλt−1, (4.15)

where qf ′ is the corresponding invariant probability.
From (4.15) it is easy to see that for any n ≥ 1, ‖hn‖ ≤ 4b

1−λ .
It is well-known (see, e. g. [8]) that for every x ∈ X, hn(x) → h′(x), where h′ is

a solution of the optimality equation h′ = Th′ (see (4.4)). Then using the bounded
convergence theorem and (4.14) we easily obtain that

|J∗ − J̃∗| ≤ sup
k∈K
|Eh′[F (k, ξ)] − Eh′[F (k, ξ̃)]|. (4.16)

Because the solution of the optimality equation is unique up to adding of an arbitrary
constant, we conclude (comparing (4.7), (4.13) and (4.16)) that

∆ ≤ 4
(

1 +
2

1− λ

)
Q. (4.17)

Now, using (4.4), (4.5) and (4.6) we get that

‖h‖∞ = ‖h‖sp ≤ ‖Th− T0‖sp + ‖T0‖sp, or

‖h‖∞ ≤
1

1− λ

∥∥∥∥ inf
a∈A(·)

c(·, a) − J∗

∥∥∥∥
sp

=
1

1− λ

∥∥∥∥ inf
a∈A(·)

c(·, a)
∥∥∥∥
sp

≤ 2b
1− λ

. (4.18)

Thus in the definition of Q in (4.7) the function h is bounded by the constant 2b
1−λ .

Next goal is to show that in (4.7), and therefore in inequality (4.17) the functions
h[F (k, ·)] : S → R satisfy the Lipschitz condition with a Lipschitz constant independent
of k ∈ K.

Let us define (see (4.1)):

g(k) := c(k) + Eh[F (k, ξ)], k ∈ K.
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Using the definition of the total variation norm ‖p− p′‖ (see Section 2), Assumption
2.2, (b) and (c), we find that for every k, k′ ∈ K,

|g(k)− g(k′)| ≤
[
L1 +

2bL
1− λ

]
ν(k, k′). (4.19)

Now definition (4.1) and the first equation in (4.4) suggest that for each x ∈ X

h(x) = inf
a∈A(x)

{g(x, a)− J∗}. (4.20)

In the course of the proof of the main result in [5] the following lemma was proved
(which in fact was not formulated as a separate assertion):

Under condition (4.19) and Assumption 2.2, (a) for the function h in (4.20) we have:

|h(x)− h(x′)| ≤ (1 + L0)
[
L1 +

2bL
1− λ

]
ρ(x, x′) for every x, x′ ∈ X. (4.21)

Now fixing arbitrary s, s′ ∈ S by (4.21) and Assumption 2.2, (e) we get (see (4.7)):∣∣h[F (k, s)] − h[F (k, s′)]
∣∣ ≤ L L∗ r(s, s′), (4.22)

where L denotes the constant on the right-hand side of (4.21). Therefore for each k ∈ K
the function h[F (k, ·)] : S → R satisfies the Lipschitz condition with the constant LL∗
and is bounded by 2b

1−λ (see (4.18)).
Let

∂(µ, η) := sup
{∫

S

ϕdµ −
∫
S

ϕdη : ‖ϕ‖∞ + ‖ϕ‖L ≤ 1
}

(4.23)

be the Dudley metric in the space of probability distributions on (S,BS) (see [2] for
definition and properties of ∂). Applying (4.18), (4.22) and definition (4.23) to (4.7)
and using inequality (4.17) we get that

∆ ≤ 4
(

1 +
2

1− λ

) (
LL∗ +

2b
1− λ

)
∂(µ, µ̃).

To obtain the desired inequality (2.1) we should use the last inequality and the well-
known relation ∂ ≤ 2`π between the Dudley and Lévy–Prokhorov metrics.
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