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MARGINALIZATION IN MODELS GENERATED
BY COMPOSITIONAL EXPRESSIONS

Francesco M. Malvestuto

In the framework of models generated by compositional expressions, we solve two topical
marginalization problems (namely, the single-marginal problem and the marginal-representation
problem) that were solved only for the special class of the so-called “canonical expressions”.
We also show that the two problems can be solved “from scratch” with preliminary symbolic
computation.
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1. INTRODUCTION

Compositional models were introduced to construct probability distributions from lower-
order probability distributions [6, 8, 9, 11, 13] as an operational alternative to the graph-
ical approach used to model Bayesian and causal networks. They were also applied
to belief functions [10, 15, 16], possibility functions [15] and Shenoy valuations [14].
A topical problem common to graphical and compositional models is that of computing
marginals [4, 7, 12].

In this paper, we consider a more general version of compositional models, namely,
models generated by compositional expressions [27, 28] and formed by distributions
whose values (such as probabilities) can be added, multiplied and divided according to
the algebraic rules of a semifield [27], which is defined in the Appendix (see Section
10). Owing to their generality, such models find applications also to multidimensional
databases (SUM-data, MAX-data, MIN-data, Boolean data), in which query answering
requires to combine data stored in distinct tables [26].

In this framework, we solve two topical marginalization problems, namely, the single-
marginal and marginal-representation problems (see Section 5 for their statements). We
also show that they can be solved “from scratch” with preliminary symbolic computation.
Only to give an illustrative example, consider the model generated by the compositional
expression

θ = (AB BAC)B ((BC BAB)B CD) ,

DOI: 10.14736/kyb-2015-4-0541

http://doi.org/10.14736/kyb-2015-4-0541


542 F.M. MALVESTUTO

and suppose we are interested in the marginal on AC of the value of θ under its “inter-
pretation”

I = 〈f(AB), g(AC), h(BC), k(AB), l(CD)〉 ,
where f(AB), g(AC), h(BC), k(AB), l(CD) are real-valued distributions (for formal def-
initions and notation, see Section 2). Instead of computing numerically the value of θ
under I and then marginalizing it on AC, we first construct the algebraic expression of
the value of θ under I, which in our case reads

f(AB)× g(AC)× l(CD)(∑
C

g(AC)
)
×
(∑

D

l(CD)
) .

Next, using suitable reduction rules we simplify the sum∑
BD

f(AB)× g(AC)× l(CD)(∑
C

g(AC)
)
×
(∑

D

l(CD)
)

and, thus, obtain the algebraic expression of the wanted marginal on AC(∑
B

f(AB)
)
× g(AC)∑

C

g(AC)
,

which finally is evaluated using the numeric values of the distributions in I. The result of
the evaluation will give the wanted marginal. It is worth observing that the distributions
h(BC) and k(AC) are missing from the algebraic expression of the value of θ under I,
which means that BC and the second occurrence of AB in θ are “redundant”, and
θ is “algebraically equivalent” (in the sense stated in Section 9) to the compositional
expression (AB BAC)B CD.

Compositional expressions are essentially the same as “merge expressions” which are
studied in multidimensional databases [26]. The single-marginal problem was discussed
in [4, 7, 12] for “generating sequences” of probability distributions; moreover, both the
single-marginal problem and the marginal-representation problem were solved in [26] for
“perfect merge expressions”, which correspond to the so-called “canonical expressions”
[27].

The paper is organized as follows. Section 2 contains basic definitions of distributions
over a semifield. Section 3 reviews some known results on the composition of distribu-
tions, with an explicit reference to the metric semifields reported in the Appendix.
Section 4 introduces compositional expressions and their values under valid interpreta-
tions; moreover, it contains a validity test for the general case and a cheaper validity test
for metric semifields. In Section 5 we state the two above-mentioned marginalization
problems and solve them by including in the input also the data structures constructed
during the validity test. In Sections 6 and 7 we solve the two marginalization problems
from scratch. In Section 8 we discuss the case of Boolean distributions. Section 9 con-
tains a note for future research, and the Appendix (in Section 10) contains the precise
definition of a semifield and the list of the metric semifields recurring in this paper.
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2. PRELIMINARIES

2.1. Discrete variables

Let X be a finite set of finite-valued variables. An X-tuple is an assignment of values
to the variables in X. By dom(X) we denote the set of all X-tuples; accordingly,
|dom(X)| denotes the number of all X-tuples. We use the initial capital-case letters of
the alphabet (e. g., A,B,C) to denote single variables, and the final capital-case letters
to denote sets of variables (e. g., X,Y, Z). Moreover, sets of variables are written as
sequences of variables; thus, ABC stands for {A,B,C}. Finally, we denote an X-tuple
by the corresponding lower-case bold-faced letter x.

Let Y be a nonempty subset of X; given an X-tuple x, by xY we denote the Y -tuple
obtained from x by ignoring the values of the variables in X \ Y .

2.2. Distributions

Let Σ = 〈S, (⊕, 0), (⊗, 1)〉 be a semifield (for its definition see the Appendix in Section
10) and let X be a finite set of finite-valued variables. A Σ-distribution with scheme
X, written f(X), is any S-valued function defined on dom(X). For example, if Σ is the
max-sum semifield (see the Appendix), a Σ-distribution with scheme X is a non-negative
real-valued function defined on dom(X). Note that a probability distribution is such a
Σ-distribution.
A Σ-distribution f(X) is null if f(x) = 0 everywhere (that is, for every X-tuple x) and
it will be denoted by 0(X).

2.3. The support of a distribution

The support of a Σ-distribution f(X), denoted by ‖f‖, is the (possibly empty) set of
X-tuples x with f(x) 6= 0. Thus, f(X) is the null distribution 0(X) if and only if
‖f‖ = ∅.

The support of f(X) can be viewed as a relation [3] with scheme X and, hence, we can
apply the following two operators of relational algebra [3] to supports of distributions:

(projection) Let f(X) be a distribution, and let Y be a nonempty subset of X.
The projection of ‖f‖ on Y is the relation

πY (‖f‖) = {xY : x ∈ ‖f‖}.

Note that, if Z is a nonempty subset of Y , then πZ(‖f‖) = πZ(πY (‖f‖)).

(join) Let f(X) and g(Y ) be distributions, and let V = X ∪ Y . The (natural)
join of ‖f‖ and ‖g‖ is the relation

‖f‖ ./ ‖g‖ = {v ∈ dom(V ) : vX ∈ ‖f‖ & vY ∈ ‖g‖}.

Note that the join operator is both associative and commutative [3].
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Example 2.1. Let A, B and C be three binary variables. Consider the following three
relations r1, r2 and r3 with schemes AB, AC and BC respectively:

r1 = {(a1,b1), (a2,b2)} r2 = {(a1, c1), (a2, c1)} r3 = {(b1, c1), (b2, c1)}.

It is easily seen that

r1 ./ r2 = r1 ./ r3 = r1 ./ r2 ./ r3 = {(a1,b1, c1), (a2,b2, c1)} ,

r2 ./ r3 = {(a1,b1, c1), (a1,b2, c1), (a2,b1, c1)(a2,b2, c1)}.

2.4. Marginals and grand-total of a distribution

The marginal of f(X) on a nonempty subset Y of X, written f↓Y , is defined as follows:
for every Y -tuple y

f↓Y (y) =
⊕

x∈dom(X):xY =y

f(x).

Lemma 2.2. Let f(X) be a Σ-distribution, where Σ is any semifield, and let Y be a
nonempty subset of X. Then ‖f↓Y ‖ ⊆ πY (‖f‖).

P r o o f . By the very definition of f↓Y , one has that

f↓Y (y) =
{

0 if ‖f‖ = ∅⊕
x∈‖f‖:xY =y f(x) otherwise

so that
‖f↓Y ‖ = {y ∈ πY (‖f‖) :

⊕
x∈‖f‖:xY =y

f(x) 6= 0}

from which the statement follows. �

Note that, if Σ is the Galois field GF (2) and the number of X-tuples x ∈ ‖f‖ with
xY = y is an even number greater than 0, then f↓Y (y) = 0 so that y ∈ πY (‖f‖)\‖f↓Y ‖.

The following property of metric semifields will be often applied in the sequel.

Lemma 2.3. Let f(X) be a Σ-distribution, where Σ is a metric semifield, and let Y be
a nonempty subset of X. Then ‖f↓Y ‖ = πY (‖f‖).

P r o o f . By Lemma 2.2, it is sufficient to prove that πY (‖f‖) ⊆ ‖f↓Y ‖. Let y be any
Y -tuple in πY (‖f‖). By definition of πY (‖f‖), there exists at least one X-tuple x∗ ∈ ‖f‖
such that x∗Y = y. Since x∗ ∈ ‖f‖, one has that f(x∗) 6= 0 and, since Σ is zero-sum
free, one has that f↓Y (y) =

⊕
x∈‖f‖:xY =y f(x) 6= 0. It follows that y ∈ ‖f↓Y ‖ which

proves that πY (‖f‖) ⊆ ‖f↓Y ‖. �
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f↓Y (y) f↓∅ metric semifield

∑
x∈dom(X):xY =y

f(x)
∑

x∈dom(X)

f(x) sum-product semifield

max
x∈dom(X):xY =y

f(x) max
x∈dom(X)

f(x) max-product semifield

max
x∈dom(X):xY =y

f(x) max
x∈dom(X)

f(x) max-sum semifield

min
x∈dom(X):xY =y

f(x) min
x∈dom(X)

f(x) min-product semifield

min
x∈dom(X):xY =y

f(x) min
x∈dom(X)

f(x) min-sum semifield

∨
x∈dom(X):xY =y

f(x)
∨

x∈dom(X)

f(x) Boolean algebra

Tab. 1. Marginals and grand-totals for metric semifields.

The grand-total of f(X), written f↓∅, is defined as follows:

f↓∅ =
⊕

x∈dom(X)

f(x) =
{

0 if ‖f‖ = ∅⊕
x∈‖f‖ f(x) otherwise.

Note that, if Σ is the Galois field GF (2) and ‖f‖ contains an even number of X-tuples
greater than 0, then f↓∅ = 0. However, for a metric semifield f↓∅ = 0 if and only if
f(X) is the null distribution 0(X).

In this paper we pay a special attention to the metric semifields reported in Table 1,
in which marginals and grand-totals are explicitly defined.

2.5. Extensions

Let f(X) be a Σ-distribution, where Σ is a semifield. By an extension of f(X) to a
superset V of X we mean any Σ-distribution e(V ) whose marginal on X coincides with
f(X), that is, e↓X = f(X).

3. COMPOSITION OF DISTRIBUTIONS

3.1. General properties

Let f(X) and g(Y ) be Σ-distributions, where Σ is a semifield. We say that f(X) is
composable with g(Y ) if

(a) either f(X) = 0(X), or
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(b) if X ∩ Y = ∅ then g↓∅ 6= 0; otherwise, for every X-tuple x with f(x) 6= 0, one
has g↓X∩Y (xX∩Y ) 6= 0.

Theorem 3.1. A Σ-distribution f(X) is composable with a Σ-distribution g(Y ) if and
only if

(a) either f(X) = 0(X), or

(b’) if X ∩ Y = ∅ then g↓∅ 6= 0; otherwise, πX∩Y (‖f‖) ⊆ ‖g↓X∩Y ‖.

P r o o f . We need to prove that under X ∩Y 6= ∅ conditions (b) and (b′) are equivalent.
Let Z = X ∩ Y .
(b)⇒ (b′). Let z be any Z-tuple in πZ(‖f‖). Then there exists an X-tuple x ∈ ‖f‖ such
that xZ = z. Since x ∈ ‖f‖, one has f(x) 6= 0. By (b), g↓Z(z) 6= 0 so that z ∈ ‖g↓Z‖.
(b′) ⇒ (b). Let x be any X-tuple with f(x) 6= 0. Then, x ∈ ‖f‖ and, hence, xZ ∈
πZ(‖f‖). By (b′), xZ ∈ ‖g↓Z‖ so that g↓Z(xZ) 6= 0. �

Assume that f(X) is composable with g(Y ). Let V = X ∪ Y and Z = X ∩ Y .
The composition (or the “merge” [26]) of f(X) with g(Y ), denoted by f B g, is the
Σ-distribution with scheme V defined as follows [27]:

— if f(X) = 0(X) then f B g = 0(V ), otherwise

— for every V -tuple v

(f B g)(v) =

{
f(vX)⊗ g(vY )⊗ g↓∅ if Z = ∅
f(vX)⊗ g(vY )⊗ g↓Z(vZ) otherwise

where g↓∅ and g↓Z(vZ) denote the multiplicative inverses of g↓∅ and of g↓Z(vZ),
respectively.

Finally, if f(X) is not composable with g(Y ), then we say that f B g is undefined.

Theorem 3.2. (Malvestuto [27]) Let f(X) and g(Y ) be Σ-distributions, where Σ is a
semifield. If f(X) is composable with g(Y ), then

(i) f B g is an extension of f(X) to X ∪ Y ,

(ii) ‖f B g‖ = ‖f‖ ./ ‖g‖,

(iii) ‖f‖ = πX(‖f B g‖).

The following is a straightforward consequence of the definition of f(X)B g(Y ).

Remark 3.3. Let f(X) and g(Y ) be Σ-distributions. Assume that Y ⊆ X. If f(X) is
composable with g(Y ) then f(X)B g(Y ) = f(X).

By Remark 3.3, the composition operator is idempotent; moreover, it is neither com-
mutative nor associative [6, 9]. However, if f(X) and g(Y ) are both marginals of a
distribution with scheme X ∪ Y and if f(X) is composable with g(Y ) and vice versa,
then f B g = g B f .
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3.2. Metric semifields

Consider now the case that Σ is a metric semifield. Let f(X) and g(Y ) be Σ-distributions.
Then, we know that

— f(X) = 0(X) if and only if ‖f‖ = ∅,

— g↓∅ = 0 if and only if ‖g‖ = ∅,

— ‖g↓X∩Y ‖ = πX∩Y (‖g‖) (by Lemma 2.3).

Therefore, for a metric semifield Σ, the conditions for composability (see Theorem 3.1
above) can be stated in terms of supports of distributions.

Theorem 3.4. Let Σ be a metric semifield. A Σ-distribution f(X) is composable with
a Σ-distribution g(Y ) if and only if

(a∗) either ‖f‖ = ∅, or

(b∗) if X ∩ Y = ∅ then ‖g‖ 6= ∅; otherwise, πX∩Y (‖f‖) ⊆ πX∩Y (‖g‖).

Table 2 reports the specific definition of (f B g)(v) for the metric semifields reported
in Table 1.

Σ Z = ∅ Z 6= ∅

sum-product f(vX)× g(vY )∑
y∈dom(Y )

g(y)
f(vX)× g(vY )∑

y∈dom(Y ):yZ=vZ

g(y)

min-product f(vX)× g(vY )
min

y∈dom(Y )
g(y)

f(vX)× g(vY )
min

y∈dom(Y ):yZ=vZ

g(y)

min-sum f(vX) + g(vY )− min
y∈dom(Y )

g(y) f(vX) + g(vY )− min
y∈dom(Y ):yZ=vZ

g(y)

max-product f(vX)× g(vY )
max

y∈dom(Y )
g(y)

f(vX)× g(vY )
max

y∈dom(Y ):yZ=vZ

g(y)

max-sum f(vX) + g(vY )− max
y∈dom(Y )

g(y) f(vX) + g(vY )− max
y∈dom(Y ):yZ=vZ

g(y)

Boolean f(vX) ∧ g(vY ) f(vX) ∧ g(vY )

Tab. 2. The composition of f(X) with g(Y ) in metric semifields

depending on Z = X ∩ Y .
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4. COMPOSITIONAL EXPRESSIONS

A compositional expression is a parenthesized expression formed out by nonempty sets
of (finite-valued) variables, and the symbol “B” of the composition operator. Explicitly,
the following provides a recursive definition of a compositional expression:

(i) if X is a set of variables, then X is a compositional expression;

(ii) if θ1 and θ2 are compositional expressions, then (θ1)B (θ2) is a compositional
expression.

Let θ be a compositional expression. The base sequence [27] of θ is the sequence σ
of the sets featured in θ arranged according to their order of appearance. We call the
elements of σ the terms of σ; accordingly, a term of σ is specified by a set featured in θ
and by its position in σ. The frame of θ is the union of the sets featured in θ, and the key
of θ is the first term of σ. For example, the base sequence, the frame and the key of the
compositional expression (ABBAC)B ((BCBAB)BCD) are 〈AB,AC,BC,AB,CD〉,
ABCD and AB, respectively.

Note that, unlike in [27], we assume that each set featured in a compositional ex-
pression can have more than one occurrence. A compositional expression θ contains no
repetitions if each set featured in θ has exactly one occurrence.

A subexpression of a compositional expression θ is defined as usual. Explicitly, a
compositional expression θ′ is a subexpression of θ if θ′ is a substring of θ. Let σ′ =
〈Xi, . . . , Xq〉 be the base sequence of θ′ for some i and q, 1 ≤ i ≤ q ≤ n. We say that θ′

is an atomic subexpression of θ if i = q; thus, a non-atomic subexpression of θ is always
of the type (θ1)B (θ2). Note that, if a set X appears k times in θ, then there are exactly
k atomic subexpressions θ1, . . . , θk of θ and θh = X for all h = 1, . . . , k.

Henceforth, a subexpression of θ of the type (X) B (θ′) or (θ′) B (X) or (X) B (Y )
will be written simply as X B (θ′) or (θ′)BX or X B Y , respectively.

The syntactic structure of a compositional expression θ can be represented by an
ordered binary tree T [1], called the syntax tree for θ [27], whose leaves correspond
one-to-one to the atomic subexpressions of θ, and whose interior nodes correspond one-
to-one to the non-atomic subexpressions of θ. Thus, each interior node v of T has exactly
two ordered children: its first (respectively, second) child is called the left (respectively,
right) child. If an interior node v has left child u and right child w, the subexpression
of θ corresponding to v is (θu) B (θw) where θu and θw are the subexpressions of θ
corresponding to u and w respectively. The node corresponding to θ is called the root
of T and, henceforth, we assume that arcs of T are oriented away from the root. For
example, the syntax tree for the compositional expression

(ABC B (BD BBE))B (ADF B FG)

is shown in Figure 1. Finally, by the depth of a node v of T we mean the length of the
(unique) path from the root of T to v.

Remark 4.1. Let θ be a compositional expression whose base sequence has length
n. Using the same arguments as in [27] for compositional expressions containing no
repetitions, one can prove that the syntax tree for θ has exactly n − 1 interior nodes
and, hence, 2n− 1 nodes.
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8 9 

BD BE 

6 7 

1 

 2  3 

4 5 ABC 

ADF FG 

ABC ▷ (BD ▷ BE) 

(ABC ▷ (BD ▷ BE)) ▷ (ADF ▷ FG)  

ADF ▷ FG 

BD ▷ BE 

Fig. 1. The syntax tree for the compositional expression

(ABC B (BD B BE)) B (ADF B FG).

4.1. The value of a compositional expression

Let θ be a compositional expression with base sequence σ = 〈X1, . . . , Xn〉. An inter-
pretation of θ over a given semifield Σ (a Σ-interpretation of θ, for short) is a sequence
I = 〈f1(X1), . . . , fn(Xn)〉 of Σ-distributions. Note that even if Xi = Xj for i 6= j, fi(Xi)
and fj(Xj) may be distinct.

Let θ′ be any subexpression of θ and let σ′ = 〈Xi, . . . , Xq〉, 1 ≤ i ≤ q ≤ n, be
the base sequence of θ′. The evaluation of θ′ under I consists in replacing each set
Xj , i ≤ j ≤ q, with the corresponding distribution fj(Xj) in I, and then applying the
composition operator if θ′ is a non-atomic subexpression (that is, if q > i). The result
will be referred to as the value of θ′ under I. If the value of θ′ under I is defined,
then it is a Σ-distribution, denoted by [θ′]I , whose scheme is precisely the frame of θ′.
For θ′ = θ, we obtain the value of θ under I; if it is defined, then we call I a valid
Σ-interpretation of θ.

The evaluation operator associated with θ over Σ [27] is the function mapping valid
Σ-interpretations I of θ to values of θ under I. Accordingly, we say that the model
generated by θ fits a Σ-distribution f(X), where X is the scheme of θ, if f(X) belongs
to the image of the evaluation operator associated with θ over Σ, that is, if there exists
a valid Σ-interpretation I of θ such that f(X) equals the value of θ under I.

The following is a straightforward consequence of part (i) of Theorem 3.2.

Lemma 4.2. Let θ be a compositional expression, and let θ′ = (θ1) B (θ2) be a (non-
atomic) subexpression of θ. If I is a valid Σ-interpretation of θ, then [θ1]I is the marginal
of [θ′]I on the frame of θ1.
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We shall state a result more general than Lemma 4.2. Let T be the syntax tree for
θ, and let v be a node of T for θ. Consider the subtree Tv of T rooted at v. We call the
leftmost branch of Tv the set of nodes that is recursively defined as follows:

— v belongs to the leftmost branch of Tv;

— if u belongs to the leftmost branch of Tv and u is not a leaf of Tv, then the left
child of u belongs to the leftmost branch of Tv.

In what follows, the deepest node in the leftmost branch of Tv will be referred to as the
leftmost leaf of Tv. Note that the leftmost branch of Tv is formed by the nodes of Tv

that are ancestors of the leftmost leaf of Tv (that is, by the leftmost leaf of Tv and by the
nodes of Tv that are its proper ancestors). Thus, if v is the root of T , then Tv = T and
the leftmost leaf of T corresponds to the first occurrence of the key of θ. For example,
the leftmost node of the syntax tree T shown in Figure 1 is node 4, and the leftmost
branch of T is {1, 2, 4}.

The following theorem generalizes Lemma 4.2.

Theorem 4.3. Let θ be a compositional expression, and let T be the syntax tree for
θ. Let v be an interior node of T , and let u be any node in the leftmost branch of Tv.
Let θv and θu be the subexpressions of θ corresponding to v and u, respectively. If I is
a valid Σ-interpretation of θ, then [θu]I is the marginal of [θv]I on the frame of θu.

P r o o f . Along the path from v to u, we repeatedly apply Lemma 4.2 from each node
to its left child. �

In the case that v is the root of T , Theorem 4.3 states that, for every node u in
the leftmost branch of T , the value of the subexpression θu of θ corresponding to u is
a marginal of the value of θ under I.

4.2. A general validity test

Let θ be a compositional expression with base sequence σ = 〈X1, . . . , Xn〉, and let I =
〈f1(X1), . . . , fn(Xn)〉 be a Σ-interpretation of θ, where Σ is any semifield. A procedure
for deciding whether I is or is not a valid Σ-interpretation of θ was given in [26]. The
procedure keeps up with the numeric computation of the values of the subexpressions
of θ under I during a traversal of the syntax tree T for θ according to the postorder
scheme [1], that is, we always visit an interior node after visiting its children (first its
left child and afterwards its right one) — see Figure 2. Moreover, each node v of T has
three “attributes”:

• a set of variables, denoted by Lv and called the label of v, which stands for the
frame of the subexpression θv of θ corresponding to v;

• a distribution with scheme Lv, denoted by Fv(Lv), which stands for the value of
θv under I;

• a relation with scheme Lv, denoted by rv, which stands for the support of Fv(Lv).
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8 9 

BD BE 

6 7 

1 

 2  3 

4 5 ABC 

ADF FG 

ABC ▷ (BD ▷ BE) 

(ABC ▷ (BD ▷ BE)) ▷ (ADF ▷ FG)  

ADF ▷ FG 

BD ▷ BE 

Fig. 2. The postorder traversal of the syntax tree of Fig. 1.

Initially, the three attributes are defined only for the leaves of T ; explicitly, if v is a leaf
corresponding to the atomic subexpression Xi for some i, then

Lv = Xi Fv(Lv) = fi(Xi) rv = ‖fi‖ .

During the postorder traversal of T , when we visit an interior node v having left
child u and right child w, from Theorem 3.1 we know the value of the subexpression θv

corresponding to v is defined if and only if

(i) either ru is an empty relation, or

(ii) if Lu ∩ Lw = ∅ then F ↓∅w 6= 0; otherwise, πLu∩Lw (ru) ⊆ ‖Fw
↓Lu∩Lw‖.

Therefore, in order to check whether the value of θv is defined, we need to compute
Fw
↓Lu∩Lw ; moreover, if Lu∩Lw 6= ∅, then we need to compute its support ‖Fw

↓Lu∩Lw‖
and, finally, check the inclusion πLu∩Lw

(ru) ⊆ ‖Fw
↓Lu∩Lw‖. If the value of θv is not

defined, then we stop the traversal of T ; otherwise, we set

• Lv := Lu ∪ Lw;

• Fv(Lv) := Fu(Lu)B Fw(Lw);

• rv := ru ./ rw (by part (ii) of Theorem 3.2).

Finally, I is a valid Σ-interpretation of θ if and only if the value of the subexpression
corresponding to the root of T (that is, the value of θ) is defined.
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4.3. A metric validity test

Consider now the case that Σ is a metric semifield (for example, Σ is the sum-product
semifield or a tropical semifield or the Boolean algebra). As was noted in [26] (page 12),
one can test a Σ-interpretation I of θ for validity without computing the distributions
associated with interior nodes of the syntax tree T since only their supports are needed.
Thus, no numeric computation is needed and only set operations are executed. We shall
see the importance of this result in Sections 6 and 7.

For the sake of completeness, we now give some details of the simplified version of the
validity test, which will be referred to as the metric validity test. Suppose that, during
the postorder traversal of T , we visit an interior node v with left child u and right child
w. By Theorem 3.4, the value of the subexpression θv of θ corresponding to v is defined
if and only if

(i) either ru is the empty relation, or

(ii) if Lu ∩ Lw = ∅ then rw is a non-empty relation; otherwise, πLu∩Lw
(ru) ⊆

πLu∩Lw
(rw).

If this is the case then we set Lv := Lu ∪ Lw and rv := ru ./ rw; otherwise, we stop the
traversal of T and conclude that I is not a valid Σ-interpretation of θ.

From the foregoing it follows that the metric validity test works with the syntax tree
T where each node v has only two “attributes”:

• the label Lv (which stands for the frame of the subexpression θv of θ corresponding
to v), and

• the relation rv (which stands for the support of the value of θv under I).

The following is an illustrative example.

Example 4.1. Consider the compositional expression

θ = (ABC B (BD BBE))B (ADF B FG)

whose syntax tree T was shown in Figure 1. Let

I = 〈f(ABC), g(BD), h(BE), k(ADF ), l(FG)〉

be a valid Σ-interpretation of θ, where Σ is any metric semifield. After the postorder
traversal of T (see Figure 2), we obtain

L4 = ABC r4 = ‖f‖
L8 = BD r8 = ‖g‖
L9 = BE r9 = ‖h‖
L5 = BDE r5 = r8 ./ r9 (= ‖g‖ ./ ‖h‖)
L2 = ABCDE r2 = r4 ./ r5 (= ‖f‖ ./ ‖g‖ ./ ‖h‖)
L6 = ADF r6 = ‖k‖
L7 = FG r7 = ‖l‖
L3 = ADFG r3 = r6 ./ r7 (= ‖k‖ ./ ‖l‖)
L1 = ABCDEFG r1 = r2 ./ r3 (= ‖f‖ ./ ‖g‖ ./ ‖h‖ ./ ‖k‖ ./ ‖l‖) .
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5. MARGINALIZATION PROBLEMS

Consider the following two marginalization problems where Σ is any semifield.

Single-marginal problem: Given a compositional expression θ, a valid Σ-interpretation
I of θ and a subset Y of the frame of θ, compute the marginal on Y of the value of θ
under I.

Marginal-representation problem: Given a compositional expression θ and a valid Σ-
interpretation I of θ, compute the marginals of the value of θ under I for all sets
featured in θ.

Since I is required to be a valid Σ-interpretation of θ, we present two distinct methods
depending on whether we want to solve the two marginalization problems above from
scratch or from the output of the validity test mentioned in Subsection 4.2. In the rest
of this section we discuss the latter case; the former case (an example was given in the
Introduction) will be discussed in Sections 6 and 7. So, we start with the syntax tree T
for θ where at each node v the following information is stored:

• the label Lv (which stands for the frame of the subexpression θv of θ corresponding
to v),

• the distribution Fv(Lv) (which stands for the value of θv under I),

• the relation rv (which stands for the support of Fv(Lv)).

For convenience, we assume that the algebraic operations are the ordinary addition
(+) and multiplication (×).

5.1. The single-marginal problem

We can solve the single-marginal problem by exploiting Theorem 4.3, which implies that,
for each node v in the leftmost branch of T , Fv(Lv) equals the marginal of [θ]I on Lv.
It follows that, if v is a node in the leftmost branch of T and Y ⊆ Lv, then the marginal
of [θ]I on Y , written m(Y ), can be obtained by marginalizing Fv(Lv) on Y . In order
to minimize the number of additions, we will choose the deepest node v in the leftmost
branch of T such that Y ⊆ Lv. (Note such a node always exists because Y is a subset of
the label of the root of T .) This node, which we call the node covering Y , can be found
by examinining the nodes in the leftmost branch of T either top-down or bottom-up.
Let v be the node covering Y . By Theorem 4.3 we have that m(Y ) = F ↓Yv and, by
Lemma 2.2, the support of m(Y ) is a subset of the projection on Y of the relation rv
(= ‖Fv‖) stored at v, that is, ‖m‖ ⊆ πY (rv). Therefore, for every Y -tuple y, since
m(y) = 0 for every Y -tuple y /∈ ‖m‖, we can compute m(y) as follows:

m(y) :=
{

0 if y /∈ πY (rv)∑
v∈rv:vY =y Fv(v) otherwise.

So, solving the single-marginal problem requires a number of additions equal to the size
|rv| of the relation rv stored at v. We now give an illustrative example.
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Example 5.1. Consider our compositional expression

θ = (ABC B (BD BBE))B (ADF B FG)

and let I = 〈f(ABC), g(BD), h(BE), k(ADF ), l(FG)〉 be a valid Σ-interpretation of θ,
where Σ is the real field. We want to compute the marginal m(ACD) of the value of θ
under I.

The syntax tree T for θ was shown in Figure 1. Recall that the leftmost branch of
T is {1, 2, 4} so that the node covering ACD is node 2 (L2 = ABCDE). Then, we first
compute the relation πACD(r2), where r2 = ‖f‖ ./ ‖g‖ ./ ‖h‖ (see Example 4.1). Next,
for every ACD-tuple (a, c,d), we set

m(a, c,d) :=
{

0 if (a, c,d) /∈ πACD(r2)∑
(a,b,c,d,e)∈r2

F2(a,b, c,d, e) otherwise.

So, computing m(ACD) requires a number of additions equal to |r2|, that is, to the size
of the relation ‖f‖ ./ ‖g‖ ./ ‖h‖.

5.2. The marginal-representation problem

We can solve the marginal-representation problem as follows. Let σ be the base sequence
of θ. First of all, we reduce σ by keeping only the first occurrences of sets featured in
θ. Let α be the resulting sequence. We also create a list β containing the nodes in the
leftmost branch of T ordered by decreasing depth (that is, from the leftmost leaf to the
root). Note that the key of θ is both the first term of α and the label of the first node
in β. At this point, we run the following procedure, which will be referred to as the α-β
procedure.

Until α is empty, repeat:

Step 1 Take the first set in α, denote it by X, and take the first node in β, denote
it by v.

Step 2 If X is not a subset of Lv, then delete v from β; otherwise,

(2.1) compute the marginal of Fv(Lv) on X;

(2.2) delete X from α.

In order to reduce the number of additions, we propose the following graphical im-
plementation of the α-β procedure. For each set X in α, we “mark” the leaf of T that
corresponds to the first occurrence of X in θ. Initially, we examine the first node in β,
say v, and set the marginal on Lv equal to the corresponding distribution in I. For each
other node v in β, we consider the subtree Tw of T , where w is the right child of v, and
repeatedly delete unmarked leaves of Tw. Let T ′w be the residual of Tw. If T ′w is not
empty, then do (see Figure 3):

— Compute the marginal of Fv(Lv) on Lw; denote it by mw(Lw).

— For each arc x→ y of T ′w, compute the marginal of mx(Lx) on Ly.
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v 

 u  w 

 x 

 y 

T ʹ′w 

 β 

Fig. 3. The top-down traversal of the subtree T ′
w.

Thus, after a top-down traversal of T ′w, we compute the marginals of Fv(Lv) on the
labels of marked leaves of T ′w. By Theorem 4.3, these marginals are precisely marginals
of the value of θ under I. Finally, we stop scanning β after visiting the node covering
the frame of θ.

We shall most likely be better off using the graphical implementation of the α-β
procedure if each subtree such as T ′w has relatively many marked leaves with respect to
the total number of its nodes. The following is an illustrative example.

Example 5.2. Consider our compositional expression

θ = (ABC B (BD BBE))B (ADF B FG)

and let I = 〈f(ABC), g(BD), h(BE), k(ADF ), l(FG)〉 be a valid Σ-interpretation of θ,
where Σ is the real field. We want to compute the marginals of the value of θ under I on
the sets ABC,BD,BE,ADF,FG. Recall that the leftmost branch of the syntax tree
T is {1, 2, 4} (see Figure 1). We first apply the α-β procedure, and then its graphical
implementation.

(α-β procedure) We first create the two lists

α = 〈ABC,BD,BE,ADF,FG〉 β = 〈4, 2, 1〉 .

When we examine the first node 4 of β, we

• set the wanted marginal on ABC equal to F4(ABC) = f(ABC), and
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• delete ABC from α which becomes 〈BD,BE,ADF,FG〉. Since BD is not a subset
of L4 = ABC, we delete the node 4 from β which becomes 〈2, 1〉.

When we examine node 2, we

• compute the wanted marginals on both BD and BE by marginalizing
F2(ABCDE), which requires 2 |r2| additions, and

• delete BD and BE from α which becomes 〈ADF,FG〉. Since ADF is not a subset
of L2 = ABCDE, we delete the node 2 from β which becomes 〈1〉.

When we examine node 1, we

• compute the wanted marginals on both ADF and FG by marginalizing
F1(ABCDEFG), which requires 2 |r1| additions, and

• delete ADF and FG from α which becomes empty.

So, the total number of additions is 2(|r1|+ |r2|).
(Graphical implementation of the α-β procedure) We first mark all the five leaves of T
(see Figure 4), and create the list β = 〈4, 2, 1〉. Note that the node covering the frame
of θ is the root (node 1) of T .

8 9 

BD BE 

6 7 

1 

 2  3 

4 5 ABC 

ADF FG 

ABC ▷ (BD ▷ BE) 

(ABC ▷ (BD ▷ BE)) ▷ (ADF ▷ FG)  

ADF ▷ FG 

BD ▷ BE 

Fig. 4. The traversal of the syntax tree with the graphical

implementation.

When we examine node 4, we set the wanted marginal m4(ABC) equal to F4(ABC)
(= f(ABC)).

When we examine node 2, we compute
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• the marginal m5(BDE) of F2(ABCDE), and

• the wanted marginals m8(BD) and m9(BE) by marginalizing m5(BDE)

which requires |r2|+ 2 |πBDE(r2)| additions.

When we examine node 1, we compute

• the marginal m3(ADFG) of F1(ABCDEFG), and

• the wanted marginals m6(ADF ) and m7(FG) by marginalizing m3(ADFG)

which requires |r1|+ 2 |πADFG(r1)| additions.

So, the total number of additions is |r1|+ |r2|+ 2(|πADFG(r1)|+ |πBDE(r2)|).

Therefore, the graphical implementation of the α-β procedure is convenient if

2(|πADFG(r1)|+ |πBDE(r2)|) < |r1|+ |r2| .

6. THE SINGLE-MARGINAL PROBLEM FROM SCRATCH

Consider again the single-marginal problem stated in Section 5:

Given a subset Y of the frame of θ, we want to compute the marginal m(Y ) of the
value of θ under a valid Σ-interpretation I of θ.

We want to solve it “from scratch”, that is, by taking as input the syntax tree T for
θ where the three attributes (label, distribution, relation) are given only for the leaves
of T . This case is of special interest when Σ is a metric semifield, since we can use
the metric validity test (see Subsection 4.3) which does not compute the values of the
subexpressions of θ corresponding to interior nodes of T .

As in Section 5 we assume that the algebraic operations are the ordinary addition (+)
and multiplication (×). (If Σ is a tropical semifield, we only need a change of notation
for addition, multiplication and division). The case that Σ is the Boolean algebra will
be discussed separately in Section 8.)

Since the values of the subexpressions of θ corresponding to interior nodes of T are
unknown, we cannot get m(Y ) by marginalizing [θv]I on Y , where v is the node covering
Y , as we did in Subsection 5.1. Instead, we first construct an algebraic expression M for
m(Y ) and, then, we evaluate M using the numeric values of the Σ-distributions in I. In
order to construct the algebraic expression M, we perform a postorder traversal of T and
stop after visiting the node covering Y . During the traversal of T , when a node v is
visited, we construct an algebraic expression Ev for the (unknown) value of θv under I,
where θv is the subexpression of θ corresponding to v. Moreover, if v is an interior node
with left child u and right child w, we set Lv := Lu∪Lw. Finally, after visiting the node
covering Y , say v, we take M to be the “reduced form” (see below) of the sum∑

A∈Lv\Y

Ev . (1)
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6.1. Symbolic computation

Let I = 〈f1(X1), . . . , fn(Xn)〉 be a (valid) Σ-interpretation of θ. We now show how
algebraic expressions Ev and M over I are constructed. To this end, we need some more
definitions.

Algebraic expressions over I view each fi as a symbolic name; they are defined re-
cursively as follows:

— each fi(Xi) is an algebraic expression and its scheme is Xi;

— if E and E′ are algebraic expressions with schemes S and S′ respectively, then
(E)× (E′) is an algebraic expression and its scheme is S ∪ S′;

— if E is an algebraic expression with scheme S, and if R is a proper subset of S,
then

∑
A∈S\R (E) is an algebraic expression and its scheme is R;

— if E is an algebraic expression with scheme S, then 1
E is an algebraic expression

and its scheme is S.

Henceforth, we make a parsimonious use of parentheses; moreover, we abridge an alge-
braic expression such as

∑
A∈Xi\Z fi(Xi) to f↓Zi .

An algebraic expression is factorable if, from a formal point of view, it can be written
as a product of two or more algebraic expressions, and non-factorable otherwise. The
factors of an algebraic expression E are non-factorable algebraic expressions F1, . . . , Fq,
q ≥ 1, such that E can be written as E = F1 × . . .× Fq. For example, the factors of the
algebraic expression

k(ADF )× l(FG)
k↓AD × l↓F

×
∑
B

f↓AB × g(BD)
g↓B

are

k(ADF ) l(FG)
∑
B

f↓AB × g(BD)
g↓B

1
k↓AD

1
l↓F

.

From a computational point of view, the factors of an algebraic expression can be iden-
tified during its syntactical analysis (parsing).

6.1.1. COMPUTING THE ALGEBRAIC EXPRESSION Ev

When a node v is visited during the postorder traversal of T , Ev is constructed as follows.
Let us distinguish two cases depending on whether v is a leaf or an interior node.

Case 1: v is a leaf. If Lv = Xi for some i, then we set Ev := fi(Xi).

Case 2: v is an interior node of T with left child u and right child w. Recall that
Lv = Lu ∪ Lw. Then, we take Ev to be the “reduced form” of the product

Eu × Ew∑
A∈Lw\Lu

Ew

, (2)
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which is obtained as follows. If Lv = Lu (that is, if Lw ⊆ Lu) then we soon set
Ev := Eu; otherwise, using suitable reduction rules (see below), we first simplify
the sum ∑

A∈Lw\Lu

Ew (3)

and, then, simplify the product
Eu × Ew

e
, (4)

where e is the result of the reduction of the sum (3). The result of the reduction
of the product (4) will give Ev.

We now detail the procedure for reducing the sum (3) and, then, the procedure for
reducing the product (4).

Reduction of the sum (3). By Theorem 4.3, reducing the sum
∑

A∈Lw\Lu
Ew is equivalent

to reducing the sum
∑

A∈Lz\Lu
Ez where z is the deepest node belonging to the leftmost

branch of the subtree Tw such that Lu ∩ Lw ⊆ Lz. After finding z, we perform the
following steps:

Step 1. We first find the factors of Ez, say F1, . . . , Fq, q ≥ 1; thus, Ez can be
written as

F1 × . . .× Fq . (5)

Let Si be the scheme of Fi, 1 ≤ i ≤ q; thus, Lz = ∪1≤i≤m Si. Let us construct an
(undirected) graph G with node set Q = {1, . . . , q}, where node i stands for the
factor Ei and is labeled by Si, and two nodes i and j, i 6= j, are joined by an edge if
their labels have a nonempty intersection, that is, if Si∩Sj 6= ∅. For each edge (i, j)
of G, we label (i, j) by the (nonempty) set Si∩Sj . Let G1, . . . ,Gk be the connected
components of the subgraph of G resulting from the deletion of the edges of G that
are labeled by subsets of Lu (or, equivalently, by subsets of Lu ∩ Lz). Let Qh be
the node set of Gh, and let Zh = ∪i∈Qh

Si, 1 ≤ h ≤ k. Note that, by construction,
for h 6= l one has that Zh ∩Zl ⊆ Lu and, hence, (Zh \Lu)∩ (Zl \Lu) = emptyset;
moreover, it may happen that Zh ⊆ Lu for some h and, if this is the case, then
Qh is a singleton.

By the associativity and commutative properties of ×, we re-write (5) as( ∏
i∈Q1

Fi

)
× . . .×

( ∏
i∈Qk

Fi

)

and re-write (3) as

∑
A∈Lw\Lu

(( ∏
i∈Q1

Fi

)
× . . .×

( ∏
i∈Qk

Fi

))
. (6)
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By exploiting the fact that (Zh \ Lu) ∩ (Zl \ Lu) = ∅ for h 6= l, we re-write (6) as( ∑
A∈Z1\Lu

∏
i∈Q1

Fi

)
× . . .×

( ∑
A∈Zk\Lu

∏
i∈Qk

Fi

)
. (7)

Note that, if Zh ⊆ Lu for some h, then Qh is a singleton and, if Qh = {j}, then∏
i∈Qh

Fi is nothing but Fj and
∑

A∈Zh\Lu

∏
i∈Qh

Fi is simply Fj .

Step 2. For each h, 1 ≤ h ≤ k, we reduce∑
A∈Zh\Lu

∏
i∈Qh

Fi . (8)

The result of the reduction, which we denote by eh, is obtained as follows. Let us
distinguish two cases depending on whether or not Zh ⊆ Lu.

Case 1: Zh ⊆ Lu. In this case, as we saw above, if Qh = {j} then, since∑
A∈Zh\Lu

∏
i∈Qh

Fi is simply Fj , we set eh := Fj .

Case 2: Zh \ Lu 6= ∅. In this case, we repeatedly apply the following three
operations until they cannot be longer applied:

(delete) If a variable B ∈ Zh \ Lu belongs to the scheme Sj of exactly
one Fj , j ∈ Qh, then delete B from Zh, and replace Fj with

∑
B Fj . In

the special case that Fj = fi(Xi) for some i, 1 ≤ i ≤ n, replace Fj with
f
↓Xi\{B}
i .

(cancel) If there exist i, j ∈ Qh, i 6= j, such that Fj is the multiplicative
inverse of Fi (that is, Fj = 1

Fi
), then cancel both Fi and Fj , that is, delete

both i and j from Qh.
(factor out) If there exists j ∈ Qh such that Sj ⊆ Lu, then move Fj to
the left side of

∑
A∈Zh\Lu

, and delete j from qh.

Step 3. Set e := e1 × . . .× ek.

Reduction of the product (4). We first find the factors of the product Eu × Ew
e . Then,

we cancel every pair of factors one being the multiplicative inverse of the other. The
result of the reduction will give Ev.

6.1.2. COMPUTING THE ALGEBRAIC EXPRESSION M

Let v be the node covering Y . In order to get M we need to reduce the sum (1), which
can be done, mutatis mutandis, by performing Steps 1-3 (see above). The result of the
reduction will give M.
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6.2. Numeric computation

Suppose that we have performed the postorder traversal of the subtree of T rooted at
the node v covering Y and have reduced the sum

∑
A∈Lv\Y Ev to obtain the algebraic

expression M of m(Y ). At this point, what remains to do is the numeric evaluation of
M. We could reduce the amount of numeric computation if we knew the support ‖m‖
of m(Y ), since m(y) = 0 for every Y -tuple y /∈ ‖m‖. But, in the general case we
don’t know ‖m‖; however, we can find a superset of ‖m‖ as follows. Let θv be the
subexpression of θ corresponding to v. By Theorem 4.3, the value of θv under I, that is,
[θv]I , is the marginal on Lv of the value of θ under I, and, hence, m(Y ) is the marginal
of [θv]I on Y . By Lemma 2.2, ‖m‖ ⊆ πY (‖[θv]I‖) where the equality holds if Σ is a
metric semifield (by Lemma 2.3). On the other hand, by part (ii) of Theorem 3.2, the
support ‖[θv]I‖ of [θv]I is given by the join of the relations stored at the leaves of the
subtree Tv. So, after computing ‖[θv]I‖ and, then, its projection πY (‖[θv]I‖) on Y , for
every Y -tuple y we can compute m(y) as follows:

if y /∈ πY (‖[θv]I‖), then set m(y) := 0; otherwise, compute m(y) by evaluating
the algebraic expression M using the numeric values of the Σ-distributions in I.

6.3. The marginalization procedure

From the foregoing it follows that the single-marginal problem can be solved using the
following procedure, where we make use of a Boolean variable lb(v) which will be true
if and only if v belongs to the leftmost branch of T . Initially, for each node of T , we
set lb(v) to true if v is the leftmost leaf of T , and to false otherwise. Then, we order
the nodes of T according to the postorder scheme and, for each node v, we perform the
following two steps:

Step 1. Let us distinguish the following two cases:

Case 1: v is a leaf. Set Ev := fi(Xi) for that i, for which Lv = Xi.

Case 2: v is an interior node of T . Let u and w be the left child and the
right child of v, respectively.
If lb(u) = true, then set lb(v) := true.
Set Lv := Lu ∪ Lw. If Lv = Lu (that is, if Lw ⊆ Lu) then set Ev := Eu;
otherwise, construct the reduction e of the sum

∑
A∈Lw\Lu

Ew and, then,

take Ev to be the reduction of the product Eu × Ew
e .

Step 2. If lb(v) = true and Y ⊆ Lv (v is the node covering Y ), then do:

(2.1) Set M to the reduction of the sum
∑

A∈Lv\Y Ev.

(2.2) Compute the join of the relations stored at the leaves of the subtree Tv.
Let r be the resulting relation.

(2.3) Compute the marginal m(Y ) as follows. For every Y -tuple y
if y /∈ πY (r), then set m(y) := 0; otherwise, compute m(y) by evaluating the
algebraic expression M using the numeric values of the Σ-distributions in I.

(2.4) Exit.



562 F.M. MALVESTUTO

Example 6.1. Consider our compositional expression

θ = (ABC B (BD BBE))B (ADF B FG)

and let I = 〈f(ABC), g(BD), h(BE), k(ADF ), l(FG)〉 be a valid Σ-interpretation of
θ, where Σ is the sum-product semifield. Suppose we want to compute the marginal
m(ACD) of the value of θ under I. We now apply the marginalization procedure above.
We shall see that the node covering ACD is node 2 of T (see Figure 5); therefore, during
the postorder traversal of T , we shall visit (in order) the nodes 4, 8, 9, 5 and 2 only.
Thus, we obtain:

L4 = ABC E4 = f(ABC) lb(4) = true

L8 = BD E8 = g(BD) lb(8) = false

L9 = BE E9 = h(BE) lb(9) = false

L5 = BDE E5 = g(BD)× h(BE)
h↓B

lb(5) = false

L2 = ABCDE E2 = f(ABC)× g(BD)× h(BE)
g↓B × h↓B

lb(2) = true

Since lb(2) = true and ACD ⊆ L2 = ABCDE we stop the traversal of T (see Figure 5).

8 9 

BD BE 

6 7 

1 

 2  3 

4 5 ABC 

ADF FG 

ABC ▷ (BD ▷ BE) 

(ABC ▷ (BD ▷ BE)) ▷ (ADF ▷ FG)  

ADF ▷ FG 

BD ▷ BE 

Fig. 5. The (partial) postorder traversal of the syntax tree of Fig. 3.

Note that, when we computed E2, we reduced the sum
∑

DE E5 simply by reducing the
sum

∑
D E8 (= g↓B) since L4 ∩ L5 (= B) ⊆ L8 (= BD).
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Given E2, we reduce the sum∑
BE

E2 =
∑
BE

f(ABC)× g(BD)× h(BE)
g↓B × h↓B

and set M to the result of the reduction; thus, we obtain

M =
∑
B

f(ABC)× g(BD)
g↓B

.

Next, we compute the join ‖f‖ ./ ‖g‖ ./ ‖h‖ of the supports of the distributions associ-
ated with the leaves 4, 8 and 9 of the subtree T2.
Finally, for every ACD-tuple (a, c,d), we compute m(a, c,d) as follows:

m(a, c,d) :=


0 if (a, c,d) /∈ πACD(‖f‖ ./ ‖g‖ ./ ‖h‖)∑
b

f(a,b, c)× g(b,d)
g↓B(b)

otherwise.

Since computing g↓B requires a number of additions equal to the size of the relation
‖g‖, computing m(ACD) requires a number of algebraic operations equal to the sum of
the sizes of the relations ‖g‖ and ‖f‖ ./ ‖g‖ ./ ‖h‖, which was the number of additions
needed to compute m(ACD) in Example 5.1.

7. THE MARGINAL-REPRESENTATION PROBLEM FROM SCRATCH

Consider again the marginal-representation problem stated in Section 5:
Given a valid Σ-interpretation I of compositional expressions θ, we want to compute

the marginals of the value of θ for all sets featured in θ.
As in Section 6, we want to solve it “from scratch”, that is, by taking as input the

syntax tree T for θ where the three attributes (label, distribution, relation) are given
only for the leaves of T ; moreover, we assume that the algebraic operations are the
ordinary addition (+) and multiplication (×).

Of course, the marginal-representation problem can be solved by repeating the marginal-
ization procedure of Section 6 for each set featured in θ, but we can do better with only
one traversal of T using the graphical implementation of the α-β procedure developed
in Subsection 5.2. Explicitly, we perform the postorder traversal of T and stop after
visiting the node covering the frame of θ. When we visit a node v, we construct Ev as
we did in Subsection 6.1.1; moreover, if v belongs the leftmost branch of T (that is, if
lb(v) = true), then

— We set Mv := Ev.

— If v is a leaf, then we set rv to the relation stored at v.

— If v is an interior node with left child u and right child w, we set rw to the join
of the relations stored at the leaves of the subtree Tw and set rv := ru ./ rw.
Moreover, if Tw contains marked leaves (that is, if Tw contains at least one leaf
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that corresponds to the first occurence of some set in θ), then we repeatedly delete
unmarked leaves of Tw. Let T ′w be the residual of Tw. At this point, in order to
compute the algebraic expression Mu of the marginal mu(Lu) for each marked leaf
u of T ′w, we backtrack (as in Figure 3) by performing the following two steps:

Step 1. Reduce the sum
∑

A∈Lv\Lw
Mv and let Mw be the result of the reduc-

tion.

Step 2. For each arc x → y of T ′w, reduce the sum
∑

A∈Lx\Ly
Mx and let My

be the result of the reduction.

When a (marked) leaf u of T ′w is reached, we compute the relation πLu
(rv) and,

finally, the wanted marginal mu(Lu) as follows: for every Lu-tuple t, if t /∈ πLu(rv),
then we set mu(t) = 0; otherwise, we compute mu(t) by evaluating Mu.

We now give an illustrative example.

Example 7.1. Consider our compositional expression

θ = (ABC B (BD BBE))B (ADF B FG)

and let I = 〈f(ABC), g(BD), h(BE), k(ADF ), l(FG)〉 be a valid Σ-interpretation of
θ, where Σ is the sum-product semifield. We now apply the marginal-representation
procedure above to compute the marginals of the value of θ under I on ABC, BD, BE,
ADF and FG.

Since θ contains no repetitions, all the five leaves (nodes 4, 6, 7, 8, 9) of the syntax
tree T are marked (see Figure 6) and, accordingly, the wanted marginals will be denoted
by m4(ABC), m6(ADF ), m7(FG), m8(BD) and m9(BE).

• When we visit node 4, we have E4 = f(ABC). Since lb(4) = true, we set

M4 := E4 = f(ABC) r4 = ‖f‖ .

Since node 4 is a marked leaf, we also evaluate M4 and the result of the evaluation
will be the marginal m4(ABC). Explicitly, m4(a,b, c) = 0 if (a,b, c) /∈ r4 (= ‖f‖),
and m4(a,b, c) = f(a,b, c) otherwise.

• When we visit node 8, we have E8 = g(BD) and lb(8) = false.

• When we visit node 9, we have E9 = h(BE) and lb(9) = false.

• When we visit node 5, we have E5 = g(BD)× h(BE)
h↓B

and lb(5) = false.

• When we visit node 2, we have E2 = f(ABC)× g(BD)× h(BE)
g↓B × h↓B

and lb(2) = true

(since lb(4) = true). Since lb(2) = true and the subtree T5 has two marked leaves,
we first compute the join r5 of the relations stored at the leaves 8 and 9 of T5

r5 := ‖g‖ ./ ‖h‖
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8 9 

BD BE 

6 7 

1 

 2  3 

4 5 ABC 

ADF FG 

ABC ▷ (BD ▷ BE) 

(ABC ▷ (BD ▷ BE)) ▷ (ADF ▷ FG)  

ADF ▷ FG 

BD ▷ BE 

Fig. 6. The postorder traversal of a syntax tree with two

backtrackings (dashed lines).

and then
r2 := r4 ./ r5 .

At this point, we backtrack. The subtree T5 cannot be reduced (T ′5 = T5). Then,
we reduce the sum ∑

AC

E2 =
∑
AC

f(ABC)× g(BD)× h(BE)
g↓B × h↓B

and set M5 to the result of the reduction; thus, we obtain

M5 =
f↓B × g(BD)× h(BE)

g↓B × h↓B
.

At this point, we start a top-down traversal of the subtree T5. When the arcs
5 → 8 and 5 → 9 are traversed, we reach the marked leaves 8 and 9. Then, we
set M8 and M9 to the reductions of the two sums

∑
E M5 and

∑
D M5 respectively;

thus, we obtain

M8 =
f↓B × g(BD)

g↓B
M9 =

f↓B × h(BE)
h↓B

.

Next, we compute the two relations πBD(r2) and πBE(r2) and, then m8(BD) and
m9(BE) by evaluating M8 and M9.

• When we visit nodes 6, 7 and 3, we obtain
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E6 = k(ADF ) lb(6) = false

E7 = l(FG) lb(7) = false

E3 = k(ADF )× l(FG)
l↓F

lb(3) = false .

• When we visit node 1, we obtain

E1 =
f(ABC)× g(BD)× h(BE)× k(ADF )× l(FG)

g↓B × h↓B × k↓AD × l↓F

and lb(1) = true (since lb(2) = true). Since lb(1) = true and the subtree T3 has
two marked leaves, we first compute the join of the relations stored at the leaves
6 and 7 of T3

r3 := ‖k‖ ./ ‖l‖

and then
r1 := r2 ./ r3 .

At this point, we backtrack. The subtree T3 has two marked leaves and cannot be
reduced. Then, we reduce the sum∑

BCE

E1 =
∑
BCE

f(ABC)× g(BD)× h(BE)× k(ADF )× l(FG)
g↓B × h↓B × k↓AD × l↓F

and set M3 to the result of the reduction; thus, we obtain

M3 =
k(ADF )× l(FG)

k↓AD × l↓F
×
∑
B

f↓AB × g(BD)
g↓B

.

At this point, we start a top-down traversal of the subtree T3. When the arcs
3 → 6 and 3 → 7 are traversed, we reach the marked leaves 6 and 7. Then, we
set M6 and M7 to the reductions of the two sums

∑
G M3 and

∑
AD M3 respectively;

thus, we obtain

M6 =
k(ADF )
k↓AD

×
∑
B

f↓AB × g(BD)
g↓B

M7 =
l(FG)
l↓F

×
∑
AD

(
k(ADF )
k↓AD

×
∑
B

f↓AB × g(BD)
g↓B

)
.

Next, we compute the relations πADF (r1) and πFG(r1) and, finally, compute the
wanted marginals m6(ADF ) and m7(FG).

After a pedantic analysis of the number of additions, multiplications and divisions
executed, we find that the computational complexity (measured in terms of algebraic
operations) is of the same order as in Example 5.2.
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8. MARGINALIZATION WITH BOOLEAN DATA

For a Boolean distribution f(X) one has that f(x) = true if and only if x ∈ ‖f‖ so
that f(X) is uniquely determined by its support ‖f‖. Therefore, we can solve the two
marginalization problems as follows:

Boolean Marginalization Procedure

(Step 1) We perform a postorder traversal of T and stop after examining the
node v covering Y .
(Step 2) Compute the join rv of the relations stored at the leaves of the
subtree Tv.
(Step 3) For every Y -tuple y, set m(y) to true if and only if y ∈ πY (rv).

Boolean Marginal-Representation Procedure

We perform a postorder traversal of T and stop after examining the node covering
the frame of θ.

When a node v is visited, if lb(v) = true then do:

Case 1: v is a (marked) leaf. Set rv to the relation stored at v. For every
Lv-tuple t, set mv(t) to true if and only if t ∈ rv.
Case 2: v is an interior node with left child u and right child w, we set
rw to the join of the relations stored at the leaves of the subtree Tw and
set rv := ru ./ rw. If Tw contains marked leaves, then repeatedly delete
unmarked leaves of Tw. Let T ′w be the residual of Tw. For each leaf u of T ′w
compute the relation πLu(rv) and, for every Lu-tuple t, set mu(t) to true if
and only if t ∈ πLu

(rv).

9. A CLOSING NOTE

Given a compositional expression θ, let v be the root of syntax tree for θ. The algebraic
expression Ev over a Σ-interpretation I of θ can be viewed as an algebraic expression of
the evaluation operator associated with θ over Σ (see Subsection 4.1). Then, it is natural
to introduce the following notion of equivalence between compositional expressions: two
compositional expressions θ and η are algebraically equivalent over Σ if the evaluation
operators associated with θ and η over Σ have the same algebraic expressions.

Example 9.1. Consider the following three compositional expressions:

θ = AB BAC η = (AB BAC)BBC ζ = (AB BAC)B (AB BBC) .

Let Σ be the real field or the sum-product semifield. The evaluation operators associated
with θ, η and ζ have the same algebraic expression

f(AB)× g(AC)
g↓A

and, hence, θ, η and ζ are pairwise algebraically equivalent over Σ.
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We leave to future research the comparison of algebraic equivalence with the notion
of equivalence introduced in [27] and with “Markov equivalence” [13, 22].

10. APPENDIX

A semifield [27] is a tuple Σ = 〈S, (⊕, 0), (⊗, 1)〉, where S is a set and

(P1) (S,⊕, 0) is a commutative monoid :

– the operation ⊕ is associative and commutative,

– 0 is the additive identity (that, is a⊕ 0 = a for all a ∈ S);

(P2) (S,⊗, 1) is a zero-divisor free commutative group:

– the operation ⊗ is associative and commutative,

– 1 is the multiplicative identity (that is, a⊗ 1 = a for all a ∈ S),

– for all a ∈ S \ {0} there is an element of S, denoted by a, such that a⊗ a = 1,

– a⊗ b = 0 if and only if a = 0 or b = 0;

(P3) the distributive law holds, that is, a⊗(b⊕c) = (a⊗b)⊕(a⊗c) for all (a, b, c) ∈ S3.

S (⊕, 0) (⊗, 1) short name
(−∞,+∞) (+, 0) (×, 1) real field

[0,∞) (+, 0) (×, 1) sum-product semifield
(0,∞] (min,∞) (×, 1) min-product semifield

(−∞,+∞] (min,+∞) (+, 0) min-sum semifield
[0,∞) (max, 0) (×, 1) max-product semifield

[−∞,+∞) (max,−∞) (+, 0) max-sum semifield
{false, true} (∨, false) (∧, true) Boolean algebra
{0, 1} (+ mod 2, 0) (×, 1) Galois field GF (2)

Tab. 3. A short list of semifields.

Table 3 contains a short list of semifields that have found applications in information
theory [2, 23] as well as in probability theory, statistical physics, language theory (see
[5, 29]), in information systems [17, 18, 19, 20, 21] in relational databases [3] and in
multidimensional databases [26].

The min-product, min-sum, max-product and max-sum semifields are called tropical
algebras [5, 25, 29]. A semifield is metric [27] if it is zero-sum free:

if a⊕ b = 0 then a = b = 0.

Examples of metric semifields are the sum-product and the tropical semifields. In these
semifields, the multiplicative inverse a of a ∈ S \ {0} will be written as follows:
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— if Σ is the sum-product, min-product or max-product semifield, a is written as 1
a ;

— if Σ is the min-sum or max-sum semifield, a is written as −a.

The Boolean algebra provides another example of a metric semifield. In this case, the
multiplicative inverse of true is true.

(Received February 6, 2015)
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[6] R. Jiroušek: Composition of probability measures on finite spaces. In: Proc. XIII Inter-
national Conf. on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.),
Morgan Kaufmann, San Francisco 1997, pp. 274–281.
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