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LOG-OPTIMAL INVESTMENT IN THE LONG RUN WITH
PROPORTIONAL TRANSACTION COSTS WHEN USING
SHADOW PRICES

Petr Dostál and Jana Kl̊ujová

We consider a non-consuming agent interested in the maximization of the long-run growth
rate of a wealth process investing either in a money market and in one risky asset following
a geometric Brownian motion or in futures following an arithmetic Brownian motion. The agent
faces proportional transaction costs, and similarly as in [17] where the case of stock trading is
considered, we show how the log-optimal optimal policies in the long run can be derived when
using the technical tool of shadow prices. We also provide a brief link between technical tools
used in this paper and the ones used in [14,15,17].
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1. INTRODUCTION

The purpose of this paper is to illustrate how the notion of shadow prices can be used
as a technical tool for solving the problem of investment in the presence of proportional
transaction costs when we maximize the growth rate of the wealth process (Wt)t≥0 in
the long run as follows

max lim inf
t→∞

1
t E[lnWt], (1)

where the maximum is taken over the set of such admissible strategies that lnW0 is
an integrable random variable. Here, we treat the case of stock and futures trading
together with almost explicit results which may serve as illustration. We also provide
a link between our tools and the ones used in some other papers also interested in the
maximization problem (1). By [3] the problem (1) is a limiting case of the investment-
consumption problem with logarithmic utility when we are interested in stock trading.
The problem (1) is difficult to treat without passing t → ∞ since the optimal policies
depend also on time which is pointed out in [17]. See [25, 35] for its solution for finite
discrete time. Note that the problem (1) can be understood as a maximization of the
long-run growth rate of the certainty equivalent from the wealth process with logarithmic
utility, and see [14] and [15] for the martingale approach to such a problem and for
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an almost explicit solution corresponding to utility functions with hyperbolic absolute
risk aversion (HARA) unbounded from below.

This paper was inspired by [24] where the investment-consumption problem with
logarithmic utility is treated with the help of shadow prices and where one does not
have an explicit solution of the corresponding ODE.

The reader interested

• in shadow prices is referred to [4, 5, 6, 7, 16, 17, 18, 19, 24, 25, 26, 32],
• in logarithmic utility to [1, 3, 8, 9, 10, 11, 20, 27, 33, 34, 39, 40],
• in the investment-consumption problem with presence of proportional transaction

costs to [2, 3, 12, 21, 22, 28, 29, 30, 36].

The reader interested in futures trading with transaction costs is referred to [14,
22]. For the investment problem with proportional transaction costs and non-constant
coefficients see [13] and [26].

The paper is organized as follows. The next section is divided into subsections. In the
first one, we introduce the Black-Scholes model for the stock market price and the bid-
ask spread. We define an admissible strategy as a self-financing strategy such that the
wealth process is positive if it is computed from the bid and ask price of the stock. For
such strategies we are allowed to introduce the so called position in the market, which
corresponds to the proportion of wealth invested in a stock. The second subsection
is devoted to the introduction of “futures trading” with proportional transaction costs
where the futures price follows an arithmetic Brownian motion.

In the third subsection, we make the first step towards the notion of shadow prices.
It is based on the idea that any continuous semimartingale attaining values in the bid-
ask spread can play the role of the price if we modify the value of transaction taxes in
order to preserve the bid-ask spread. In Lemma 2.12, we show that the criterion (1) is
not affected by such a modification of the market price under very general assumptions.
The rest of the subsection is devoted to the dynamics of modified wealth and modified
position presented in Lemmas 2.15, 2.18 and 2.20.

The last subsection of the second section is devoted to sufficient conditions for the
modified price such that the strategy maximizing the long-run growth rate in the fric-
tionless market is also the maximal long-run growth rate of the wealth process in the
market with transaction costs.

The first subsection of the third section is devoted to the definition of shadow price
and its interpretation as a dual optimizer. It is such a modified price that the maximal
long-run growth rate of the wealth process in the frictionless market can be reached also
in the market with transaction costs, and consequently, such a price offers the worst
opportunity to maximize the long-run growth rate of the minimal wealth process, as
stated in Theorem 3.11.

Subsection 3.2, namely Theorem 3.13, puts together the general theory from sub-
section 3.1 and the theory from section 2. In subsection 3.3, we provide an intuitive
technique taken from [24] of searching for the shadow price. It is based on finding a cer-
tain ODE whose solution given by Lemma 3.18 enables us to say how the price should
be modified. Part 3.4 uses calculations and arguments from stochastic analysis in order
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to show (Theorem 3.21) that the shadow price exists under a lot of technical assump-
tions denoted as (A1 – A3), and we show in Lemma 3.23 that there exists an admissible
strategy keeping just the position within a certain interval.

Subsection 3.5 is preliminary and it is based on calculations and arguments from
mathematical analysis. It introduces and explores the functions ξa,ε, yu helping us to
switch between the nominal and modified positions.

In the last subsection, we show how the nominal price should be modified into
a shadow price in Theorem 3.31, and in Corollary 3.32 we show that the derived strategy
is log-optimal in the long run among a wide class of strategies. Finally, we show that
it is also log-optimal in the long run among all admissible strategies up to a certain
restriction on the initial wealth in Theorem 3.34.

In section 4, we compare the technical tools of this and some other papers and we
also offer a brief presentation of results of the martingale approach to the maximization
of the long-run growth rate of the certainty equivalent from the wealth process when
considering HARA utility functions unbounded from below.

The last section is complementary and we only prove there that any admissible strat-
egy does not lead to the bankruptcy almost surely, as stated in Remark 2.6.

2. NOTATION AND MODEL SET UP

In this section, we introduce the model of stock trading and futures trading with pro-
portional transaction costs, the notion of modified price and cost-free strategy and we
show that the cost-free strategy keeping the position process on the log-optimal propor-
tion maximizes the long-run growth rate of the wealth process among a wide class of
strategies, see Lemma 2.12 and Theorem 2.26.

For brevity of the notation, we write (Xt, Yt, Zt, . . .)t≥0 for a collection of processes
with the index set R+ , [0,∞) and when using this notation we do not distinguish for
example between three processes written one after another and between the correspond-
ing triplet.

2.1. Stock trading with proportional transaction costs

We consider an agent who may invest in a money market with interest rate r ≥ 0 and
in one risky asset called stock with the market price (St)t≥0 following the model of
geometric Brownian motion

St , s0 exp{σBt + (µ− σ2

2 ) t}, t ≥ 0, (2)

driven by a standard Brownian motion (Bt)t≥0 as follows

dSt = St(µdt+ σ dBt).

Here, µ ∈ R s0, σ ∈ (0,∞) are constants similarly as r which will be assumed to be equal
to zero for simplicity and also without loss of generality. We assume that the underlying
probability space (Ω,F , P ) is complete and we consider a completed filtration (Ft)t≥0

generated by (Bt)t≥0.
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Definition 2.1. By a (trading) strategy we mean a pair (ϕt, ψt)t≥0 of adapted right-
continuous processes with (finite) left-hand limits and with locally finite variation. Then
(ϕt, ψt)t≥0 stands for the processes describing the number of shares held in the stock
and in the bank account and the corresponding wealth process is defined as follows

Wt , ψt + ϕtSt, t ≥ 0. (3)

The agent faces transaction costs that are proportional to the size of the transaction so
that one pays S↑t for one share of the stock at time t ≥ 0 and gets only S↓t for it, where

S↑t , (1 + λ↑)St, S↓t , (1− λ↓)St,

and where λ↑ ∈ (0,∞) and λ↓ ∈ (0, 1).

Remark 2.2. Let (ϕt, ψt)t≥0 be a trading strategy. As (ϕt)t≥0 is assumed to be
rcll-process with locally finite variation, we get that there exists a pair (ϕ↑t , ϕ

↓
t )t≥0 of

adapted non-decreasing rcll-processes starting from 0 such that

ϕt = ϕ0 + ϕ↑t − ϕ
↓
t , t ≥ 0, (4)

and such that (ϕ↑t , ϕ
↓
t )t≥0 do not grow at the same time, i. e. that the Lebesgue-Stieltjes

measures induced by both processes are mutually singular. Then these measures re-
stricted to [0, T ] represent the Hahn decomposition of a signed measure induced by
(ϕt∧T )t≥0 if T > 0, and, as Hahn decomposition is unique, we have that the processes
(ϕ↑t , ϕ

↓
t )t≥0 starting from zero are uniquely determined by (ϕt)t≥0. Then (ϕ↑t , ϕ

↓
t )t≥0 are

interpreted as the number of shares bought and sold up to time t, respectively, and the
assumption that they do not grow at the same time is just a natural requirement that
the corresponding strategy does not buy and sell the stock simultaneously.

Definition 2.3. Let (ϕt, ψt)t≥0 be a trading strategy. Then the corresponding value of
transaction costs up to t ≥ 0 is defined as follows

Cϕ

t ,
∫ t

0
Ss(λ↑dϕ↑s + λ↓dϕ↓s). (5)

The above integral is understood in Lebesgue-Stieltjes sense and as the integrators are
right-continuous the integral from 0 to t is understood as integral over (0, t]. Conse-
quently, (Cϕ

t )t≥0 is again a non-decreasing right-continuous adapted process.

Definition 2.4. We say that the strategy (ϕt, ψt)t≥0 is self-financing if

ψt = ψ0 −
∫ t

0
S↑s dϕ↑s +

∫ t
0
S↓s dϕ↓s , t ≥ 0. (6)

Obviously, the stock market price (St)t≥0 is a continuous semimartingale with

dSt = St dFt, where Ft , µt+ σBt, t ≥ 0. (7)

If (ϕt, ψt)t≥0 is a self-financing strategy, then the corresponding wealth process (Wt)t≥0

is an adapted right-continuous process with left-hand limits with

dWt = ϕt dSt − dCϕ

t = St[ϕt dFt − λ↑dϕ↑t − λ↓dϕ
↓
t ]. (8)
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Note that this is a differential form of an integral equality. The integrals with respect
to dSt, dFt are considered in the classical sense of continuous stochastic integration and
the ones with respect to dCϕ

t , dϕ↑t , dϕ↓t are considered in the Lebesgue-Stieltjes sense.
Further note that verification of (8) is straightforward as it uses only integration by parts
formula Stϕt − S0ϕ0 −

∫ t
0
Ss dϕs =as

∫ t
0
ϕs dSs for a continuous semimartingale (St)t≥0

and a right-continuous adapted process (ϕt)t≥0 of locally finite variation.

Definition 2.5. A self-financing strategy (ϕt, ψt)t≥0 is called admissible if the wealth
processes computed from the ask and bid prices (S↑t , S

↓
t )t≥0 are positive, i. e. if

W↑t , ψt + ϕtS
↑
t > 0, W↓t , ψt + ϕtS

↓
t > 0, t ≥ 0. (9)

Remark 2.6. If we neglect null sets, we can say that admissible strategy is such a self-
financing strategy with which the investor will never get into bankruptcy. Indeed,
a wealth process of an admissible strategy is positive, which can be seen as follows

0 < min{W↑t ,W
↓
t } =Wt − St(λ↑ϕ−t + λ↓ϕ+

t ) ≤ Wt,

where we have used the following equalities

W↑t =Wt + λ↑ϕtSt, W↓t =Wt − λ↓ϕtSt. (10)

On the other hand, if a self-financing strategy never leads to a bankruptcy almost surely,
i. e. τ , {t ≥ 0;Wt ≤ 0} =as ∞, then it is up to a null set equal to an admissible strategy
as it is proved in Lemma 5.5 in the appendix of this paper.

Definition 2.7. Whenever (ϕt, ψt)t≥0 is an admissible strategy, we introduce the cor-
responding position process (πt)t≥0 as

πt , ϕtSt/Wt. (11)

Further, we denote A , (−1/λ↑, 1/λ↓) and we call it the set of admissible positions.

Remark 2.8. The position process (πt)t≥0 of an admissible strategy describes the ratio
of the investors wealth invested in the risky asset and it attains values in A. To see the
latter statement, it is enough to realize that the corresponding wealth process (Wt)t≥0

is positive and that

0 <W↑t =Wt(1 + λ↑πt), 0 <W↓t =Wt(1− λ↓πt), t ≥ 0, (12)

as the corresponding strategy is assumed to be admissible.

2.2. Futures trading with proportional transaction costs

We are going to introduce a (theoretical) concept of futures without expiration based on
the assumption of a zero interest rate.

We assume that there is a stock with the market price (Ft)t≥0 which can be also
negative due to possible expenses. Let us consider an agent taking a long position in
a forward contract with maturity T > t at time t ≥ 0, for example, so that he/she
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agrees to pay the forward price F (t, T ) for the stock at time T. If we exclude arbitrage
opportunities, we get that F (t, T ) = Ft has to hold whenever 0 ≤ t ≤ T.

Thus, instead of stock trading, the agent may conclude and cancel forward contracts
so that keeping a long position on (t, T ] brings FT − Ft and keeping a short position
means loosing this value. As concluding and canceling of the forward contract is not
immediate and as such contracts are not standardized for trading, the agent may prefer
using futures, which one can imagine as a standardized forward contract with daily
reevaluation, so that the agent obtains the difference Fr − Ft if he/she takes a long
position in a futures contract on (t, r] similarly as in the previous case, however, this
time, he/she obtains the corresponding increment of the futures price every day.

As futures contracts are daily reevaluated, we do not have to restrict ourselves to
finite T. As only the increments of the futures price (Ft)t≥0 are important, we may
assume that it starts from zero, i. e. F0 = 0. Then trading futures without expiration,
i. e. with the expiry date T = ∞, is nothing else but betting on the process (Ft)t≥0,
which is modelled here similarly as in [22] by an arithmetic Brownian motion formally
introduced on the right-hand side of (7).

In contrast with the stock trading, the process (ϕt)t≥0 stands for the number of
concluded futures contracts. As the agent does not possess any stock, the number of
shares held in the bank account is equal to the investor’s wealth process, which is denoted
as (Wt)t≥0. It turns out that it is useful to denote

ψt ,Wt − ϕtFt, t ≥ 0,

cf. (3). The agent has to pay transaction costs that are proportional to increments and
decrements of (ϕt)t≥0 and this is the reason why we restrict to processes (ϕt)t≥0 satisfy-
ing (4) where the processes (ϕ↑t , ϕ

↓
t )t≥0 formally satisfy the same technical assumptions

as in subsection 2.1. The value of transaction costs is here specified as follows

Cϕ

t , λ
↑ϕ↑t + λ↓ϕ↓t , (13)

where λ↑, λ↓ ∈ (0,∞). In order to be able to treat the stock and futures trading together,
we also need to introduce processes

F ↑t , Ft + λ↑, F ↓t , Ft − λ↓, (14)

t ≥ 0, that will be referred to as the ask and bid price of the futures contract and we
also introduce

W↑t ,Wt + λ↑ϕt = ψt + ϕtF
↑
t , W↓t ,Wt − λ↓ϕt = ψt + ϕtF

↓
t , (15)

t ≥ 0, cf. (9,10). Here, the self-financing condition is of the form

ψt = ψ0 −
∫ t

0
F ↑s dϕ↑s +

∫ t
0
F ↓s dϕ↓s , (16)

t ≥ 0. Note that it can be easily verified by integration by parts formula that (16) is up
to a null set equivalent to the condition

Wt =as W0 +
∫ t

0
ϕs dFs − Cϕ

t =as W0 +
∫ t

0
[ϕs dFs − λ↑ dϕ↑s − λ↓ dϕ↓s] ds, (17)

t ≥ 0, cf. (8).
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Further, we call a self-financing strategy (ϕt, ψt)t≥0 admissible if the processes intro-
duced in (15) are positive. Then again, we obtain, from inequalities Wt ≥ W↑t ∧W

↓
t >

0, t ≥ 0, that the wealth process is positive, and thus, we are allowed to define the posi-
tion process (πt)t≥0 as follows

πt , ϕt/Wt, t ≥ 0. (18)

Similarly as in Remark 2.8, we would get that the equalities in (12) hold and that the
position process (πt)t≥0 of an admissible strategy attains values in A.

2.3. Modified prices and modified wealth

In this subsection, we modify the nominal market price and the transaction taxes so that
the bid-ask spread remains the same. We show in Lemma 2.12 that such a modification
does not affect the long-run growth rate of the wealth process.

As the stock market price (St)t≥0 enters the model only via ask and bid prices
(S↑t , S

↓
t )t≥0, we can afford to modify the market price (St)t≥0 if we also modify the

transaction taxes λ↑, λ↓ so that the corresponding ask and bid prices remain the same.

Definition 2.9. Let ε̃ = (ε̃t)t≥0 be a continuous semimartingale with values in [−λ↓, λ↑].
Then (S̃t)t≥0 from

S̃t = (1 + ε̃t)St, t ≥ 0 (19)

is referred to as the stock market ε̃-price. Realize that it is just a continuous semimartin-
gale attaining values in the bid-ask spread S̃t ∈ [S↓t , S

↑
t ], t ≥ 0. Then the processes

(λ̃↑t , λ̃
↓
t )t≥0 satisfying

(1 + λ̃↑t )S̃t = S↑t , (1− λ̃↓t )S̃t = S↓t , (20)

t ≥ 0, are referred to as the ε̃-transaction taxes, and we call the following process

W̃t , ψt + ϕtS̃t, t ≥ 0, (21)

the ε̃-wealth process. If (ϕt, ψt)t≥0 is an admissible strategy, then, similarly as in Re-
mark 2.6, we obtain that W̃t ≥ W↑t ∧W

↓
t > 0, t ≥ 0, and therefore, we may introduce

the ε̃-position process (π̃t)t≥0 as follows

π̃t , ϕtS̃t/W̃t.

Note that the ε̃-wealth process (W̃t)t≥0 can be also expressed as

W̃t =Wt + ε̃tϕtSt. (22)

We are going to introduce analogous notions also for the futures.
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Definition 2.10. Let ε̃ = (ε̃t)t≥0 be a continuous semimartingale with values in [−λ↓, λ↑].
Then the process (F̃t)t≥0 from

F̃t = Ft + ε̃t, t ≥ 0 (23)

is referred to as the futures ε̃-price and the processes (λ̃↑t , λ̃
↓
t )t≥0 satisfying

F̃t + λ̃↑t = F ↑t , F̃t − λ̃↓t = F ↓t , (24)

are referred to as the ε̃-transaction taxes. The ε̃-wealth process (W̃t)t≥0 is now defined
analogously to (21,22) as

W̃t ,Wt + ε̃t ϕt = ψt + ϕtF̃t. (25)

Then again, any admissible strategy satisfies W̃t ≥ W↑t ∧ W
↓
t > 0, t ≥ 0, and we may

introduce the ε̃-position process (π̃t)t≥0 as follows

π̃t , ϕt/W̃t.

Remark 2.11. In the following, we will treat both cases, the stock and the futures
trading, together. We consider a binary parameter a ∈ {0, 1} indicating that stock trad-
ing is considered. If a = 0, we are allowed to write Sat and S̃at , which is treated as 1. If
a = 1, we are allowed to use (F̃t)t≥0 standing for a continuous semimartingale such that

dS̃t = S̃t dF̃t. (26)

Such a process (F̃t)t≥0 exists as the stock market ε̃-price (S̃t)t≥0 is a positive continuous
semimartingale by definition.

It turns out, as shown in the next Lemma, that the long-run growth rates of the
wealth process and of the ε̃-wealth process are the same provided that the corresponding
position is kept away from the boundary values −1/λ↑, 1/λ↓. This justifies comparing
the long-run growth rates of the ε̃-wealth processes of two competing strategies.

Lemma 2.12. Let (Wt, W̃t)t≥0 be the wealth process and the ε̃-wealth process, re-
spectively, corresponding to the admissible strategy (ϕt, ψt)t≥0. If the position process
(πt)t≥0 attains values in some compact subset of A, then ln(W̃t/Wt), t ≥ 0 is a bounded
process. In particular, we have that

1
t E[ln W̃t

Wt
]→ 0 and 1

t ln W̃t

Wt
→as 0, as t→∞. (27)

P r o o f . As (12) holds in both cases a ∈ {0, 1}, we obtain that

min{1 + λ↑πt, 1− λ↓πt} = W↑t ∧W
↓
t

Wt
≤ W̃t

Wt
≤ W

↑
t ∨W

↓
t

Wt
= max{1 + λ↑πt, 1− λ↓πt}.

The rest follows immediately from the restriction on values of (πt)t≥0. �
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Notation 2.13. Let us denote by rcll(Ω) the set of all right-continuous processes with
(finite) left-hand limits (rcll) indexed by t ≥ 0 and defined on Ω and by C(Ω) its subset
of continuous processes. Note that (ϕt, ϕ↑t , ϕ

↓
t )t≥0 ∈ rcll(Ω)3 in general in this paper.

If (ϕt, ψt)t≥0 is a self-financing strategy, then also (ψt)t≥0 ∈ rcll(Ω) and as this set
is closed under sums and products and as C(Ω) ⊆ rcll(Ω), we get from (21,25) that also
(W̃t)t≥0 ∈ rcll(Ω).

Definition 2.14. Let (S̃t)t≥0 be a stock market ε̃-price (if a = 1) and let (λ̃↑t , λ̃
↓
t )t≥0

be the ε̃-transaction taxes. Then we define the ε̃-value of transaction costs on (0, t] as

C̃ϕ

t ,
∫ t

0
S̃as [λ̃↑s dϕ↑s + λ̃↓s dϕ↓s ], t ≥ 0, (28)

cf. (5, 13). The next Lemma justifies the above interpretation of (C̃ϕ

t )t≥0.

Lemma 2.15. Let (ϕt, ψt)t≥0 be a self-financing strategy with the ε̃-wealth (W̃t)t≥0

and the ε̃-value of transaction costs (C̃ϕ

t )t≥0. Then (W̃t+ C̃ϕ

t )t≥0 is a continuous process
and

W̃t =as W̃0 +
∫ t

0
ϕsS̃

a
s dF̃t − C̃ϕ

t , t ≥ 0,

cf. (8, 17). In the differential form with ε̃-transaction taxes (λ̃↑t , λ̃
↓
t )t≥0, we have that

dW̃t = S̃at [ϕt dF̃t − λ̃↑t dϕ↑t − λ̃
↓
t dϕ↓t ]. (29)

P r o o f . As (W̃t, C̃
ϕ

t )t≥0 ∈ rcll(Ω)2, we may show that their sum is a continuous process
simply by calculating the corresponding jumps from left.

Let a = 1. We obtain from (6, 21) and integration by parts formula that

dW̃t = ϕt dS̃t + (S̃t − S↑t ) dϕ↑t + (S↓t − S̃t) dϕ↓t . (30)

Then we get by (20, 26) that (29) holds. Similarly, we obtain that

∆ W̃t , W̃t − W̃t− = (S̃t − S↑t ) ∆ϕ↑t + (S↓t − S̃t)∆ϕ↓t = −∆ C̃ϕ

t , t ≥ 0, (31)

where ∆ϕ↑t ,∆ϕ
↓
t ,∆ C̃ϕ

t stand for jumps from left defined similarly as ∆ W̃t.

If a = 0, omit (26) and replace (6,20,21) by (16,24,25) in order to get (30,31) with
(S̃t, S↑t , S

↓
t )t≥0 replaced by (F̃t, F ↑t , F

↓
t )t≥0. �

Lemma 2.16. Let (ϕt, ψt)t≥0 be an admissible strategy with the ε̃-wealth and the ε̃-
position (W̃t, π̃t)t≥0, then (W̃−1

t , π̃t)t≥0 ∈ rcll(Ω)2.

In particular, the choice ε̃ = 0 gives that (W−1
t , πt)t≥0 ∈ rcll(Ω)2 holds if (Wt, πt)t≥0

are the wealth process and the position of (ϕt, ψt)t≥0.
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P r o o f . As (ϕt, S̃at )t≥0 ∈ rcll(Ω)2 and as rcll(Ω) is closed under products, it is enough
to show that (W̃−1

t )t≥0 ∈ rcll(Ω) in order get that also π̃t = ϕtS̃
a
t W̃−1

t , t ≥ 0, is in
rcll(Ω). As (W̃t)t≥0 ∈ rcll(Ω), it is enough to show that (W̃−1

t )t≥0 has locally bounded
trajectories, i. e. that infs≤t W̃s > 0 holds for every t ≥ 0.

Since (C̃ϕ

t )t≥0 ∈ rcll(Ω) does not decrease and (W̃t + C̃ϕ

t )t≥0 is a continuous process
and as the considered strategy (ϕt, ψt)t≥0 is admissible, we have that W̃t− ≥ W̃t > 0
holds for every t ≥ 0. As an infimum of a rcll-function on [0, t] is attained provided that
the function jumps only downwards, we get that the inequality infs≤t W̃s > 0 indeed
holds if t ≥ 0. �

Remark 2.17. If the strategy (ϕt, ψt)t≥0 from Lemma 2.15 is admissible, then (29)
reads as follows

dW̃t = W̃tπ̃t dF̃t − dC̃ϕ

t . (32)

This equation has an almost surely unique solution (W̃t)t≥0 given (π̃t, F̃t, C̃ϕ

t )t≥0 and the
initial value W̃0, and it is described in the Lemma 2.18. In order to see that the solution
of the equation (32) is really unique almost surely, consider the difference (Xt)t≥0 of
two solutions with the same initial value. Then it is an adapted rcll-process such that
Xt =as

∫ t
0
Xsπ̃s dF̃s, t ≥ 0, which is possible only if Xt =as 0, t ≥ 0.

Lemma 2.18. Let (W̃t)t≥0 be the ε̃-wealth process of an admissible strategy with the
ε̃-position (π̃t)t≥0. Then

W̃t =as Ẽπt · [W̃0 −
∫ t

0
(Ẽπs )−1 dC̃ϕ

ts ] ≤ Ẽπt W̃0, t ≥ 0, (33)

where Ẽπt , exp{
∫ t

0
(π̃s dF̃s − 1

2 π̃
2
s d〈F̃ 〉s)}.

P r o o f . As (π̃t)t≥0 ∈ rcll(Ω) is adapted, (
∫ t

0
π̃s dF̃s)t≥0 is a well defined continuous

semimartingale. As Yt , W̃t + C̃ϕ

t , t ≥ 0, and (Ẽπt )−1
t≥0 are continuous semimartin-

gales with

dYt = π̃tW̃t dF̃t, d(Ẽπt )−1 = (Ẽπt )−1[−π̃t dF̃t + π̃2
t d〈F̃ 〉t],

we obtain, with the help of calculus of continuous stochastic integration, that

(Ẽπt )−1Yt =as Y0 +
∫ t

0
C̃ϕ

ts d(Ẽπs )−1, t ≥ 0. (34)

As (C̃ϕ

t )t≥0 ∈ rcll(Ω) is a non-decreasing adapted process and (Ẽπt )−1
t≥0 a continuous

semimartingale, we obtain, with the help of integration by parts formula, that

(Ẽπt )−1C̃ϕ

t =as C̃ϕ

0 +
∫ t

0
C̃ϕ

ts d(Ẽπs )−1 +
∫ t

0
(Ẽπs )−1 dC̃ϕ

ts , (35)

t ≥ 0. If we subtract (35) from (34), we obtain the equality almost surely in (33) while
the right-hand inequality in (33) obviously holds as (C̃ϕ

t )t≥0 is a non-decreasing process
and (Eπt )t≥0 attains only positive values. �
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Definition 2.19. We say that a strategy (ϕt, ψt)t≥0 is continuous if the processes
(ϕt, ψt)t≥0 have continuous trajectories.

Lemma 2.20. Let (ϕt, ψt)t≥0 be a continuous admissible strategy with the ε̃-wealth
process and the ε̃-position process (W̃t, π̃t)t≥0 and let (λ̃↑t , λ̃

↓
t )t≥0 be the ε̃-transaction

taxes. Then (π̃t)t≥0 is a continuous semimartingale and the following holds for every
t ≥ 0

π̃t =as π̃0 +
∫ t

0
π̃s(a− π̃s)[ dF̃s − π̃s d〈F̃ 〉s]

+
∫ t

0
W̃−1
s S̃as [(1 + λ̃↑sπ̃s) dϕ↑s − (1− λ̃↓sπ̃s) dϕ↓s ].

P r o o f . By assumption, (S̃t)t≥0 is a continuous semimartingale and S̃t =as S̃0 e
F̃t−〈F̃ 〉t/2

if a = 1. By a calculation using a ∈ {0, 1}, we obtain from Itô Lemma that

Zt , S̃
a
t /Ẽπt =as Z0 exp{

∫ t
0
(a− π̃s) dF̃s − 1

2

∫ t
0
(a− π̃2

s) d〈F̃ 〉s}, t ≥ 0,

is a continuous semimartingale with

dZt = Zt(a− π̃t)[ dF̃t − π̃t d〈F̃ 〉t]. (36)

Further, Vt , W̃t/Ẽπt =as W̃0 −
∫ t

0
(Ẽπs )−1 dC̃ϕ

ts , t ≥ 0, is a continuous adapted process of
locally finite variation attaining only positive values with

dVt = −(Ẽπt )−1 dC̃ϕ

t and dV −1
t = W̃−1

t V −1
t dC̃ϕ

t .

See (28) for the differential dC̃ϕ

t . As (ϕt)t≥0 is also a continuous adapted process of
locally finite variation, we get that (ϕtV −1

t )t≥0 possesses the same property and

d(ϕtV −1
t ) = V −1

t [ dϕt + ϕtW̃−1
t S̃at (λ̃↑t dϕ↑t + λ̃↓t dϕ↓t )]

= V −1
t [(1 + λ̃↑t π̃t) dϕ↑t − (1− λ̃↓t π̃t) dϕ↓t ].

(37)

As ZtV −1
t = S̃at W̃−1

t holds, we obtain by (36,37) that π̃t = ϕtS̃
a
t W̃−1

t = ϕtZtV
−1
t , t ≥ 0,

is a continuous semimartingale with

dπ̃t = ϕtV
−1
t dZt + Zt d(ϕtV −1

t )

= π̃t(a− π̃t)[ dF̃t − π̃t d〈F̃ 〉t] + S̃at W̃−1
t [(1 + λ̃↑t π̃t) dϕ↑t − (1− λ̃↓t π̃t) dϕ↓t ].

�

2.4. Long-run growth rate

In this subsection, we introduce so called cost-free strategy and log-optimal proportion,
and we show that a cost-free strategy keeping its modified position on the log-optimal
proportion maximizes the long-run growth rate of the modified wealth among a wide
class of strategies in Theorem 2.26.



Log-optimal investment in the long run with proportional trans. costs when using shadow prices 599

Definition 2.21. An admissible strategy (ϕt, ψt)t≥0 is called an ε̃-cost-free strategy if
the ε̃-value of transaction costs (C̃ϕ

t )t≥0 from (28) attains only the value 0 almost surely.

Remark 2.22. Let (W̃t, π̃t)t≥0 be the ε̃-wealth process and the ε̃-position process of
an ε̃-cost-free strategy (ϕt, ψt)t≥0. Then we get by Lemma 2.18 that W̃t =as Ẽπt W̃0, t ≥ 0.
Since π̃tW̃t = ϕtS̃

a
t , we obtain that the strategy (ϕt, ψt)t≥0 is, up to a null set, uniquely

determined by W̃0 and (π̃t, F̃t)t≥0.

Definition 2.23. We say that the stock market ε̃-price (S̃t)t≥0 (if a = 1) or the futures
ε̃-price (F̃t)t≥0 (if a = 0) is regular if there exist continuous adapted processes (µ̃t, σ̃t)t≥0

such that

dF̃t = µ̃t dt+ σ̃t dBt, (38)

and that (µ̃t, ln σ̃t)t≥0 are bounded processes. The processes (µ̃t, σ̃t)t≥0 are referred to
as the ε̃-coefficients and given (F̃t, Bt)t≥0 they are determined uniquely up to a null set.

Definition 2.24. Let us consider a regular (stock market or futures) ε̃-price with ε̃-
coefficients (µ̃t, σ̃t)t≥0. Then we introduce the ε̃-log-optimal proportion (θ̃t)t≥0 as

θ̃t , σ̃
−2
t µ̃t, t ≥ 0. (39)

Remark 2.25. Let (W̃t, π̃)t≥0 be the ε̃-wealth process and the ε̃-position of an ε̃-cost-
free strategy, then

W̃t =as W̃0 Ẽπt =as W̃0 exp{
∫ t

0
σ̃sπ̃s dBs +

∫ t
0
(µ̃sπ̃s − 1

2 σ̃
2
s π̃

2
s) ds}.

Obviously, the quadratic function x 7→ µ̃x − σ̃2x2/2 attains its maximum at x = σ̃−2µ̃
provided that σ̃ ∈ (0,∞). This is the reason why (θ̃t)t≥0 from (39) is referred to as the
ε̃-log-optimal proportion. Further, see Theorem 2.26 for the properties of an ε̃-cost-free
strategy keeping the ε̃-position on the ε̃-log-optimal proportion.

Theorem 2.26. Let us consider a regular ε̃-price. Assume that (ϕ∗t , ψ
∗
t )t≥0 is an ε̃-cost-

free strategy with the ε̃-wealth process and ε̃-position (W̃∗t , π̃∗t )t≥0 and that the ε̃-posi-
tion process equals to the ε̃-log-optimal proportion almost surely, i. e. (π̃∗t )t≥0 =as (θ̃t)t≥0.

Let (ϕt, ψt)t≥0 be a competing admissible strategy with the ε̃-wealth (W̃t)t≥0. Then

lim sup
t→∞

1
t ln(W̃t/W̃∗t ) ≤as 0. (40)

Moreover, if Emax{0, ln(W̃0/W̃∗0 )} <∞, then also

lim sup
t→∞

1
t E ln(W̃t/W̃∗t ) ≤ 0. (41)

The proof needs the following Lemma.
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Lemma 2.27. Let (Lt)t≥0 be a continuous local martingale with L0 = 0. Then

lim sup
t→∞

1
t (Lt − 1

2 〈L〉t) ≤
as 0. (42)

P r o o f . From the strong law of large numbers for a standard Brownian motion and
from Dambis–Dubins-Schwartz Theorem, see Theorem 16.4 in [23], we get that

Lt
〈L〉t 1[〈L〉∞=∞]→

as 0 as t→∞.

Then, obviously (even without the fraction 1
t ), we have that

lim sup
t→∞

1
t (Lt − 1

2 〈L〉t) · 1[〈L〉∞=∞] ≤
as 0. (43)

Note that Dambis–Dubins–Schwartz Theorem also gives the fact that there exists a real-
valued random variable L∞ such that (Lt − L∞) · 1[〈L〉∞<∞] →

as 0 as t→∞. Then

lim sup
t→∞

1
t (Lt − 1

2 〈L〉t) · 1[〈L〉∞<∞] ≤ lim
t→∞

1
t Lt · 1[〈L〉∞<∞] =as 0. (44)

Then (42) follows from (43, 44). �

P r o o f o f T h e o r e m 2.26. As the strategy (ϕ∗t , ψ
∗
t )t≥0 is ε̃-cost-free, we have that

the ε̃-value of the corresponding transaction costs (C̃∗t )t≥0 is zero almost surely. As this
strategy keeps the ε̃-position (π̃∗t )t≥0 on the ε̃-log-optimal proportion (θ̃t)t≥0 almost
surely, we get by Lemma 2.18 that

W̃∗t =as Ẽ∗t W̃∗0 , with Ẽ∗t , exp{
∫ t

0
(θ̃s dF̃s − 1

2 θ̃
2
s d〈F̃ 〉s)},

W̃t ≤
as Ẽt W̃0, with Ẽt , exp{

∫ t
0
[π̃s dF̃s − 1

2 π̃
2
s d〈F̃ 〉s]},

where (π̃t)t≥0 is the ε̃-position of the strategy (ϕt, ψt)t≥0. Note that

ln(Ẽt/Ẽ∗t ) =as Lt − 1
2 〈L〉t, where Lt ,

∫ t
0
σ̃s( π̃s − θ̃s) dBs.

As (σ̃t, θ̃t)t≥0 ∈ C(Ω)2 and (π̃t)t≥0 ∈ rcll(Ω) are adapted process, (Lt)t≥0 ∈ C(Ω) is
a well defined local martingale starting from L0 = 0. Then (Ẽt/Ẽ∗t )t≥0 ∈ C(Ω) is a non-
negative local martingale starting from 1, hence a supermartingale with E(Ẽt/Ẽ∗t ) ≤ 1.
Then by Jensen inequality, E ln(Ẽt/Ẽ∗t ) ≤ ln 1 = 0 holds for every t ≥ 0, and we obtain
the first inequality in

lim sup
t→∞

1
t E ln(Ẽt/Ẽ∗t ) ≤ 0, lim sup

t→∞
1
t ln(Ẽt/Ẽ∗t ) ≤as 0, (45)

while the second one follows from Lemma 2.27. As ln(W̃t/W̃∗t )−ln(Ẽt/Ẽ∗t ) ≤as ln(W̃0/W̃∗0 )
and as the right-hand side does not depend on t ≥ 0, we immediately obtain (40) from
the second inequality in (45), while the first one gives (41) if E ln(W̃0/W̃∗0 ) <∞. �
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Remark 2.28. Let us consider the case when θ , σ−2µ ∈ {0, a} and when an investor
with a positive initial wealth W∗0 > 0 keeps the position (π∗t )t≥0 on the log-optimal
proportion θ. Then the corresponding strategy (ϕ∗t , ψ

∗
t )t≥0 is of the form (0, ψ∗0) if θ = 0,

which corresponds to the advice “keep all the wealth in the money market”, and of the
form (ϕ∗0, 0) corresponding to the advice “keep all the wealth in the stock” if θ = a = 1.
Such strategies are obviously admissible. As the strategy does not trade, it is ε̃-cost-free
regardless of ε̃ and hence, it is also ε̃-cost-free for the choice ε̃ ≡ 0. Obviously, the 0-
price, i. e. the nominal price itself, is regular by definition, and we get by Theorem 2.26
that (ϕ∗t , ψ

∗
t )t≥0 has the wealth process (W∗t )t≥0 = (W̃∗t )t≥0 with the maximal long-run

growth rate among a wide class of strategies if lnW∗0 ∈ L1.

Remark 2.29. As we deal with processes from rcll(Ω), we have excluded an initial trade
represented by a jump of (ϕt, ψt)t≥0 at t = 0 from the model and we just assume that
the initial trade has been executed at time t = 0 keeping in mind that the corresponding
effect of the initial trade is negligible from the point of view of the long-run growth rate
of the wealth process.

3. SHADOW PRICE

In this section, we introduce a notion of a shadow price. In the first part, we show that
it can be understood as a dual optimizer in the general setting. In the second part,
we customize the general setting to the considered cases of stock and futures trading.
In the third part, we provide an intuitive technique of searching for the shadow price
taken from [24]. In the fourth part, we provide certain technical assumptions (A1-A3)
ensuring that a modified price is also a shadow price. The fifth part is supporting for the
last part, in which we show how to construct a shadow price and that the corresponding
strategy is log-optimal in the long run.

3.1. Shadow price as a dual optimizer

In this subsection, we introduce a notion of a shadow price in Definition 3.9 as a price that
offers the same opportunity to maximize the long-run growth rate of the wealth process
in the frictionless market and in the market with transaction costs. In Theorem 3.7, we
provide the theoretical background for this notion with explanation of the assumptions
and conclusion given in subsequent Remark 3.8. In Remark 3.10, we show that the
notion of a shadow price considered in this paper is very far from being unique and,
finally, in Theorem 3.11 we offer interpretation of the shadow price as the price that
offers the worst opportunity to maximize the long-run growth rate of the wealth process
in the frictionless market. This property of the shadow price together with its definition
is the reason why it can be understood as a dual optimizer.

Notation 3.1. If t ∈ [0,∞), by L(Ft) we denote the set of all real-valued Ft-measurable
random variables. Further, FV (Ft) will stand for the set of all (Ft)t≥0-adapted rcll-pro-
cesses of locally finite variation, i. e.

FV (Ft) , {L ∈ rcll(Ω);∀ t ∈ [0,∞) Lt ∈ L(Ft), variation of (Ls)s≤t is finite }.
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Definition 3.2. By a market we mean a couple of continuous semimartingales (A,B) =
(At,Bt)t≥0, such that At ≥ Bt holds whenever t ∈ [0,∞). If A = B, then the market is
called frictionless, otherwise it is called a market with transaction costs. The processes
A,B are also referred to as ask and bid prices.

The pair (ϕ,ψ) ∈ FV (Ft)2 is called a self-financing trading strategy in the market
(A,B) if it satisfies the self-financing condition (6) with (S↑t, S

↓
t ) replaced by (A,B) with

(ϕ↑t, ϕ
↓
t) specified in Remark 2.2. If the self-financing strategy (ϕ,ψ) in (A,B) satisfies

∀ t ∈ [0,∞) WA
t (ϕ,ψ) , ψt + ϕtAt > 0, WB

t (ϕ,ψ) , ψt + ϕtBt > 0,

cf. (9), then the strategy (ϕ,ψ) is call admissible in the market (A,B).

Notation 3.3. Note that any self-financing strategy (ϕ,ψ) = (ϕt, ψt)t≥0 is, by defi-
nition, uniquely determined by (ϕ,ψ0) given the ask and bid price processes. Further
in this section, we briefly denote the self-financing strategy (ϕ,ψ) in the market (A,B)
corresponding to (ϕ,ψ0) as Sf (ϕ,ψ0; A,B).

Notation 3.4. Given the ask and bid processes (A,B) = (At,Bt)t≥0, we consider the
corresponding minimum of the ask and bid wealth process, further referred to as the
minimal wealth process, defined as follows

Wt(ϕ,ψ0; A,B) , ψ0 + min(ϕtAt, ϕtBt)−
∫ t

0
As dϕ↑s +

∫ t
0
Bs dϕ↓s t ≥ 0, (46)

cf. (6,9,16,15), and we also consider the set of all admissible values of (ϕ,ψ0) defined as

A (A,B) , {(ϕ,ψ0) ∈ FV (Ft)× L(F0);∀ t ∈ [0,∞) Wt(ϕ,ψ0,A,B) > 0 (47)
ln(ψ0 + ϕ0A0), ln(ψ0 + ϕ0B0) ∈ L1}. (48)

We are interested in maximization max{F(ϕ,ψ0; A,B); (ϕ,ψ0) ∈ A (A,B)} where

F(ϕ,ψ0; A,B) , lim inf
t→∞

1
tE[lnWt(ϕ,ψ0; A,B)].

To be honest, we have to admit that the function F(ϕ,ψ0; A,B) may fail to be well
defined here as the corresponding expectation does not have to exist, in general. In
order to ensure that F(ϕ,ψ; A,B) is well defined, we say that the above expectation is
−∞ by definition if it is not defined in the classical sense.

Remark 3.5. Note that Sf (ϕ,ψ0; A,B) is an admissible strategy if (ϕ,ψ0) ∈ A (A,B).
On the other hand, let (ϕ,ψ) be an admissible strategy in the market (A,B). Then
(ϕ,ψ0) ∈ A (A,B) holds if and only if lnWA

0 (ϕ,ψ), lnWB
0 (ϕ,ψ) ∈ L1, and

(ϕ,ψ0) ∈ A (A,B) ⇒ Wt(ϕ,ψ0; A,B) =WA
t (ϕ,ψ) ∧WB

t (ϕ,ψ).

Lemma 3.6. Let us consider the following markets (A,B), (B,D). Then

A (A,D) ⊆ A (B,B). (49)
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Further, whenever (ϕ,ψ0) ∈ A (A,D) we have that

F(ϕ,ψ0; A,D) ≤ F(ϕ,ψ0; B,B). (50)

In particular, we obtain that

0 ≤ F (A,D) , sup
(ϕ,ψ0)∈A (A,D)

F(ϕ,ψ0; A,B) ≤ F (B,B). (51)

P r o o f . Let (ϕ,ψ0) ∈ FV (Ft)× L(F0). As At ≥ Bt ≥ Dt holds if t ≥ 0, we get that

ϕtBt −min{ϕtAt, ϕtDt} = max{ϕt(Bt − At), ϕt(Bt − Dt))} ≥ 0, t ≥ 0,

and as (ϕ↑t , ϕ
↓
t )t≥0 are non-decreasing processes, we then get, by (46), that

Wt(ϕ,ψ0; B,B)−Wt(ϕ,ψ0; A,D) ≥
∫ t

0
(As − Bs) dϕ↑s +

∫ t
0
(Bs − Ds) dϕ↓s ≥ 0, (52)

holds whenever t ∈ [0,∞). Let (ϕ;ψ0) ∈ A (A,D). As A0 ≥ B0 ≥ D0, we get that

L1 3 ln(ψ0 + min{ϕ0A0, ϕ0D0}) ≤ ln(ψ0 + ϕ0B0) ≤ ln(ψ0 + max{ϕ0A0, ϕ0D0}) ∈ L1,

i. e. the condition in (48) is satisfied with (A,B) replaced by (B,B). Then we get that
(ϕ,ψ0) ∈ A (B,B) holds by definition (47 – 48), by (52) and by the assumption (ϕ,ψ0) ∈
A (A, D). Hence, the relation (49) is verified. From (52) and from the definition of F, we
get that (50) holds and then (51) follows immediately since F (A,B) ≥ F(0, 1; A,B) = 0,
as we always may consider a non-trading self-financing strategy with unit initial wealth
invested in the money market. �

Theorem 3.7. Let (A,B), (B,D) be markets and (ϕ,ψ0) ∈ A (A,D) be such that
F(ϕ,ψ0; A,D) = F (B,B). Then also F(ϕ,ψ0; B,B) = F (B,B).

P r o o f . By the assumption and by (49) in Lemma 3.6, we have that (ϕ,ψ0) ∈ A (A,D) ⊆
A (B,B). Then by the definition of F , by the inequality in (50) and by our assumption,
we get that F (B,B) ≥ F(ϕ,ψ0; B,B) ≥ F(ϕ,ψ0; A,D) = F (B,B). �

Remark 3.8. The assumption F(ϕ,ψ0; A,D) = F (B,B) from Theorem 3.7 should be
read as follows. In view of (51),

1. F(ϕ,ψ0; A,D) = F (A,D), which means that the strategy (ϕ,ψ) = Sf (ϕ,ψ0; A,D)
maximizes the long-run growth rate of the minimal wealth process in the market
(A,D),

2. F (A,D) = F (B,B), i. e. the maximal long-run growth rate of the minimal wealth
process is the same in both markets (A,D) and (B,B).

Similarly as in the point 1, the conclusion F(ϕ,ψ0; B,B) = F (B,B) means that the strat-
egy (ϕ,ψ) maximizes the long-run growth rate of the wealth process in the frictionless
market (B,B).
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Definition 3.9. If the assumptions of Theorem 3.7 are satisfied, then B is called a shadow
price in the market (A,D), and the strategy (ϕ,ψ) , Sf (ϕ,ψ0; A,D) is referred to as
the corresponding shadow strategy.

Remark 3.10. We are going to show that the notion of shadow strategy is very far
from being unique even if we prescribe its initial values. Let us consider two (A,D)-self-
financing strategies (ϕ,ψ), (ϕ∗, ψ∗) with (ϕ0, ψ0) = (ϕ∗0, ψ

∗
0) such that (ϕ,ψ0), (ϕ∗, ψ∗0) ∈

A (A,D) and assume that there exist T ∈ (0,∞) and LT ∈ L1 such that

Wt(ϕ,ψ0; A,D) =Wt(ϕ∗, ψ∗0 ; A,D) eLT , t ∈ [T,∞).

Then F(ϕ,ψ0; A,D) = F(ϕ∗, ψ∗0 ; A,D), and therefore, (ϕt, ψt)t≥0 is a shadow strategy if
and only if (ϕ∗t , ψ

∗
t )t≥0 is also a shadow strategy although they may differ a lot by the

time T . Similarly, we could show that the shadow price is far from being unique.

Theorem 3.11. Let B be a shadow price in the market (A,D) and (ϕ,ψ) be the cor-
responding shadow strategy. If C = (Ct)t≥0 is a continuous semimartingale attaining
values in the bid-ask spread, i. e. Ct ∈ [Dt,At] holds for every t ∈ [0,∞), then

F (C,C) ≥ F (A,D) = F (B,B),

i. e. the shadow price B offers the worst opportunity to maximize the long-run growth rate
of the minimal wealth process among all continuous semimartingales attaining values
within the bid-ask spread.

P r o o f . See (51) with B replaced by C in order to get the corresponding inequality
and look at Remark 3.8, point 2, for the equality. �

3.2. Shadow price and cost-free strategy

In this and the following subsections, we consider the following market

(A,D) =
{

(S↑t, S
↓
t) if a = 1,

(F ↑t, F
↓
t ) if a = 0. (53)

In this subsection, namely in Theorem 3.13, we show that the ε̃-price and the strategy
(ϕ∗, ψ∗) from Theorem 2.26 are the shadow price and the corresponding shadow strategy,
respectively, under very general assumptions.

Lemma 3.12. Let (ϕ,ψ) be an admissible strategy with the wealth process (Wt)t≥0,
with the ask and bid wealth processes (W↑t ,W

↓
t )t≥0 and with the position process (πt)t≥0

attaining values in a compact subset ofA, then ln(W↑t ∧W
↓
t /Wt)t≥0 is a bounded process.

Moreover, if B is an ε̃-price and (ϕ,ψ) is an ε̃-cost-free strategy with an ε̃-wealth
process W̃ and with the initial wealth W0 satisfying lnW0 ∈ L1, then ln W̃0 ∈ L1 and

(ϕ,ψ0) ∈ A (A,D), F(ϕ,ψ0; A,D) = F(ϕ,ψ0; B,B). (54)
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P r o o f . By Lemma 2.12, ln(W↑t/W), ln(W↓t/W), ln(W̃/W) are bounded processes, and
then the first part of the statement follows immediately. Moreover, we get that the
variables lnW↑0 , lnW

↓
0 , ln W̃0 differ from lnW0 ∈ L1 not more than by a constant, and

therefore, these variables are also integrable. Further, as the strategy (ϕ,ψ) is admissible,
the minimum of its ask and bid wealth processes is positive, i. e.

Wt(ϕ,ψ0; A,D) =W↑t ∧W
↓
t > 0 if t ≥ 0.

Then we get that (ϕ,ψ0) ∈ A (A,D) really holds. Further, as W̃t = Wt(ϕ,ψ0; B,B)
holds if t ≥ 0 and as ln(W↑t ∧W

↓
t /W̃t)t≥0 is a bounded process, we get that also

F(ϕ,ψ0; A,D) = lim inf
t→∞

1
tE ln(W↑t ∧W

↓
t ) = lim inf

t→∞
1
tE ln W̃t = F(ϕ,ψ0; B,B).

�

Theorem 3.13. Let B be a regular ε̃-price and (ϕ,ψ) be an ε̃-cost-free strategy s.t.

1. the ε̃-position equals to the ε̃-log-optimal proportion almost surely, i. e. π̃ =as θ̃,
2. the position process π attains values in a compact subset of A,
3. the initial wealth W0 is such that lnW0 ∈ L1.

Then B is a shadow price and (ϕ,ψ) is the corresponding shadow strategy.

P r o o f . By Lemma 3.12, the relations in (54) hold and the ε̃-wealth process W̃ satisfies
ln W̃0 ∈ L1. Let (ϕ◦t, ψ◦0) ∈ A (A,D). Then (ϕ◦t , ψ◦t ) = Sf (ϕ◦t , ψ◦0) is an admissible
strategy with ε̃-wealth process denoted as W̃◦t, and

ln(W̃0/W̃◦0 ) ≤ ln W̃0 − ln(ψ◦0 + min{ϕ◦0A0, ϕ◦0D0}) ∈ L1.

By (54) and by (49) in Lemma 3.6, we get that (ϕ,ψ0), (ϕ◦t, ψ◦0) ∈ A (A,D) ⊆ A (B,B).
Further, as W̃t = Wt(ϕ,ψ0; B,B) and W̃◦t = Wt(ϕ◦t, ψ◦0 ; B,B) hold if t ≥ 0, we get by
Theorem 2.26 that

F(ϕ,ψ0; B,B) = lim inf
t→∞

1
tE ln W̃t ≥ lim inf

t→∞
1
tE ln W̃◦t = F(ϕ◦t, ψ◦0 ; B,B). (55)

Then we obtain from (54,55) and the definition of F in (51) that F(ϕ,ψ0; A,D) =
F(ϕ,ψ0; B,B) = F (B,B), i. e. that the assumptions of Theorem 3.7 are satisfied, and
we get by definition that B is a shadow price and (ϕ,ψ) is the corresponding shadow
strategy. �

Definition 3.14. We say that (ϕ,ψ) is an ε̃-shadow strategy if the ε̃-price given by
(19,23) is a shadow price in the market (53) and if (ϕ,ψ) is the corresponding shadow
strategy.

Remark 3.15. If θ ∈ {0, a}, then we get by Theorem 3.13 that, for example, (ϕ,ψ) =
(θ, 1− θ) is a 0-shadow strategy, cf. Remark 2.28. It means that the nominal price itself
(as 0-price) is a shadow price and the non-trading strategy (ϕ,ψ) is the corresponding
shadow strategy.
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Remark 3.16. We are going to show, with the help of Remark 3.10, that an ε̃-shadow
strategy does not have to be ε̃-cost-free. Let (ϕ,ψ) be an ε̃-cost-free ε̃-shadow strategy,
obtained from Theorem 3.13, for example. Then obviously there exists T ∈ (0,∞) and
an admissible strategy (ϕ∗, ψ∗) as in Remark 3.10, which is not ε̃-cost-free, because it
can be almost arbitrary on a nondegenerate interval. As mentioned in Remark 3.10,
(ϕ∗, ψ∗) is also an ε̃-shadow strategy but it is not ε̃-cost-free as we assume here.

3.3. Searching for a shadow price

In this subsection, we consider a method for searching for a shadow price, taken from
[24], based on our ability to solve a certain ODE (61) with a solution (60) in Lemma 3.18.

Remark 3.17. Further in this paper we will assume that θ ∈ R\{0, a}. Note that, if
θ ∈ {0, a}, it is not difficult to obtain assertions similar to the main statements of this
section such as Theorems 3.31, 3.34 and Corollary 3.32, with the help of Remark 3.15
and Theorem 2.26.

The shadow price will be obtained as the nominal price modified as follows

S̃t =as Stef(π̃t) if a = 1,
F̃t =as Ft + f(π̃t) if a = 0,

(56)

where f ∈ C2, i. e. we consider a multiplicative correction (if a = 1) and an additive
correction (if a = 0) smoothly depending on the modified position process (π̃t)t≥0. By
Lemma 2.20

π̃t =as π̃0 +
∫ t

0
σ̃sza(π̃s) dBs +

∫ t
0
W̃−1
s S̃as dϕs, where za(x) , x(a− x),

whenever (W̃t, π̃t)t≥0 are the ε̃-wealth process and the ε̃-position process of a continuous
ε̃-cost-free strategy (ϕt, ψt)t≥0, where (S̃t)t≥0 is the ε̃-stock market price if a = 1. If we
take the logarithm of both sides of the first equality in (56) in case a = 1 and when we
compare the corresponding coefficients at dBt, dt and dϕt in both cases a ∈ {0, 1}, we
obtain the following requirements

µ̃t − 1
2 σ̃

2
t a =as µ− 1

2 σ
2a+ 1

2 σ̃
2
t z

2
a(π̃t)f ′′(π̃t), (57)

σ̃t =as σ + σ̃tza(π̃t)f ′(π̃t), (58)
0 =as f ′(π̃t) dϕt. (59)

From (58), we can express σ̃t =as σ/[1− za(π̃t)f ′(π̃t)] and then from (57) we get that

θ̃t − a
2 =as (θ − a

2 )[1− za(π̃t)f ′(π̃t)]2 + 1
2z

2
a(π̃t)f ′′(π̃t).

Then the requirement that the ε̃-position should be almost surely equal to the log-
optimal proportion (π̃t)t≥0 =as (θ̃t)t≥0 from Theorem 3.13 gives us an ODE (61) with
boundary conditions coming from (59).

The following Lemma shows how the corresponding function f looks. Note that the
parameter ω in the statement is connected with the level of transaction taxes.
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Lemma 3.18. Let ω ∈ (0, |θ| ∧ |a− θ|). Then the function

f(x) ,
∫ [

1
qω(x) + 1

za(x)

]
dx, where qω(x) , (2θ − a)x− (θ2 − ω2), (60)

is strictly decreasing on [θ − ω, θ + ω] and it satisfies the following ODE

x− a
2 = (θ − a

2 )[1− za(x)f ′(x)]2 + 1
2 z

2
a(x)f ′′(x), |x− θ| ≤ ω (61)

with the boundary conditions f ′(θ − ω) = 0 = f ′(θ + ω). Moreover, the function

x 7→ −σqω(x)/za(x)

defined on [θ − ω, θ + ω] is continuous and it attains only positive values there.

P r o o f . First we show that both functions qω, za do not attain the value zero on
I , [θ − ω, θ + ω] and then we obtain that the function f is by (60) defined correctly on
an open superset of I and uniquely up to some additive constant.

As I is disjoint with {0, a}, we get that za is non-zero on I. As qω is an affine function
and as it attains values with the same non-zero sign at the extreme points of I

qω(θ ± ω) = (θ ± ω)(θ ± ω − a) = −za(θ ± ω), (62)

we get that the function x 7→ −σqω(x)/za(x) is continuous on I and it attains only
positive values there as it does not change the sign on I and as it attains the value σ > 0
at the extreme points of I. Similarly, we get that x 7→ qω(x)za(x) attains only negative
values on I. We easily obtain that

f ′(x) = 1
qω(x) + 1

za(x) = ω2−(x−θ)2
qω(x) za(x) , f ′′(x) = 2x−a

za(x)2 −
2θ−a
qω(x)2 , (63)

and we also obtain that f ′(x) < 0 holds if |x−θ| < ω. Further, simple calculations using
(63) verify that (61) holds, and taking into consideration (62) and the expression for
f ′(x) in (63) we obtain that the boundary conditions are also satisfied. �

3.4. Existence of a shadow price I

In this subsection, we show that the shadow price exists in Theorem 3.21 under as-
sumptions (A1-A3). In Theorem 3.31 we will show that (A1) implies (A2) and (A3)
if (roughly speaking) the considered strategy just keeps the position between the log-
optimal policies introduced in the Definition 3.27 and if ε̃ = (ε̃t)t≥0 is given by (105).

Definition 3.19. (Skorokhod problem) Let (Bt)t≥0 be a standard Ft-Brownian mo-
tion and let Y be a real-valued random variable with values in [α, β] ⊆ R, where α < β.
If B,S : [α, β]→ R are Lipschitz continuous functions, see [37] and [38] that there exists
an almost surely unique triple of continuous Ft-semimartingales (Xt, X

↑
t , X

↓
t )t≥0 s.t.

[α, β] 3 Xt =as Y +
∫ t

0
B(Xs) ds+

∫ t
0
S(Xs) dBs +X↑t − dX↓t , t ≥ 0, (64)
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and that (X↑t , X
↓
t )t≥0 are non-decreasing processes starting from zero at 0 satisfying∫∞

0
1[Xt 6=α] dX↑t = 0,

∫∞
0

1[Xt 6=β] dX↓t = 0.

Then the process (Xt)t≥0 is called a Bt-diffusion process with reflective barriers at {α, β}
and coefficients B,S and we extend this definition even to the case when the requirement
Xt ∈ [α, β], t ≥ 0, from (64) is satisfied only almost surely.

Notation 3.20. In order to deal with transaction taxes in both cases a ∈ {0, 1} to-
gether, we introduce a function

Λa(x) ,

{
x if a = 0,
ln(1 + x) if a = 1,

(65)

expressing how the bid and ask transaction taxes contribute to the entire level of trans-
action taxes as follows λ , Λa(λ↑)−Λa(−λ↓). If (λ̃↑t , λ̃

↓
t )t≥0 are the ε̃-transaction taxes

(see Definitions 2.9 and 2.10), then

Λa(ε̃t) = Λa(λ↑)− Λa(λ̃↑t ) = Λa(−λ↓)− Λa(−λ̃↓t ), (66)

and note that also λ = Λa(λ̃↑t )− Λa(−λ̃↓t ), t ≥ 0.

Theorem 3.21. (A1) Let ω ∈ (0, |θ| ∧ |a− θ|) and f from (60) be such that

f(θ − ω) = Λa(λ↑), f(θ + ω) = Λa(−λ↓). (67)

(A2) Let ε̃ = (ε̃t)t≥0 be a [−λ↓, λ↑]-valued continuous semimartingale and (ϕt, ψt)t≥0 be
a continuous admissible strategy with the ε̃-position (π̃t)t≥0 that is a Bt-diffusion process
with reflective barriers at {θ − ω, θ + ω} and coefficients B(x) = 0,S(x) = −σqω(x).

(A3) Let us assume that

Λa(ε̃t) =as f(π̃t), t ≥ 0. (68)

Then

1. the ε̃-price given by (19,23) is regular, say with coefficients (µ̃t, σ̃t)t≥0,

2. π̃t =as θ̃t , µ̃tσ̃−2
t holds whenever t ∈ [0,∞),

3. (ϕ,ψ) is an ε̃-cost-free strategy.

In particular, (ϕ,ψ) is an ε̃-shadow strategy if its position (πt)t≥0 attains values in
a compact subset of A and if its initial wealth W0 satisfies the condition lnW0 ∈ L1.

P r o o f . By assumption (A2), (π̃t)t≥0 attains values in [θ−ω, θ+ω] almost surely and

π̃t =as π̃0 − σ
∫ t

0
qω(π̃s) dBs + π̃↑t − π̃

↓
t , (69)
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where (π̃↑t , π̃
↓
t )t≥0 are non-decreasing continuous adapted processes starting from zero

and growing only on sets [π̃t = θ − ω] and [π̃t = θ + ω], respectively, i. e.∫∞
0

1[π̃t 6=θ−ω] dπ̃↑t = 0,
∫∞

0
1[π̃t 6=θ+ω] dπ̃↓t = 0. (70)

As the considered filtration is assumed to be complete, there exists A ∈ F0 with
P (A) = 1 such that (π̃t)t≥0 attains values in [θ − ω, θ + ω] on A.

First, we show that the ε̃-stock market price (S̃t)t≥0 given by (19) (if a = 1) and the
ε̃-futures price (F̃t)t≥0 given by (23) (if a = 0) is regular with coefficients

σ̃t , σ[1− qω(π̃t)f ′(π̃t)1A], µ̃ , σ̃2
t π̃t1A =as σ̃2

t π̃t. (71)

Note that (f(π̃t), f ′(π̃t), f ′′(π̃t))t≥0 are defined correctly on A, i. e. up to a null set. If it
is not enough, multiply each corresponding usage by 1A =as 1 in the rest of the proof.

As f ′(θ + ω) = 0 = f ′(θ − ω) holds by Lemma 3.18 and as (π̃↑t )t≥0 grows only on
[π̃t = θ − ω] and (π̃↓t )t≥0 grows only on [π̃t = θ + ω], we obtain by Itô Lemma that

df(π̃t) = −σqω(π̃t)f ′(π̃t) dBt + 1
2 σ

2qω(π̃t)2f ′′(π̃t) dt. (72)

As we consider a continuous semimartingale (F̃t)t≥0 such that dS̃t = S̃t dF̃t if a = 1,
i. e. d ln S̃t = dF̃t − 1

2 d〈F̃ 〉t, we get from (56) following from assumption (68) that

df(π̃t) =

{
d ln(S̃t/St) = d(F̃t − 1

2 d〈F̃ 〉t)− d(Ft − 1
2 d〈F 〉t) if a = 1,

d(F̃t − Ft) if a = 0.
(73)

Then we obtain, from (72, 73), that

dF̃t − a
2 d〈F̃ 〉t =

[
µ− σ2 a

2 + σ2

2 qω(π̃t)2f ′′(π̃t)
]

dt+ σ
[
1− qω(π̃t)f ′(π̃t)

]
dBt (74)

holds in both cases a ∈ {0, 1}. See the expressions of f ′, f ′′ in (63) in order to get that

1− qω(x)f ′(x) = − qω(x)
za(x) , (θ − a

2 ) + 1
2 qω(x)2f ′′(x) = (x− a

2 ) q
2
ω(x)
z2a(x) . (75)

Then, from the expression of σ̃t in (71) and from (74, 75), we get that

dF̃t − a
2 d〈F̃ 〉t = σ̃2

t (π̃t − a
2 ) dt+ σ̃t dBt. (76)

Further, use (71, 75) to get that

σ̃t = −σ qω(π̃t)
za(π̃t)

1A + σ 1Ω\A =as − σ qω(π̃t)
za(π̃t)

. (77)

Note that (µ̃t, σ̃t)t≥0 are obviously bounded continuous adapted processes and that
(ln σ̃t)t≥0 is also bounded as (σ̃t)t≥0 attains values in {−σqω(x)/za(x); |x−θ| ≤ ω}∪{σ}
which is a compact subset of (0,∞) by the moreover part of Lemma 3.18. If a = 0, we
immediately obtain from (76) that the ε̃-futures price (F̃t)t≥0 is regular with coefficients
(µ̃t, σ̃t)t≥0 from (71). If a = 1, we have the expression of d ln S̃t in (76) and we obtain
from Itô formula that

dS̃t = S̃t[ d ln S̃t + 1
2 d〈ln S̃〉t] = S̃t[µ̃t dt+ σ̃t dBt]
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holds, i. e. (S̃t)t≥0 is a regular stock market ε̃-price with coefficients (µ̃t, σ̃t)t≥0 if a = 1.
Thus, the first point from the statement is verified and as the coefficients of a regular
ε̃-price are determined uniquely up to a null set, we get from (71) that the second point
is also satisfied.

Further, we will show that (ϕt, ψt)t≥0 is an ε̃-cost-free strategy. Let (λ̃↑t , λ̃
↓
t )t≥0 be

the ε̃-transaction taxes. We get from (66, 67, 68) that

f(θ − ω)− f(π̃t) =as Λa(λ↑)− Λa(ε̃t) = Λa(λ̃↑t )

f(θ + ω)− f(π̃t) =as Λa(−λ↓)− Λa(ε̃t) = Λa(−λ̃↓t )

hold. Hence, up to a null set, λ̃↑t = 0 whenever π̃t = θ − ω and λ̃↓t = 0 whenever
π̃t = θ + ω. Then we get from (70) that∫∞

0
1[λ̃↑t 6=0] dπ̃↑t =as 0,

∫∞
0

1[λ̃↓t 6=0] dπ̃↓t =as 0. (78)

Use (76) to see that d〈F̃ 〉t = σ̃2
t dt which also implies that dF̃t − π̃t d〈F̃ 〉t = σ̃t dBt.

Then we get from (77) that∫ t
0
za(π̃s)[ dF̃s − π̃s d〈F̃ 〉s] =as − σ

∫ t
0
qω(π̃s) dBs, t ≥ 0,

and we obtain from (69) and Lemma 2.20 that

π̃↑t − π̃
↓
t =as π̃t − π̃0 +

∫ t
0
qω(π̃s) dBs =as

∫ t
0
W̃−1
s S̃as [(1 + λ̃↑sπ̃s) dϕ↑s − (1− λ̃↓sπ̃s) dϕ↓s ].

Note that the expressions on the left-hand and right-hand sides are continuous pro-
cesses of locally finite variation. See (70) to realize that (π̃↑t , π̃

↓
t )t≥0 do not grow at

the same time similarly as (ϕ↑t , ϕ
↓
t )t≥0. Then we obtain, from the uniqueness of Hahn

decomposition of a sign measure, that

π̃↑t =as
∫ t

0
W̃−1
s S̃as (1 + λ̃↑sπ̃s) dϕ↑s , π̃↓t =as

∫ t
0
W̃−1
s S̃as (1− λ̃↑sπ̃s) dϕ↓s , t ≥ 0.

Then we obtain from (78) that

C̃ϕ

t ,
∫ t

0
S̃as (λ̃↑s dϕ↑s + λ̃↓s dϕ↓s) =as

∫ t
0
W̃s

[ λ̃↑s dπ̃↑s

1+λ̃↑s π̃s
− λ̃↓s dπ̃↓s

1−λ̃↓s π̃s

]
= 0, t ≥ 0,

i. e. (ϕt, ψt)t≥0 is an ε̃-cost-free strategy and we get that the third point from the state-
ment is also verified. Then the remaining part of the statement follows from Theo-
rem 3.13. �

Definition 3.22. Let α < β be such that [α, β] ⊆ A\{0, a}. A continuous admissible
strategy (ϕt, ψt)t≥0 with position (πt)t≥0 is called an [(α, β)]A-strategy if (πt)t≥0 attains
values in [α, β] on A ∈ F0 with P (A) = 1 and (ϕt)t≥0 ≡ 0 on N , Ω\A, and if∫∞

0
1[πt 6=α] dϕ↑t = 0,

∫∞
0

1[πt 6=β] dϕ↓t = 0. (79)

Recall that (ϕ↑t , ϕ
↓
t )t≥0 from (79) are uniquely determined by (ϕt)t≥0 as the Hahn-

decomposition of a sign measure is unique. On the other hand, if (ϕ↑t , ϕ
↓
t )t≥0 are non-

decreasing rcll-processes satisfying (79) then they grow on disjoint sets.
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Lemma 3.23. Let α < β be real numbers such that [α, β] ⊆ A\{0, a} and let W0 > 0
and π0 ∈ [α, β] be F0-measurable random variables. Then there exist A ∈ F0 with
P (A) = 1 and an [(α, β)]A-strategy (ϕt, ψt)t≥0 with initial wealth W0 and with the
initial position equal to π0 on A.

P r o o f . Let (πt, π↑t , π
↓
t )t≥0 be a solution to Skorokhod problem with coefficients

B(x) = za(x)(µ− σx), S(x) = σza(x),

and reflective barriers at {α, β} satisfying πt ∈ [α, β], t ≥ 0, i. e. let (πt)t≥0 be a contin-
uous semimartingale attaining values in [α, β] and (π↑t , π

↓
t )t≥0 be non-decreasing contin-

uous adapted processes starting from 0 such that

πt =as π0 +
∫ t

0
za(πs)[σ dBs + (µ− σ2πs) ds] + π↑t − π

↓
t , (80)∫∞

0
1[πt 6=α] dπ↑t = 0,

∫∞
0

1[πt 6=β] dπ↓t = 0. (81)

Put

Dt ,
∫ t

0

(
λ↑

1+λ↑πs
dπ↑s + λ↓

1+λ↓πs
dπ↓s

)
, t ≥ 0, (82)

Wt ,W0 exp{
∫ t

0
(πs dFs − 1

2 σ
2π2
s ds)−Dt}, t > 0. (83)

Then (Wt)t≥0 is a continuous semimartingale with dWt =Wt[πt dFt − dDt] and

dπtWt = a πtWt dFt +Wt

(
1

1+λ↑πt
dπ↑t − 1

1−λ↓πt dπ↓t
)
. (84)

Further, we put

ϕt , πtWtS
−a
t , ϕ↑t ,

∫ t
0
WsS

−a
s

1
1+λ↑πs

dπ↑s , ϕ↓t ,
∫ t

0
WsS

−a
s

1
1−λ↓πs dπ↓s . (85)

If a = 0, we immediately get from (84, 85) that

ϕt =as ϕ0 + ϕ↑t − ϕ
↓
t , t ≥ 0. (86)

If a = 1, we first get from dSt = St dFt that dS−1
t = S−1

t (σ2 dt− dFt) and then we use
(84, 85) in order to get (86). Further, notice that

dWt =Wt[πt dFt − dDt] = ϕtS
a
t dFt −Wt dDt (87)

in order to verify the equality almost surely in the following

ψt ,

{
Wt − ϕtFt =as ψ0 −

∫ t
0
Fs dϕs − λ↑ϕ↑t − λ↓ϕ

↓
t if a = 0,

Wt − ϕtSt =as ψ0 − (1 + λ↑)
∫ t

0
Ss dϕ↑s + (1− λ↓)

∫ t
0
Ss dϕ↓s if a = 1.

(88)

If a = 0, (88) follows immediately from (87,82,85) and the integration by parts formula.
If a = 1, realize that ϕtSt = πtWt and subtract (84) from (87) before looking at (82,85).

As πt ∈ [α, β] ⊆ A = (−1/λ↑, 1/λ↓) and Wt > 0 hold whenever t ≥ 0, we obtain that

W↑t =Wt + λ↑ϕtS
a
t =Wt(1 + λ↑πt) > 0, (89)

W↓t =Wt − λ↓ϕtSat =Wt(1− λ↓πt) > 0 (90)

hold whenever t ≥ 0.
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Note that the considered filtration (Ft)t≥0 is assumed to be complete. Hence, we
may afford to redefine the strategy (ϕt, ψt)t≥0 on a null set. Let A ∈ F0 with P (A) = 1
be the set, where the equalities in (86, 88) hold for every t ≥ 0 and consider a continuous
strategy (ϕ∗t , ψ

∗
t )t≥0 defined as follows

(ϕ∗t , ψ
∗
t ) , (ϕt, ψt) · 1A + (0,W0) · 1Ω\A =as (ϕt, ψt), t ≥ 0, (91)

with the wealth process denoted by (W∗t )t≥0. Obviously, (ϕ∗t , ψ
∗
t )t≥0 is a self-financing

strategy and W∗0 =W0. Further, (ϕ∗t , ψ
∗
t )t≥0 is also an admissible strategy as

W∗t + λ↑ϕ∗tS
a
t ≥ min{W↑t ,W0} > 0, W∗t − λ↓ϕ∗tSat ≥ min{W↓t ,W0} > 0

hold whenever t ≥ 0. Then the corresponding position

π∗t , ϕ
∗
tS

a
t /W∗t = πt1A, t ≥ 0,

attains values in [α, β] on A and it starts from π0 there. As

ϕ∗t = 1Aϕt = 1A(ϕ0 + ϕ↑t − ϕ
↓
t ), t ≥ 0,

we only have to verify that the equalities in (79) hold with (πt, ϕ↑t , ϕ
↓
t )t≥0 replaced

by 1A(πt, ϕ↑t , ϕ
↓
t )t≥0 in order to get that (ϕ∗t , ψ

∗
t )t≥0 is really an [(α, β)]A-strategy and

also in order to complete the proof. First, the equalities in (79) follow immediately
from (81, 85) and then the validity of the equalities in (79) after the above-mentioned
replacement is obvious. �

3.5. Preparation

In this subsection, we introduce new objects and we show their basic properties in order
to be prepared to prove Theorem 3.31 in the next subsection.

Notation 3.24. Let us consider the following function

ξa,ε : x 7→ ξa,ε(x) , 1+aε
1+xεx, (92)

if a ∈ {0, 1} and 1 + xε 6= 0, where ε ∈ R is a parameter. See the following Lemma for
its interpretation.

Lemma 3.25. Let ε̃ = (ε̃t)t≥0 be a continuous semimartingale with values in [−λ↓, λ↑]
and let (ϕt, ψt)t≥0 be an admissible strategy with position (πt)t≥0 and ε̃-position (π̃t)t≥0.
Then

π̃t = ξa,ε̃t(πt), t ≥ 0. (93)

P r o o f . Let (Wt, W̃t)t≥0 be the wealth and the ε̃-wealth of (ϕt, ψt)t≥0. As (ϕt, ψt)t≥0

is admissible, both processes (Wt, W̃t)t≥0 attain only positive values. If a = 1, then

π̃tW̃t = ϕtS̃t = (1 + ε̃t)ϕtSt = (1 + ε̃t)πtWt,

W̃t = ψt + ϕtS̃t = (1− πt)Wt + (1 + ε̃t)πtWt =Wt(1 + ε̃tπt),
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give that π̃t = 1+ε̃t
1+ε̃tπt

πt = ξ1,ε̃t(πt), t ≥ 0. If a = 0, we get from the equalities

π̃tW̃t = ϕt = πtWt, W̃t =Wt + ε̃tϕt =Wt(1 + ε̃tπt),

that π̃t = πt
1+ε̃tπt

= ξ0,ε̃t(πt) holds whenever t ≥ 0. �

Lemma 3.26. Let x ∈ A\{0, a} and ε ∈ [−λ↓, λ↑], then

Λa(ε) =
∫ ξa,ε(x)

x
du

za(u) ,

and sign(x) = sign(ξa,ε(x)) and sign(a− x) = sign(a− ξa,ε(x)).

P r o o f . As x ∈ A = (−1/λ↑, 1/λ↓) and ε ∈ [−λ↓, λ↑], we get that 1+xε > 0. Note that
we assume that λ↓ ∈ (0, 1), i. e. 1/λ↓ > 1 if a = 1. Hence, we get that a ∈ A and also
that the inequality 1 + aε > 0 holds in both cases a ∈ {0, 1}. Then we get the equalities
of signs in the statement of the lemma from the definition of ξa,ε(x) in (92) and from

a− ξa,ε(x) = a−x
1+xε .

Further, we have that

∫ ξa,ε(x)

x
du

za(u) =

{
1

ξa,ε(x) −
1
x = 1+xε

x − 1
x = ε = Λa(ε) if a = 0,

ln
∣∣ ξa,ε(x)

1−ξa,ε(x)

∣∣− ln
∣∣ x

1−x
∣∣ = ln(1 + ε) = Λa(ε) if a = 1.

�

Definition 3.27. Let λ↑ ∈ (0,∞), λ↓ ∈ (0, 1) if a = 1 and λ↑, λ↓ ∈ (0,∞) if a = 0. Put

λ , Λa(λ↑)− Λa(−λ↓). (94)

Then we get by Lemma 6.2 in [15] and Lemma 11.2 in [14] that there exists just one
ω = ωλ ∈ (0, |θ| ∧ |a− θ|) such that

0 = λ+
∫ θ+ω
θ−ω [ 1

qω(x) + 1
za(x) ] dx (95)

holds. Then the following values

π , ξ−1
a,λ↑

(θ − ω), π̄ , ξ−1
a,−λ↓(θ + ω), (96)

are called the log-optimal policies.

Remark 3.28. See [15] for a = 1 and [14] for a = 0 that the above introduced values
π, π̄ really play the role of log-optimal policies in the long run. Also see Lemma 6.4 in
[15] that π < π̄ and that [π, π̄] ⊆ A\{0, 1} if a = 1. If a = 0, see Lemma 11.3 in [14]
that π < π̄ and that π, π̄ ∈ A. Further, π, π̄ have the same non-zero sign if a = 0 by the
second part of Lemma 3.26 as ω ∈ (0, |θ|), i. e. as θ ± ω have the same non-zero sign.
Hence, we have that [π, π̄] ⊆ A\{0, a} holds in both cases a ∈ {0, 1}.
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Notation 3.29. Let ω = ωλ ∈ (0, |θ| ∧ |a− θ|) be such that (95) holds. Put

Q↑a,ω(x) , Λa(λ↑) +
∫ x
θ−ω

dv
za(v) , Q↓a,ω(x) , Λa(−λ↓) +

∫ x
θ+ω

dv
za(v)

whenever the integrals converge, i. e. if sign(x) = sign(θ) and sign(a− x) = sign(a− θ).
Then we have two following expressions of a newly introduced function

yu(x) ,

{
1

2θ−a
(
θ2 − ω2 + qω(θ − ω) exp

{
(a− 2θ)Q↑a,ω(x)

})
if 2θ 6= a,

1
2 − ω + ( 1

4 − ω
2)Q↑a,ω(x) if 2θ = a,

(97)

=

{
1

2θ−a
(
θ2 − ω2 + qω(θ + ω) exp

{
(a− 2θ)Q↓a,ω(x)

})
if 2θ 6= a,

1
2 + ω + ( 1

4 − ω
2)Q↓a,ω(x) if 2θ = a.

(98)

To see that both expressions are equivalent, it is enough to realize that

Q↑a,ω(x) = Q↓a,ω(x)−
∫ θ+ω
θ−ω

dv
qω(v) = Q↓a,ω(x) +

{
1

a−2θ ln qω(θ+ω)
qω(θ−ω) if 2θ 6= a,

2ω
1/4−ω2 if 2θ = a.

Note that the first equality is nothing else but assumption (95). Further, see the end of
Remark 4.1 for the justification of the notation yu.

Lemma 3.30. Let ω ∈ (0, |θ| ∧ |a− θ|) and λ satisfy (94,95). Then function yu defined
in Notation 3.29 is an increasing C2-bijection yu : [π, π̄]→ [θ − ω, θ + ω] with

y′u(x) = − qω(yu(x))
za(x) > 0, y′′u(x) = 2(θ − x) qω(yu(x))

za(x)2 , (99)

if x ∈ [π, π̄]. Moreover, the values of yu can be also uniquely defined by any of the two
following equations

Q↑a,ω(x) +
∫ yu(x)

θ−ω
dv

qω(v) = 0 = Q↓a,ω(x) +
∫ yu(x)

θ+ω
dv

qω(v) . (100)

P r o o f . By Lemma 3.26 and (96), we get that

Λa(λ↑) =
∫ ξ

a,λ↑ (π)

π
dv

za(v) = −
∫ π
θ−ω

dv
za(v) , Λa(−λ↓) =

∫ ξ
a,−λ↓ (π̄)

π̄
dv

za(v) =
∫ θ+ω
π̄

dv
za(v) ,

(101)

i. e. Q↑a,ω(π ) = 0 and Q↓a,ω(π̄) = 0. Then we obtain by (97 – 98) that

yu(π) = θ − ω and yu(π̄) = θ + ω (102)

as qω(x) = (2θ − a)x − (θ2 − ω2) holds by definition. Further, we easily obtain that
(97 – 98) are equivalent to the equalities

Q↑a,ω(x) =

{
1

a−2θ ln qω(yu(x))
qω(θ−ω) if 2θ 6= a

yu(x)−(1/2−ω)
1/4−ω2 if 2θ = a,

Q↓a,ω(x) =

{
1

a−2θ ln qω(yu(x))
qω(θ+ω) if 2θ 6= a

yu(x)−(1/2+ω)
1/4−ω2 if 2θ = a.
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Then look at the definition of qω(x) recalled above in order to verify that the above
equalities are equivalent to those in (100). Obviously, yu is a C2 function by definition
and we obtain the left-hand equality in (99) from (100), for example, while the second
equality in (99) can be easily obtained from the first one as follows

y′′u(x) = z′a(x) qω(yu(x))
za(x)2 − q′ω(yu(x)) y′u(x)

za(x) = qω(yu(x))
za(x)2 [(a− 2x) + (2θ − a)].

We have used that [π, π̄] ⊆ A\{0, a} pointed out in Remark 3.28 in order to get za(x) 6= 0.
It remains to show that y′u(x) > 0 holds if x ∈ [π, π̄]. It means to show that qω(yu(x))

and za(x) have opposite signs. First, we obtain from the second part of Lemma 3.26
and definition of π, π̄ in (96) that

za(π̄), za(π) have the same sign as za(θ ± ω), i. e. as za(θ), (103)

since ω ∈ (0, |θ| ∧ |a− θ|). If 2θ = a, then a = 1, θ = 1/2 and the sign from (103) is +1,
i. e. [π, π̄] ⊆ (0, 1), and we immediately have that

y′u(x) = 1/4−ω2

x(1−x) > 0 if x ∈ [π, π̄].

Let 2θ 6= a. See (97 – 98) or the equivalent equalities written above in this proof that

qω(yu(x)) has the same sign as qω(θ ± ω) = −za(θ ± ω), (104)

if x ∈ [π, π̄]. As [π, π̄] ⊆ A\{0, a}, we get from (103, 104) that za(x) has the same sign
as za(π̄), za(π) and opposite to the sign of qω(yu(x)). Therefore, y′u(x) = − q(yu(x))

za(x) > 0
holds if x ∈ [π, π̄] in both considered cases a ∈ {0, 1}. �

3.6. Existence of a shadow price II

In Theorem 3.31 we will show that (A1) implies (A2) and (A3) from Theorem 3.21 if
(roughly speaking) the considered strategy keeps the position between the log-optimal
policies introduced in the Definition 3.27 and if ε̃ = (ε̃t)t≥0 is given by (105). We show
that the strategy is log-optimal in the long run among a wide class of strategies in
Corollary 3.32, and in Theorem 3.34 we show that the strategy is also log-optimal in the
long run among all admissible strategies satisfying a certain restriction on initial wealth.

Theorem 3.31. Let ω and f satisfy assumption (A1) from Theorem 3.21 and π, π̄ be
the log-optimal policies from Definition 3.27. Let (ϕt, ψt)t≥0 be a [(π, π̄)]A-strategy with
position (πt)t≥0. Put

π̃t , 1A · yu(πt), ε̃t , 1A · Λ−1
a (f(π̃t)), t ≥ 0. (105)

Then assumptions (A2, A3) from Theorem 3.21 are satisfied. In particular,

1. the ε̃-price given by (19,23) is regular, and it is a shadow price,

2. (ϕ,ψ) is an ε̃-cost-free strategy keeping ε̃-position on the log-optimal proportion
a.s.,
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3. (ϕ,ψ) is an ε̃-shadow strategy if its initial wealth W0 is such that lnW0 ∈ L1.

P r o o f . As (ϕt, ψt)t≥0 is a continuous admissible strategy by assumption, we get by
Lemma 2.20 that (πt)t≥0 is (as 0-position process) a continuous semimartingale with

dπt = za(πt)[σ2(θ − πt) dt+ σ dBt] +W−1
t Sat [(1 + λ↑πt) dϕ↑t − (1− λ↓πt) dϕ↓t ], (106)

and it attains values in [π, π̄] on A by assumption. Here, (Wt)t≥0 stands for the wealth
process of (ϕt, ψt)t≥0 and if a = 1, (St)t≥0 stands for the stock market price. Fur-
ther, we get by Lemma 3.30, Itô Lemma and (105) that (π̃t)t≥0 is also a continuous
semimartingale with values in [θ − ω, θ + ω] on A with

dπ̃t = −σqω(π̃t) dBt + dπ̃↑t − dπ̃↓t , (107)

where

π̃↑t , −
∫ t

0
qω(π̃s)S

a
s

za(πs)Ws
(1 + λ↑πs) dϕ↑s , π̃↓t , −

∫ t
0
qω(π̃s)S

a
s

za(πs)Ws
(1− λ↓πs) dϕ↓s . (108)

As f is a decreasing function on [θ−ω, θ+ω] by Lemma 3.18 and as it is continuous, we
obtain by (67) from assumption (A1) of Theorem 3.21 that f maps [θ − ω, θ + ω] onto
[Λa(−λ↓),Λa(λ↑)]. As Λ−1

a is an increasing C2-function, we obtain by Itô Lemma that
(ε̃t)t≥0 is a continuous semimartingale with values in [−λ↓, λ↑] 3 0 everywhere on Ω.

Note that assumption (A3) from Theorem 3.21 is satisfied by definition of (ε̃t)t≥0 in
(105) as P (A) = 1 holds by assumption. As (ϕt)t≥0 ≡ 0 holds on Ω\A by definition,
we get that (ϕ↑t , ϕ

↓
t )t≥0 and subsequently also (π̃↑t , π̃

↓
t )t≥0 possess the same property.

Further, the left-hand inequality in (99) in Lemma 3.30 gives that

1A
qω(π̃t)
za(πt)

= 1A
qω(yu(πt))
za(πt)

≤ 0, t ≥ 0,

and we get from (108) that (π̃↑t , π̃
↓
t )t≥0 = 1A(π̃↑t , π̃

↓
t )t≥0 are really non-decreasing pro-

cesses. Further, we get from Lemma 3.30 saying that yu : [π, π̄] → [θ − ω, θ + ω] is
an increasing bijection and from (105) that

[πt = π] = [π̃t = θ − ω]
[πt = π̄] = [π̃t = θ + ω]

}
hold on A, i. e.

{
A ∩ [πt = π] = A ∩ [π̃t = θ − ω]
A ∩ [πt = π̄] = A ∩ [π̃t = θ + ω].

As the same holds with equalities “=” replaced by inequalities “6=” in the brackets, and
as (π̃↑t , π̃

↓
t )t≥0 are equal to zero on Ω\A, we get from (79) with α = π and β = π̄ and

from (108) that ∫∞
0

1[π̃t 6=θ−ω] dπ̃↑t = 0,
∫∞

0
1[π̃t 6=θ+ω] dπ̃↓t = 0.

Then we conclude that (π̃t)t≥0 is really a Bt-diffusion process with reflective barriers
at {θ − ω, θ + ω} and coefficients B(x) = 0,S(x) = −σqω(x) according to the extended
definition, i. e. the assumption (A2) of Theorem 3.21 is almost verified so that we only
need to show that (π̃t)t≥0 is really the ε̃-position of (ϕt, ψt)t≥0.
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By Lemma 3.25, (ξa,ε̃t(πt))t≥0 plays the role of the ε̃-position of (ϕt, ψt)t≥0, and so
our last step is to show that

(π̃t)t≥0 = (ξa,ε̃t(πt))t≥0. (109)

As ξa,ε(0) = 0 holds by definition, we get from the definition of (π̃t)t≥0 in (105) and
from the definition of [(π, π̄)]A-strategy that the desired equality (109) holds on Ω\A.
Let x ∈ [π, π̄], we get by Lemma 3.30 that yu(x) ∈ [θ − ω, θ + ω] and we get from
assumption (A1) of Theorem 3.21 covering equalities (60, 67) the first equality in the
following

f(yu(x)) = Λa(λ↑) +
∫ yu(x)

θ−ω
(

1
za(v) + 1

qω(v)

)
dv =

∫ yu(x)

x
dv

za(v) . (110)

The second equality follows from the moreover part of Lemma 3.30 covering the first
equality in (100). Then we get from (110), definition of (π̃t)t≥0 and (ε̃t)t≥0 in (105) and
from Lemma 3.26 that∫ π̃t

πt
dv

za(v) =
∫ yu(πt)

πt
dv

za(v) = f(yu(πt)) = f(π̃t) = Λa(ε̃t) =
∫ ξa,ε̃t (πt)
πt

dv
za(v) , t ≥ 0

hold on A, which gives the desired equality (109) on A. Note that x1 = x2 holds whenever∫ x2

x1

dv
za(v) = 0 as the function v 7→ 1/za(v) = z−1(a−z)−1 does not change the sign on the

interval [x1, x2] (or [x2, x1] respectively) since otherwise it would not be an integrable
function on the considered interval.

The remaining part of the proof follows from Theorem 3.21. If lnW0 ∈ L1, we consider
the original strategy (ϕ,ψ) and if lnW0 /∈ L1, we consider a strategy (ϕ,ψ)/W0 instead
in order to obtain that the ε̃-price is a shadow price also in this case. �

Corollary 3.32. Given the transaction taxes λ↑, λ↓, let λ > 0, ω = ωλ ∈ (0, |θ| ∧
|a− θ|) and let π, π̄ be the log-optimal policies from Definition 3.27. Let (ϕt, ψt)t≥0 be
a [(π, π̄)]A-strategy with the wealth process (Wt)t≥0, where A ∈ F0 is a set of probability 1.

(i) If (Ŵt)t≥0 is the wealth process of an admissible strategy keeping the position within
a compact subset of A, then

lim sup
t→∞

1
t ln(Ŵt/Wt) ≤

as 0.

Moreover, if Emax{0, ln(Ŵ0/W0)} <∞, then also

lim sup
t→∞

1
t E[ln(Ŵt/Wt)] ≤ 0.

(ii) If lnW0 ∈ L1, then (ϕt, ψt)t≥0 is a shadow strategy and the corresponding shadow
price can be obtained from (19) if a = 1 and from (23) if a = 0, where ε̃ comes from
(105), where (πt)t≥0 is the position process of (ϕt, ψt)t≥0 and where

f(x) , Λa(λ↑) +
∫ x
θ−ω[ 1

qω(u) + 1
za(u) ] du. (111)

(iii) Generally, (ii) holds with (ϕ,ψ) replaced by (ϕ,ψ)/W0, even if lnW0 /∈ L1.
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P r o o f . It follows from the definition of ω = ωλ and the definition of function f in (111)
that assumption (A1) of Theorem 3.21 is satisfied. Then we obtain from Theorem 3.31
that (ii) holds and that the the assumptions of Theorem 2.26 are satisfied so that we get
from the Theorem 2.26 together with Lemma 2.12 that (i) holds. In order to verify (iii),
it is sufficient to realize that the strategy (ϕ,ψ)/W0 has unit initial wealth and that it
satisfies the assumptions of this Corollary. It is also helpful to realize that this change
of the strategy has no effect on the values of (πt, π̃t, ε̃t)t≥0. �

Remark 3.33. See Lemma 3.23 that there exists a [(π, π̄)]A-strategy (ϕt, ψt)t≥0 given
an initial wealth and given an initial position within [π, π̄] on A ∈ F0 with P (A) = 1.

Theorem 3.34. Let (ϕ,ψ), (ϕ̂, ψ̂) be admissible strategies with the wealth proceses
W, Ŵ, respectively, such that lnW0, ln Ŵ0 are integrable random variables. If (ϕ,ψ) is
the strategy from Corollary 3.32, then

lim sup
t→∞

1
t E[ln Ŵt] ≤ lim

t→∞
1
t E[lnWt], (112)

lim sup
t→∞

1
t ln Ŵt ≤

as lim
t→∞

1
t lnWt. (113)

P r o o f . First, without loss of generality, we may assume that W0 = 1. Further, note
that the strategy (ϕ,ψ) just keeps the position within the interval [π, π̄] up to a null set
where π, π̄ are the log-optimal policies. Then see [14] and [15] that

lim
t→∞

1
t lnWt =as lim

t→∞
1
t E[lnWt] = ν = 1

2 σ
2(θ2 − ω2), (114)

where ω ∈ (0, |θ| ∧ |a − θ|) comes from the definition of the log-optimal policies, i. e. it
is the solution of the following equation

0 = Λa(λ↑)− Λa(−λ↓) + I(ω), where I(ω) ,
∫ θ+ω
θ−ω ( 1

za(x) + 1
qω(x) ) dx.

See Lemma 11.2 in [14] and Lemma 6.3 in [15] that the function I is a continuous
decreasing bijection between (0, |θ|∧|a−θ|) and (−∞, 0). Also note that (112 – 113) hold
by Corollary 3.32 if (ϕ̂, ψ̂) is an admissible strategy from the statement of Theorem 3.34
with the position attaining values in a compact subset of A.

Let us consider an increasing sequence 0 < ωn ↑ ω. Then see the definition of Λa and
take into account the above mentioned properties of I in order to see that there exist
increasing sequences 0 < λ↑n ↑ λ↑ and 0 < λ↓n ↑ λ↓ such that

0 = Λa(λ↑n)− Λa(−λ↓n) + I(ωn).

Let (ϕ̂, ψ̂) be an admissible strategy from the statement of Theorem 3.34 and let
(ϕ̂n, ψ̂n) be a self-financing strategy corresponding to transaction taxes (λ↑n, λ

↓
n) such

that (ϕ̂n, ψ̂n0 ) = (ϕ̂, ψ̂0). As the transaction taxes (λ↑n, λ
↓
n) are lower than (λ↑, λ↓), we

get that Ŵn ≥ Ŵ where Ŵn and Ŵ are the wealth processes of (ϕ̂n, ψ̂n) and of (ϕ̂, ψ̂),
respectively. Further, we obtain that (ϕ̂n, ψ̂n) is an admissible strategy w.r.t. the trans-
action taxes (λ↑n, λ

↓
n) as

min{Ŵn
t + λ↑nϕ̂

n
t S

a
t , Ŵn

t − λ↓nϕ̂nt Sat } ≥ Ŵt − (λ↑nϕ̂
−
t + λ↓nϕ̂

+
t )Sat ≥ min{Ŵ↑t , Ŵ

↓
t } > 0,
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where Ŵ↑t , Ŵt + λ↑ϕ̂tS
a
t and Ŵ↓t , Ŵt − λ↓ϕ̂tSat . Obviously, the position (π̂t)t≥0 of

the competing admissible strategy (ϕ̂, ψ̂) attains values in A. Then also

π̂nt , ϕ̂
n
t S

a
t /Ŵn

t = ϕ̂tS
a
t /Ŵn

t = π̂tŴt/Ŵn
t ∈ A = (−1/λ↑, 1/λ↓),

as A is a convex set containing zero and as sign(π̂nt ) = sign(π̂t) and |π̂nt | ≤ |π̂t|. In partic-
ular, (π̂nt )t≥0 attains values in a compact subset [−1/λ↑, 1/λ↓] of An , (−1/λ↑n, 1/λ

↓
n).

By the first part of the proof applied with transaction taxes (λ↑n, λ
↓
n), we get that

lim sup
t→∞

1
t E[ln Ŵt] ≤ lim sup

t→∞
1
t E[ln Ŵn

t ] ≤ νn , 1
2 σ

2(θ2 − ω2
n)→ ν,

as n → ∞, which together with (114) ensures that (112) holds. The relation (113) can
be obtained in a similar manner. �

4. COMPARISON OF TECHNICAL TOOLS

The aim of this section is to provide links between the technical tools considered in this
paper and the tools considered in some other papers solving the same problem, i. e. the
problem of maximization of growth rate of the wealth process in the long run.

4.1. Comparison to [17]

See [17] for a solution of maximization of the long-run growth rate of the wealth process
corresponding to the case a = 1 based on shadow prices. They seek for a shadow price
(S̃t)t≥0 in the form

S̃t = mt g( Stmt ), (115)

where g is a smooth function and (mt)t≥0 is a certain process of locally finite variation,
which is in the end of the form

mt = 1
c S̃t(

1
π̃t
− 1), with c = 1−θ+ωλ

θ−ωλ ,

where (S̃t, π̃t)t≥0 are the obtained shadow price and the corresponding shadow position.
They assume without loss of generality that λ↑ = 0 and their results really correspond

to the ones presented in this paper when a = 1. Note that we assume that λ↑ > 0 in this
paper but admitting the case λ↑ = 0 would require only minor changes. The function
g considered in (115) and function f satisfying assumption (A1) of Theorem 3.21 are
connected as follows

f(x) = − ln 1−x
x − ln g−1( cx

1−x ), g−1(y) = y
c e
−f
(

y
y+c

)
.

Note that our ODE for f is simpler than the ODE for g considered in [17].

4.2. Comparison to martingale approach

A martingale approach considered in [14] and [15] provides a solution to the problem

max lim inf
t→∞

1
t U
−1
γ EUγ(Wt), where Uγ(y) =

{
ln y if γ = 0
1
γ y

γ if γ < 0
(116)
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of maximization of the long-run growth rate of the certainty equivalent from the wealth
process among a certain family of strategies. The main task there is to find a smooth
function g and ν ∈ R such that

Uγ(Wte
−g(πt)−νt), t ≥ 0, (117)

is a martingale in the optimal case and such that it is a supermartingale, in general.
If γ = 0, we have the following link between the process ε̃ = (ε̃t)t≥0 determining the
obtained shadow price in this paper and the function g from (117) as follows

0 = ε̃t +G(πt), where G(x) , g′(x)
1+xg′(x) , (118)

provided that (πt)t≥0 is the position of the optimal strategy.

Remark 4.1. The interested reader may appreciate a very brief and rough presentation
of the solution to the problem (116) solved in [14] and [15]. The optimal policies π, π̄
for the position process (πt)t≥0 and the maximal long-run growth rate ν of the certainty
equivalent from the wealth process are as follows

π = ξ−1
a,Λa(λ↑)

(Θ− ω), π̄ = ξ−1
a,Λa(−λ↓)(Θ + ω), ν = (1− γ) σ

2

2 (Θ2 − ω2),

where Θ , θ/(1− γ) is the corresponding Merton proportion and where ω = ωλ > 0 is
the unique root of the following equation

0 = λ+
∫ Θ+ω

Θ−ω
(

1
za(x) + 1

Dω(x)

)
dx, where Dω(x) , γx2 + (2θ − a)x+ (1− γ)(Θ2 − ω2).

The function g from (117) is of the form g(x) =
∫ x−y(u(x))

za(x) dx, where y solves

y′(u) + Dω(y(u)) = 0, y(u(π)) = Θ− ω, y(u(π̄)) = Θ + ω,

where u(x) = 1
x if a = 0 and u(x) = ln | x1−x | if a = 1. Finally note that the function

x 7→ yu(x) from (97 – 98) is nothing else but x 7→ y(u(x)) if γ = 0.

5. APPENDIX

In this section, namely in Lemma 5.5, we show that a self-financing strategy with a pos-
itive wealth process is, up to a null set, equal to an admissible strategy.

Notation 5.1. If B is a subset of the extended real line R∪{∞,−∞}, we write simply
BR instead of B ∩ R, and if τ is a random time and (Xt)t≥0 a real-valued process, we
simply write [Xτ ∈ B] instead of [τ <∞, Xτ ∈ B] as X∞ is not defined in this section.
Let α be a fixed stopping time. Put

τ↑α , inf{t ≥ α;St = S↑α}, τ↓α , inf{t ≥ α;St = S↓α}, (119)

if a = 1 and in the same way with S replaced by F if a = 0. Let us consider a fixed
self-financing strategy (ϕt, ψt)t≥0 with the ask and bid wealth processes (W↑t ,W

↓
t )t≥0

defined in (9, 15). Then we put

β↑α , inf{t ≥ α;W↑t = 0}, β↓α , inf{t ≥ α;W↓t = 0}. (120)
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Further, we consider a self-financing strategy (ϕ̂t, ψ̂t)t≥0 , (ϕt∧α, ψt∧α)t≥0 with the ask
and bid wealth processes (Ŵ↑t , Ŵ

↓
t )t≥0 defined as follows

(Ŵ↑t , Ŵ
↓
t ) , ψ̂t + ϕ̂t(S↑t , S

↓
t ), (121)

if a = 1 and in the same way with S replaced by F if a = 0, cf. (9, 15). Then we consider
β̂↑α, β̂

↓
α defined similarly as in (120) but with W replaced by Ŵ.

If α is a current time, we can interpret τ↑α, τ
↓
α as the times when the nominal price

reaches the current ask and bid price, respectively, and β↑α, β
↓
α as the times when the

ask and bid wealth process reaches zero, respectively. The β’s can be understood as the
bankruptcy times if the current wealth is positive but they will also be used differently.

Lemma 5.2. Let (ϕt, ψt)t≥0 be a self-financing strategy such that the corresponding
wealth process (Wt)t≥0 attains only positive values. Then

[W↑t ≤ 0] ⊆ [ϕt < 0], [W↓t ≤ 0] ⊆ [ϕt > 0] (122)

hold whenever t ∈ [0,∞), where (W↑t ,W
↓
t )t≥0 are the processes from (9,15). Moreover,

let (α, β↑α, β
↓
α) be as in Notation 5.1. Then

β↑α =as inf{t ≥ β↑α;W↑t < 0}, β↓α =as inf{t ≥ β↓α;W↓t < 0}, (123)

i. e. the processes (W↑t ,W
↓
t )t≥α reach negative values immediately after reaching the

value zero up to a null set.

P r o o f . See (10,15) that sign(ϕt) = sign(W↑t −Wt) = sign(Wt −W↓t ) hold whenever
t ∈ [0,∞). As (Wt)t≥0 is assumed to be a positive process, we get that

[W↑t ≤ 0] ⊆ [W↑t <Wt] ⊆ [ϕt < 0],
[W↓t ≤ 0] ⊆ [W↓t <Wt] ⊆ [ϕt > 0], t ∈ [0,∞),

i. e. (122) is verified and it remains to show (123). Put

Nt ,
∫ t

0
ϕsS

a
s dFs =as µ

∫ t
0
ϕsS

a
s ds+ σ

∫ t
0
ϕsS

a
s dBs. (124)

First, we will show that the following implication holds

[β <∞] ⊆ [ϕβ 6= 0] ⇒ β =as inf{t ≥ β;Nt < Nβ}, (125)

whenever β is a stopping time. Let [β <∞] ⊆ [ϕβ 6= 0]. As (ϕt)t≥0 is a right-continuous
process, we get that

∫ t
β
ϕ2
sS

2a
s ds > 0 holds on [β < t]. Then we obtain by Schwartz

inequality that

lim sup
t→β−

|
∫ t
β
ϕsS

a
s ds|(

∫ t
β
ϕ2
sS

2a
s ds)−1/2 ≤ lim

t→β−

√
t− β = 0 (126)

holds on [β <∞]. Further, as 〈N〉t =as σ2
∫ t

0
ϕ2
sS

2a
s ds, we get that

β =as inf{t ≥ β; 〈N〉t > 〈N〉β}.
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Then by the law of iterated logarithm and Dambis–Dubins–Schwartz Theorem, see The-
orems 11.18 and 16.4 in [23], we get by (124,126) that the following implication

β <∞ ⇒ lim inf
t→β−

Nt−Nβ√
〈N〉t−〈N〉β

= lim inf
t→β−

∫ t
β
ϕsS

a
s dBsr∫ t

β
ϕ2
sS

2a
s ds

= −∞ (127)

holds up to a null set, which verifies the validity of the implication (125).
Further, as (W↑t ,W

↓
t )t≥0 are rcll-process, we get by the definition of (β↑α, β

↓
α) in (120)

the left-hand inclusions in

[β↑α <∞] ⊆ [W↑
β↑α

= 0] ⊆ [ϕβ↑α < 0],

[β↓α <∞] ⊆ [W↓
β↓α

= 0] ⊆ [ϕβ↓α > 0],
(128)

while the right-hand inclusions follow from the already proved properties written in
(122). Thus, (β↑α, β

↓
α) satisfy the assumption of the implication (125) and hence, we get

that also the conclusion in (125) holds with β replaced by β↑α and β↓α, respectively.
By Lemma 2.15 with ε̃t = λ↑, we get that

W↑t =as W↑0 +
∫ t

0
ϕs(S↑s )a dFs − C↑t , where C↑t , (λ↑ + λ↓)

∫ t
0
Sas dϕ↓s .

As (C↑t )t≥0 is a non-decreasing process, we obtain that

W↑t −W
↑
s ≤

as ∫ t
s
ϕu(S↑u)a dFu =as (1 + λ↑)a[Nt −Ns], 0 ≤ s ≤ t <∞. (129)

Then we obtain the left-hand equality in (123). The second equality in (123) can be
obtained similarly simply by replacing ↑ by ↓ , and vice versa, in the end of this proof
beginning with using Lemma 2.15. �

Lemma 5.3. Let µ ∈ R, σ ∈ (0,∞) and (Bt)t≥0 be a standard Brownian motion. Put

Bt , µt+ σBt, t ≥ 0 and τc , inf{t ≥ 0; Bt = c}, c ∈ R.

If u,−v ∈ (0,∞), then P (τu < τv) > 0.

P r o o f . 1. Let µ = 0. By Proposition 3.8 in [31, part II], P (τu < τv) = v
v−u > 0.

Obviously, there exists T ∈ [0,∞) such that 0 < pT (u, v, σ) , P (τu < τv ∧ T ) holds as

0 < P (τu < τv) = lim
T→∞

pT (u, v, σ).

2. Generally, let µ ∈ R. By the first part of the proof, there exists T ∈ [0,∞) such
that 0 < pT (u, v, σ). By Girsanov Theorem, see Corollary 16.25 in [23], there exists
a probability measure QT ∼ P such that

P ◦ (Bt)−1
t≤T = QT ◦ (B̄t)−1

t≤T , where B̄t , Bt + µ
σ t, t ≥ 0.

Then 0 < pT (u, v, σ) = QT (τu < τv ∧ T ) ≤ QT (τu < τv), and also 0 < P (τu < τv) as
P ∼ QT . �

In the proof of Lemma 5.5, we will need strong Markov property of a standard
Brownian motion formulated as follows.



Log-optimal investment in the long run with proportional trans. costs when using shadow prices 623

Lemma 5.4. Let (Bt)t≥0 be a standard Ft-Brownian motion and τ be an Ft-stopping
time. Assume that there exists a standard Brownian motion (B̃t)t≥0 independent of
F∞. Then there exists a standard Brownian motion (Bτt )t≥0 such that

[τ <∞] ⊆
⋂
t≥0 [Bt+τ −Bτ = Bτt ] (130)

and that

1[τ<∞]P (Bτ∈ A|Fτ ) =as 1[τ<∞]P (B ∈ A), (131)

whenever A ⊆ R[0,∞) is a Borel subset of the set of all continuous functions on [0,∞)
endowed with compact open topology.

P r o o f . Put
Bτt , 1[τ<∞](Bt+τ −Bτ ) + 1[τ=∞]B̃t, t ≥ 0.

Then (130) obviously holds. Further, we will show that B,Bτ have the same distribution,
which will ensure that Bτ is also a standard Brownian motion. Let A ⊆ R[0,∞) be
a Borel subset of the set of all continuous functions on [0,∞) endowed with compact
open topology. Obviously,

1[τ=∞] P (Bτ∈ A|F∞) =as 1[τ=∞] P (B̃ ∈ A|F∞) =as 1[τ=∞] P (B̃ ∈ A),

as Bτ = B̃ on [τ =∞] ∈ F∞ and B̃ is independent of F∞. Put

Aτ , [Bτ∈ A] ∩ [τ <∞], Aτ∧n , [Bτ∧n ∈ A]. (132)

Then we easily obtain, from strong Markov property presented by Theorem 11.11 in [23],
that P (Aτ∧n|Fτ∧n) =as P (B ∈ A). As Aτ ,Aτ∧n differ only on set [τ > n], we get that

1[τ≤n] P (Aτ |Fτ ) =as P ([τ ≤ n] ∩ Aτ |Fτ ) =as P ([τ ≤ n] ∩ Aτ∧n|Fτ )
=as 1[τ≤n] P (Aτ∧n|Fτ ) =as 1[τ≤n] P (Aτ∧n|Fτ∧n) =as 1[τ≤n] P (B ∈ A).

If we pass to the limit n → ∞, we obtain that P (Aτ |Fτ ) =as 1[τ<∞] P (B ∈ A). Finally,
we get that

P (Bτ∈ A) = P (τ =∞)P (B̃ ∈ A) + P (τ <∞)P (B ∈ A) = P (B ∈ A). (133)

Note that (131) follows from the equality written just above (133). �

Lemma 5.5. Let (ϕt, ψt)t≥0 be a self-financing strategy with positive wealth process
(Wt)t≥0, then W↑t ∧W

↓
t > 0, t ≥ 0, up to a null set. In particular, there exists an ad-

missible strategy (ϕ∗t , ψ
∗
t )t≥0 =as (ϕt, ψt)t≥0.

P r o o f . First, we show that α =as ∞ holds whenever α is a stopping time such that

[α <∞] ⊆ [W↑α < 0]. (134)
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As in Notation 5.1, we consider a self-financing strategy (ϕ̂t, ψ̂t)t≥0 , (ϕt∧α, ψt∧α)t≥0

that stops trading at α with the wealth process (Ŵt)t≥0 and with the ask and bid wealth
processes (Ŵ↑t , Ŵ

↓
t )t≥0 introduced in (121). As 0 <Wt ≤ W↑t ∨W

↓
t , t ≥ 0, we get from

(134) that also

[α <∞] ⊆ [Ŵ↑α =W↑α < 0 <W↓α = Ŵ↓α]. (135)

As (Ŵ↑t , Ŵ
↓
t )t≥0 do not jump at any t ≥ α, we get from (135) the left-hand equalities in

β̂↑α = inf{t ≥ α; Ŵ↑t ≥ 0}, β↑α = inf{t ≥ α;W↑t ≥ 0},
β̂↓α = inf{t ≥ α; Ŵ↓t ≤ 0},

(136)

cf. (120). In order to verify the equality on the right-hand side, see (134) and notice
that self-financing condition gives that ∆W↑t ≤ 0, t ≥ 0. These conditions ensure that
(W↑t )t≥α has to reach zero before reaching any positive value and we get that also the
last equality in (136) holds.

First, we have by (122) in Lemma 5.2 that [W↑t ≤ 0] ⊆ [ϕt < 0] ⊆ [W↓t > 0] hold if
t ≥ 0. Further, as (W↑t , Ŵ

↑
t ,−Ŵ

↓
t )t≥α do not jump upwards, we get from (136) that

Ŵ↑t ≤ 0, t ∈ [α, β̂↑α]R, W↑t ≤ 0 <W↓t
Ŵ↓t ≥ 0, t ∈ [α, β̂↓α]R, ϕt < 0

}
t ∈ [α, β↑α]R. (137)

By the self-financing condition (6,16) and the definition of (W↑t ,W
↓
t )t≥0 in (9,15), we

obtain the equality on the left-hand side in the following

ψtϕα − ψαϕt =
∫ t
α
Ŵ↓s dϕ↓s −

∫ t
α
Ŵ↑s dϕ↑s ≥ 0, t ∈ [α, β̂↑α ∧ β̂↓α]R, (138)

while the inequality on the right in (138) follows from the inequalities in (137) on the
left. Further, we put β⇑α , β̂

↑
α ∧ β̂↓α ∧ β↑α. Then we get from (137,138) that

ψt/ϕt ≥ ψα/ϕα, t ∈ [α, β⇑α]R. (139)

Now, we are going to show that τ↑α introduced in (119) is never lower than β⇑α, i. e. that
At , [t = τ↑α < β⇑α] = ∅ holds for every t ≥ 0. As (St, Ft)t≥0 are continuous processes by
assumption, we obtain from (119) that

Wt − ψt
ϕt

=

{
St = S↑α if a = 1
Ft = F ↑α if a = 0

}
=
W↑α − ψα

ϕα
hold on At. (140)

Further, we get by the assumption (134) and the inequalities in (137) on the right that

At ⊆ [ϕα, ϕt < 0] ⊆ [W↑α ≤ 0 <Wt] (141)

as Wt > 0 holds by assumption. Then we get from (139,140,141) that

At ⊆
[Wt

ϕt
< 0 ≤ W

↑
α

ϕα
] ∩ [Wt

ϕt
− W

↑
α

ϕα
= ψt

ϕt
− ψα

ϕα
≥ 0
]

= ∅

holds whenever t ≥ 0. Thus, we have indeed verified that β⇑α ≤ τ↑α holds.
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If we add a process from (S↑t , S
↓
t , F

↑
t , F

↓
t )t≥α to both sides of (139) and use the

following equality (ϕ̂t, ψ̂t) = (ϕα, ψα) holding on [α ≤ t <∞], we get that

W↑t /ϕt ≥ Ŵ
↑
t /ϕ̂t

W↓t /ϕt ≥ Ŵ
↓
t /ϕ̂t

}
t ∈ [α, β⇑α]R. (142)

Next, we show that β̂↓α ≥ β̂↑α ∧ β↑α. Namely, we show that Bt , [t = β̂↓α < β̂↑α ∧ β↑α] = ∅
holds whenever t ∈ [0,∞). As (Ŵ↓t )t≥0 is a right-continuous process, we obtain by the
definition of β̂↓α , inf{t ≥ α; Ŵ↓t = 0}, by the second row in (142) and by the right-hand
inequalities in (137) that

Bt ⊆
[
0 = Ŵ↓t

ϕ̂t
≤ W

↓
t

ϕt
< 0
]

= ∅.

Hence, β̂↓α ≥ β̂↑α ∧ β↑α = β⇑α. Further, as (W↑t )t≥0 is a right-continuous process, we
similarly obtain that

[α ≤ t = β↑α < β̂↑α] ⊆
[
0 = W↑t

ϕt
≥ Ŵ

↑
t

ϕ̂t
= Ŵ↑t

ϕα
> 0
]

= ∅.

from the definition of β↑α in (120), from the first row in (142) and by the equality for β̂↑α
in (136) together with the inequalities on the second row of the right-hand side in (137).
This shows that β↑α ≥ β̂↑α, and hence we have that β̂↑α = β⇑α ≤ τ↑α.

By the strong Markov property of a standard Brownian motion stated in Lemma 5.4,
there exists (on an enlargement of the original probability space) an arithmetic Brownian
motion (Bs)s≥0 starting from B0 = 0 with the same distribution as ln(St/S0)t≥0 if a = 1
and as (Ft)t≥0 if a = 0 such that 1[α<∞] PB|Fα =as 1[α<∞] PB and that

α <∞ ⇒ Bs =

{
ln(Ss+α/Sα) if a = 1
Fs+α − Fα if a = 0

holds. Here, PB stands for the distribution of B and PB|Fα stands for the conditional
distribution of B given Fα. See the definition of τ↑α in (119) and of β̂↑α in (120) with W
replaced by Ŵ in order to agree that

τ↑α = inf{t ≥ α; Bt−α = u} and β̂↑α = inf{t ≥ α; Bt−α = V ↑α },

where u , Λa(λ↑) > 0 and where

V ↑t ,

{
ln
(
− ψt/ϕt

)
− lnSt − ln(1 + λ↑) if a = 1

−ψt/ϕt − Ft − λ↑ if a = 0

}
= Λa

(
W↑t

−ϕt(S↑t )a

)
is such that [α <∞] ⊆ [V ↑α < 0] by (134,137). By Lemma 5.3, we get that

α <∞ ⇒ P (τ↑α < β̂↑α|Fα) > 0 (143)

holds almost surely. By the previous part of the proof we have that β̂↑α ≤ τ↑α and
therefore, we get that 0 = P (τ↑α < β̂↑α) = EP (τ↑α < β̂↑α|Fα). This together with (143)
gives that α =as ∞.
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Now, we put α , 0. We will show that β↑0 =as ∞. Whenever n ∈ N∪{∞}, we consider

αn , inf{t ≥ β↑0 ;W↑t < −1/n}.

As (W↑t )t≥0 is a right-continuous process, we have that [αn < ∞] ⊆ [W↑αn ≤ −1/n].
Hence, (134) holds with α replaced by αn, and we get by the first part of the proof that
αn =as ∞ holds whenever n ∈ N, which gives that also α∞ = infn αn =as ∞. Then we get
by Lemma 5.2 that also β↑0 =as α∞ =as ∞. Hence, β↑0 =as ∞ and, similarly, we would show
that also β↓0 =as ∞. Note that showing that β↓0 =as ∞ needs to modify also the first part
of the proof but the modification is straightforward. Then we get that (W↑t ∧ W

↓
t )t≥0

attains positive values up to a null set. �

(Received October 14, 2013)
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