Kybernetika 51 no. 3, 486-507, 2015

Rationality principles for preferences on belief functions

Giulianella Coletti, Davide Petturiti and Barbara VantaggiDOI: 10.14736/kyb-2015-3-0486


A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.


generalized lottery, preference relation, belief function, linear utility, Choquet expected utility, rationality conditions


91B06, 91B16


  1. A. Chateauneuf: Modeling attitudes towards uncertainty and risk through the use of Choquet integral. Ann. Oper. Res. 52 (1994), 3-20.   DOI:10.1007/bf02032158
  2. A. Chateauneuf and M. Cohen: Choquet expected utility model: a new approach to individual behavior under uncertainty and social choice welfare. In: Fuzzy Meas. and Int: Th. and Appl., Physica, Heidelberg 2000, pp. 289-314.   CrossRef
  3. G. Choquet: Theory of capacities. Ann. Inst. Fourier 5 (1954), 131-295.   DOI:10.5802/aif.53
  4. G. Coletti, D. Petturiti and B. Vantaggi: Choquet expected utility representation of preferences on generalized lotteries. In: IPMU 2014 (A. Laurent et al., eds.), Part II, CCIS 443, pp. 444-453.   DOI:10.1007/978-3-319-08855-6_45
  5. G. Coletti and G. Regoli: How can an expert system help in choosing the optimal decision? Theory and Decision 33 (1992), 3, 253-264.   DOI:10.1007/bf00133644
  6. G. Coletti and R. Scozzafava: Toward a general theory of conditional beliefs. Int. J. Intell. Sys. 21 (2006), 229-259.   DOI:10.1002/int.20133
  7. G. Coletti, R. Scozzafava and B. Vantaggi: Inferential processes leading to possibility and necessity. Inform. Sci. 245 (2013), 132-145.   DOI:10.1016/j.ins.2012.10.034
  8. A. P. Dempster: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 2, 325-339.   DOI:10.1214/aoms/1177698950
  9. D. Denneberg: Non-additive Measure and Integral. Theory and Decision Library: Series B, Vol. 27. Kluwer Academic, Dordrecht, Boston 1994.   DOI:10.1007/978-94-017-2434-0
  10. J. Dubra, F. Maccheroni and E. A. Ok: Expected utility theory without the completeness axiom. J. Econom. Theory 115 (2004), 118-133.   DOI:10.1016/s0022-0531(03)00166-2
  11. D. Ellsberg: Risk, ambiguity and the Savage axioms. Quart. J. Econ. 75 (1061), 643-669.   DOI:10.2307/1884324
  12. R. Fagin and J. Y. Halpern: Uncertainty, belief and probability. Comput. Intell. 7 (1991), 3, 160-173.   DOI:10.1111/j.1467-8640.1991.tb00391.x
  13. D. Gale: The Theory of Linear Economic Models. McGraw Hill 1960.   CrossRef
  14. I. Gilboa and D. Schmeidler: Maxmin expected utility with non-unique prior. J. Math. Econ. 18 (1989), 2, 141-153.   DOI:10.1016/0304-4068(89)90018-9
  15. I. Gilboa and D. Schmeidler: Additive representations of non-additive measures and the Choquet integral. Ann. Oper. Res. 52 (1994), 43-65.   DOI:10.1007/bf02032160
  16. I. N. Herstein and J. Milnor: An axiomatic approach to measurable utility. Econometrica 21 (1953), 2, 291-297.   DOI:10.2307/1905540
  17. J. Y. Jaffray: Linear utility theory for belief functions. Oper. Res. Let. 8 (1989), 2, 107-112.   DOI:10.1016/0167-6377(89)90010-2
  18. M. Mc Cord and B. de Neufville: Lottery equivalents: Reduction of the certainty effect problem in utility assessment    CrossRef
  19. E. Miranda, G. de Cooman and I. Couso: Lower previsions induced by multi-valued mappings. J. Stat. Plan. Inf. 133 (2005), 173-197.   DOI:10.1016/j.jspi.2004.03.005
  20. R. Nau: The shape of incomplete preferences. Ann. Statist. 34 (2006), 5, 2430-2448.   DOI:10.1214/009053606000000740
  21. J. Quiggin: A theory of anticipated utility. J. Econom. Beh. Org. 3 (1982), 323-343.   DOI:10.1016/0167-2681(82)90008-7
  22. L. Savage: The Foundations of Statistics. Wiley, New York 1954.   CrossRef
  23. G. Shafer: A Mathematical Theory of Evidence. Princeton University Press 1976.   CrossRef
  24. D. Schmeidler: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 3, 571-587. (First version: Subjective expected utility without additivity, Forder Institute Working Paper (1982)).   DOI:10.2307/1911053
  25. D. Schmeidler: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986, 2, 255-261.   DOI:10.1090/s0002-9939-1986-0835875-8
  26. P. Smets: Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reas. 38 (2005), 2, 133-147.   DOI:10.1016/j.ijar.2004.05.003
  27. M. Troffaes: Decision making under uncertainty using imprecise probabilities. Int. J. Approx. Reas. 45 (2007), 1, 17-29.   DOI:10.1016/j.ijar.2006.06.001
  28. J. von Neumann and O. Morgenstern: Theory of Games and Economic Behavior. Princeton University Press 1944.   DOI:10.2307/2572550
  29. P. Walley: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991.   DOI:10.1007/978-1-4899-3472-7
  30. P. Wakker: Under stochastic dominance Choquet-expected utility and anticipated utility are identical. Theory and Decis. 29 (1990), 2, 119-132.   DOI:10.1007/bf00126589
  31. M. Yaari: The dual theory of choice under risk. Econometrica 55 (1987), 95-115.   DOI:10.2307/1911158