ERRATUM: EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS AND INDEPENDENCE RELATIONS IN COMPOSITIONAL MODELS

Francesco M. Malvestuto

In the Closing Note of the article [1] (see page 352), the number of simple compositional expressions was calculated incorrectly. Recall that a compositional expression is simple if it contains exactly one subexpression of the form " $X \triangleright Y$ ". The correct number s_{n}^{*} of simple compositional expressions with n sets, $n \geq 2$, is

$$
s_{n}^{*}= \begin{cases}2 & \text { if } n=2 \tag{1}\\ 2 \cdot(n-2) \cdot n! & \text { otherwise }\end{cases}
$$

which for $n>3$ is larger than that reported in [1]. The error has no effect on the rest of the article, except that the table reported at page 353 of the article should be

n	s_{n}	s_{n}^{*}	e_{n}
2	2	2	2
3	6	12	12
4	24	96	120
5	120	720	1680

In order to prove (1), consider first the simple compositional expressions with a given base sequence, say $\left(X_{1}, \ldots, X_{n}\right)$. Such a simple compositional expression contains exactly one subexpression of the form " $X_{i} \triangleright X_{i+1}$ " for some $i, 1 \leq i \leq n-1$.

If $n=2$ then trivially we have only one simple compositional expression, namely $X_{1} \triangleright X_{2}$.

If $n=3$ then we have only two simple compositional expression, namely $\left(X_{1} \triangleright X_{2}\right) \triangleright$ X_{3} and $X_{1} \triangleright\left(X_{2} \triangleright X_{3}\right)$.

Assume that $n \geq 4$ and let us distinguish the following three cases.
Case 1: $i=1$. We have only the following simple compositional expression

$$
\left(\ldots\left(X_{1} \triangleright X_{2}\right) \triangleright \ldots\right) \triangleright X_{n}
$$

DOI: 10.14736/kyb-2015-2-0387

Case 2: $i=n-1$. We have only the following simple compositional expression

$$
X_{1} \triangleright\left(X_{2} \ldots \triangleright\left(X_{n-1} \triangleright X_{n}\right) \ldots\right)
$$

Case 3: $2 \leq i \leq n-2$. We have only the following two simple compositional expressions

$$
\begin{aligned}
& \left(\ldots\left(\left(X_{1} \triangleright\left(\ldots \triangleright\left(X_{i} \triangleright X_{i+1}\right) \ldots\right)\right) \triangleright X_{i+2}\right) \triangleright \ldots X_{n-1}\right) \triangleright X_{n} \\
& X_{1} \triangleright\left(\ldots \triangleright\left(\left(\ldots\left(\left(X_{i} \triangleright X_{i+1}\right) \triangleright X_{i+2}\right) \triangleright \ldots X_{n-1}\right) \triangleright X_{n}\right) \ldots\right) .
\end{aligned}
$$

Therefore, for $n \geq 3$ the number of simple compositional expressions with the same base sequence is $2+2 \cdot(n-3)=2 \cdot(n-2)$. Finally, since the number of possible base sequences is n !, we get (11).
(Received February 28, 2015)

REFERENCES

[1] F.M. Malvestuto: Equivalence of compositional expressions and independence relations in compositional models. Kybernetika 50 (2014), 322-362. DOI:10.14736/kyb-2014-3-0322

Francesco M. Malvestuto, Department of Computer Science, Sapienza University of Rome, Via Salaria 113, 00198 Rome. Italy.
e-mail: malvestuto@di.uniroma1.it

