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ALGEBRAIC INTEGRABILITY
FOR MINIMUM ENERGY CURVES

Ivan Yudin and Fátima Silva Leite

This paper deals with integrability issues of the Euler–Lagrange equations associated to a
variational problem, where the energy function depends on acceleration and drag. Although
the motivation came from applications to path planning of underwater robot manipulators,
the approach is rather theoretical and the main difficulties result from the fact that the power
needed to push an object through a fluid increases as the cube of its speed.
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1. INTRODUCTION

This work is motivated by applications to path planning of underwater robot manipu-
lators, where the objective is to find trajectories that minimize acceleration and drag
forces, while the manipulator moves from an initial position to a target position, with
prescribed initial and final velocities.

Drag is a mechanical force generated by the interaction and contact of a solid body
with a fluid. Drag depends on the properties of the fluid and on the size, shape, and
speed of the moving body. An underwater vehicle suffers the interaction with the water
viscosity much more than an aerial vehicle suffers the air resistance.

Problems dealing with minimal energy trajectories for aerial vehicles typically ignore
air resistance and only minimize acceleration. This might result from the fact that air
resistance may be neglected, specially when compared with a liquid resistance. Under
this assumption, the resulting trajectories are geometric cubic polynomials on the con-
figuration space of the vehicle. These curves, which are generalizations to Riemannian
manifolds of the classical and well established cubic polynomials on Euclidean spaces,
have been first introduced by Noakes et al. in [7] and further developed, for instance,
in [1] and [2]. These optimization problems are formulated via a variational approach
and the corresponding Euler–Lagrange equations have been derived in the general con-
text of manifolds. In spite of that, the resulting curves are far from being completely
understood due to challenging questions of geometric integration.
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Due to fluid traction, the energy consumption of an underwater manipulator is greater
than that of an aerial manipulator, and in extreme environments, such as in deep ocean,
it is difficult to supply energy to manipulators. So, it is crucial to determine optimal
trajectories of the vehicle that minimize not just the power needed to overcome changes
in velocity but also the drag forces. We refer to [6] and [5] for some insights related to
these problems.

The power needed to push an object through a fluid increases as the cube of its speed.
This fact might be another reason for the lack of results when the energy function, besides
depending on the norm of acceleration, also depends on the drag forces. Indeed, as it
will become clear in this article, the addition of a term corresponding to the drag power
substantially increases the complexity of finding solutions even when the geometry of the
configuration space is not taken into consideration and the corresponding optimization
problem is only formulated in Euclidean space. In the absence of drag, the problem
becomes trivial and the Euler–Lagrange equations have a unique solution which is a
cubic polynomial whose coefficients are uniquely determined by the boundary conditions.

Our objective here is to study algebraic integrability properties of the Euler–Lagrange
equation associated to a variational problem whose solutions are energy curves that
minimize acceleration and drag. This problem turns out to be very difficult to solve,
but using the theory of Darboux polynomials we have been able to give some partial
answers.

This article is organized as follows. In Session 2 we formulate the variational problem,
derive the corresponding Euler–Lagrange equations and prove its local integrability. We
also show that every solution of these equations is an integral curve of a certain quadratic
vector field. In order to find first integrals of this vector field, using the Darboux theory
of integrability for polynomial vector fields, we introduce, in Section 3, the essentials
of this theory. The main results appear in Section 4, were, in particular, several first
integrals of the vector field associated to our problem are identified. The paper ends
with a short conclusion.

2. VARIATIONAL PROBLEM

In this section we formulate the variational problem associated to the double objective
of minimizing acceleration and drag, and prove local integrability of the corresponding
Euler–Lagrange equations.

Let n be any natural number and τ a positive real parameter. Consider the function
L : R3n+1 → R defined by

L (a1, . . . , an, p1, . . . , pn, x1, . . . , xn, t) =
(
a2
1 + · · ·+ a2

n

)
+ τ

(
p2
1 + · · ·+ p2

n

)3/2
.

We are interested to study the solution of the variational problem

min
x∈Ω

∫ T

0

L
(

d2x

dt
,
dx

dt
, x, t

)
dt, (1)

where Ω is the set of two-times differentiable functions from [0, T ] ⊂ R to Rn, such that
x(0), x(T ), dx

dt (0), and dx
dt (T ) are fixed.
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This is the situation when the Lagrangian L is written as

L
(

d2x

dt
,
dx

dt
, x, t

)
=

〈
d2x

dt2
,
d2x

dt2

〉
+ τ

〈
dx

dt
,
dx

dt

〉3/2

. (2)

The general theory of calculus of variations tell us that the Euler–Lagrange equations
for a minimization problem of type (1) are the following, valid for every 1 ≤ i ≤ n:

d2

dt2
∂L
∂ai

(
d2x

dt2
,
dx

dt
, x, t

)
− d

dt

∂L
∂pi

(
d2x

dt2
,
dx

dt
, x, t

)
+

∂L
∂xi

(
d2x

dt2
,
dx

dt
, x, t

)
= 0. (3)

In our case, we have

∂L
∂ai

= 2ai

∂L
∂pi

= 3τpi

(
p2
1 + · · ·+ p2

n

)1/2

∂L
∂xi

= 0.

Therefore, (3) becomes

d
dt

(
2
d2ui

dt2
− 3τui

(
u2

1 + · · ·+ u2
n

)1/2
)

= 0, 1 ≤ i ≤ n, (4)

where ui = dxi

dt . Let ui+n := dui

dt , 1 ≤ i ≤ n. Then we get the Euler–Lagrange equations
associated to our problem as the system of ordinary differential equations{

dui

dt = ui+n, 1 ≤ i ≤ n
dui+n

dt = 3
2τui

(
u2

1 + · · ·+ u2
n

)1/2 + ci, 1 ≤ i ≤ n
(5)

where ci are constants of integration of (4). Let us define the functions fi on the space
R2n+1 by{

fi (c1, . . . , cn, p1, . . . , pn, a1, . . . , an, t) = ai, 1 ≤ i ≤ n

fi+n (c1, . . . , cn, p1, . . . , pn, a1, . . . , an, t) = 3
2τpi

(
p2
1 + · · ·+ p2

n

)1/2
, 1 ≤ i ≤ n

.

The resulting map f : R3n+1 → R2n is of class C1 on R3n+1. This is obvious for all
points outside the hyperplane p1 = · · · = pn = 0. We also have

∂fi

∂aj
= δij ,

∂fi

∂pj
= 0,

∂fi+n

∂aj
= 0,

for all 1 ≤ i, j ≤ n. Thus it is enough to prove that the functions ∂fi+n

∂pj
, 1 ≤ i, j ≤ n,

are continuous at the points (c1, . . . , cn, a1, . . . , an, 0, . . . , 0, t). We have

∂fi+n

∂pj
=

3
2
τ

(
δij

(
p2
1 + · · ·+ p2

n

)1/2
+ pipj(p2

1 + · · ·+ p2
n)−1/2

)
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at any point with at least one pk 6= 0, 1 ≤ k ≤ n. As (p2
1 + · · ·+ p2

n)1/2 is a continuous
function on R2n+1, we have only to verify that for every pair 1 ≤ i, j ≤ n, the function
pipj

(
p2
1 + · · ·+ p2

n

)−1/2 can be continuously extended at points with p1 = · · · = pn = 0.
Namely, we will show that it can be extended by zero value at these points. In the
points, where pipj = 0 and at least one pk 6= 0, we have∣∣∣pipj

(
p2
1 + · · ·+ p2

n

)−1/2
∣∣∣ = 0.

Consider the point with pipj 6= 0 and |pk| < ε for all 1 ≤ k ≤ n. Then∣∣∣pipj

(
p2
1 + · · ·+ p2

n

)−1/2
∣∣∣ ≤ ∣∣∣pipj(p2

j )
−1/2

∣∣∣ = |pi| < ε.

This shows that the function

(c, p, a, x, t) 7→

{
pipj(p2

1 + · · ·+ p2
n)−1/2, p2

1 + · · ·+ p2
n 6= 0

0, p1 = · · · = pn = 0

is continuous.

Theorem 2.1. The system (5) has a unique solution η (t, t0, u0, c) defined in a suffi-
ciently small neighbourhood of t0, for every choice of parameters c = (c1, . . . , cn) and
any choice of the initial conditions u(t0) = u0.

P r o o f . Since the map fc : R2n+1 → R defined by

fc (u1, . . . , u2n, t) = f(c1, . . . , cn, u1, . . . , u2n, t)

is of class C1 for any choice of parameters c1, . . . , cn, we get that they are uniformly
Lipschitz continuous with respect to u on any compact subset of R2n+1. Now, choose
any compact rectangle |t− t0| ≤ a, |u− u0| ≤ b arround (u0, t0) ∈ R2n+1. By the
Picard–Lindelöf Theorem (see e. g. [4, Theorem 1.1]), there is an α such that (5) with
the initial condition u(t0) = u0 has a unique solution on the interval |t− t0| ≤ α. �

Let us change notation and rewrite (5) in the form{
du
dt = v
dv
dt = 3

2τu ‖u‖+ c,
(6)

where u, v : R → Rn are unknown functions and c ∈ Rn is a parameter. Then, we have

d ‖u‖3

dt
=

d(u2
1 + · · ·+ u2

n)3/2

dt
=

3
2
(u2

1 + · · ·+ u2
n)1/2

n∑
i=1

2uivi = 3 ‖u‖ 〈u, v〉

and
d 〈v, v〉

dt
= 2

〈
v,

3
2
τu ‖u‖+ c

〉
= 3τ ‖u‖ 〈v, u〉+ 2 〈v, c〉 .
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We also have
d 〈u, c〉

dt
= 〈v, c〉 .

Therefore
d
dt

(
τ ‖u‖3 + 2 〈u, c〉 − ‖v‖2

)
= 0. (7)

We get a system of ordinary differential equations with 5 unknown functions 〈u, u〉,
〈v, v〉, 〈u, v〉, 〈u, c〉, 〈v, c〉:

d〈u,u〉
dt = 2 〈u, v〉

d〈u,v〉
dt = 〈v, v〉+ 3

2τ 〈u, u〉3/2 + 〈u, c〉

d〈v,v〉
dt = 3τ 〈u, u〉1/2 〈u, v〉+ 2 〈v, c〉

d〈u,c〉
dt = 〈v, c〉

d〈v,c〉
dt = 3

2τ 〈u, u〉1/2 〈u, c〉+ 〈c, c〉 .

(8)

Note that having a numerical solution of the system (8) one can easily find a solution
of (6), as with known function |u| the system (6) breaks up into n independent two
dimensional systems {

dui

dt = vi

dvi

dt = 3
2τu ‖ui‖+ ci

,

for 1 ≤ i ≤ n.
In the rest of the article we investigate algebraic properties of the system (8).
Let us introduce the following notation

y1 = 〈u, u〉 , y2 = 〈u, v〉 , y3 = 〈v, v〉 , y4 = 〈u, c〉 , y5 = 〈v, c〉 , y6 = 〈c, c〉

y7 = τ 〈u, u〉3/2 + 2 〈u, c〉 − 〈v, v〉 .
Note that y7 is a first integral for the system (5). We have

τ 〈u, u〉1/2 =
1
y1

(y7 − 2y4 + y3).

It will be also useful to denote τ 〈u, u〉3/2 by z. Then

z = y7 − 2y4 + y3,

y7 = z + 2y4 − y3.

Any solution of (5) produces a curve in the 7-dimensional space, which is an integral
curve of the vector field

X = 2y2
∂

∂y1
+ (y3 + y4)

∂

∂y2
+

3
2
z

∂

∂y2
+

3y2

y1
z

∂

∂y3
+ 2y5

∂

∂y3
+ y5

∂

∂y4

+
3y4z

2y1

∂

∂y5
+ y6

∂

∂y5
.
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Multiplying by the function 2y1, we obtain the quadratic vector field

Y = 4y1y2
∂

∂y1
+ (2y1y3 + 2y1y4 + 3y1z) ∂

∂y2
+ (4y1y5 + 6y2z) ∂

∂y3

+2y1y5
∂

∂y4
+ (2y1y6 + 3y4z) ∂

∂y5
.

(9)

It is clear that every first integral for the vector field X is also a first integral for the
vector field Y . In the next section we recall the general theory of rational first integrals
for homogeneous polynomial vector fields, in order to apply this theory later to the
vector field Y , hoping to obtain some insight about solutions of our problem.

3. HOMOGENEOUS VECTOR FIELDS AND DARBOUX POLYNOMIALS

In this section we recall the theory of rational first integrals for homogeneous algebraic
systems of differential equations. The detailed account of the theory can be found in
Chapter 2 of [3].

By a polynomial vector field on Rn we understand a linear combination of the vector
fields ∂

∂xi
with the coefficients pi ∈ R[x1, . . . , xn]. It is straightforward that if F is a

polynomial and X is a polynomial vector field then X(F ) is also a polynomial.

Definition 3.1. Let V be a polynomial vector field and F a polynomial function on
Rn. We say that F is a Darboux polynomial if V (F ) = pF for some polynomial p. The
polynomial p is called the cofactor of F .

The following proposition is a direct consequence of the definition.

Proposition 3.2. Let V be a polynomial vector field on Rn. Suppose F1 is a Darboux
polynomial for V with a cofactor p1 and F2 is a Darboux polynomial with a cofactor p2.
Then

V(F1F2) = (p1 + p2)F1F2,

V
(

F1

F2

)
= (p1 − p2)

F1

F2
.

Thus, the product of two Darboux polynomials for V is again a Darboux polynomial
for V. Moreover, is F1 and F2 are two Darbox polynomials for V with the same cofactor
p, then F1

F2
is a (rational) first integral of V. We also have the opposite claims.

Proposition 3.3. (Goriely [3, Proposition 2.4]) Let V be a polynomial vector field on
Rn. Suppose P

Q is a rational first integral for V such that P and Q are coprime. Then,
P and Q are Darboux polynomials for V with the same cofactor.

Proposition 3.4. (Goriely [3, Proposition 2.5]) Let V be a polynomial vector field on
Rn. Suppose F is a Darboux polynomial for V. Then, every irreducible factor of F is
also a Darboux polynomial for V.

The above two propositions show that to find all rational first integrals for the polyno-
mial vector field V on Rn, it is enough to describe all irreducible Darboux polynomials
for V. This problem can be simplified if the vector field V has good properties with
respect to some grading on R[x1, . . . , xn].
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Definition 3.5. A grading on the ring of polynomials R[x1, . . . , xn] is a collection of
R-vector subspaces Vk, k ∈ Z, in R[x1, . . . , xn], such that

1. Vk ∩ Vl = ∅, if k 6= l;

2.
⊕

k∈Z Vk = R[x1, . . . , xn];

3. VkVl ⊂ Vk+l, for all k, l ∈ Z.

Given a grading {Vk | k ∈ Z} on R[x1, . . . , xn], we say that a polynomial vector field
V is homogeneous of degree j, if for all k ∈ Z holds V (Vk) ⊂ Vk+j .

The next theorem shows that for homogeneous vector fields, one should consider only
homogeneous Darboux polynomials

Theorem 3.6. Let {Vk | k ∈ Z} be a grading on R[x1, . . . , xn] and V a homogeneous
polynomial vector field on R[x1, . . . , xn] of degree j. Suppose F is a Darboux polynomial
for V with a cofactor p. Let us denote by Fk the projection of F on the subspace Vk.
Then, every Fk is a Darboux polynomial for V with the same cofactor p. Moreover,
p ∈ Vj .

P r o o f . We first consider the case p = 0. Then, F is a first integral for V and we have
equation VF = 0. Projecting on the space Vk+j , we get VFk = 0. This shows that Fk is
a first integral for V, for any k ∈ Z.

Now suppose p 6= 0. Let us denote by pk the projection of p on Vk, k ∈ Z. Let l be the
maximal integer such that pl 6= 0 and m the maximal integer such that Fm 6= 0. Suppose
l > j. Then, from the equation VF = pF , projecting on Vm+l, we get 0 = plFm. This
shows that either pl = 0 or Fm = 0, which is in contradiction with our assumptions on
l and m. Thus pl = 0 for any l > j. By symmetrical consideration, we get that pl = 0
for any l < j. In other words, p = pj ∈ Vj . Now, projecting both sides of VF = pF on
Vk+j , we get VFk = pjFk = pFk. This shows that every Fk is a Darboux polynomial
with the cofactor p. �

4. PROPERTIES OF DARBOOUX POLYNOMIALS FOR Y

Recall that we are interested in specializing the content of the previous section to the
vector field given in (9). That is, we study now Darboux polynomials for the quadratic
vector field

Y = 4y1y2
∂

∂y1
+ (2y1y3 + 2y1y4 + 3y1z)

∂

∂y2
+ (4y1y5 + 6y2z)

∂

∂y3

+ 2y1y5
∂

∂y4
+ (2y1y6 + 3y4z)

∂

∂y5

on R[y1, . . . , y7], where z = y3 − 2y4 + y7. In particular, we will show that the prob-
lem of finding Darboux polynomials for Y can be replaced by a computationally more
feasible problem of finding all polynomial first integrals for a certain vector field Ỹ on
R[y1, . . . , y8]. For this we will prove that any cofactor of Y is of the form 2ky2 for some
non-negative integer k.
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Let us define

V =

∣∣∣∣∣∣
y1 y2 y4

y2 y3 y5

y4 y5 y6

∣∣∣∣∣∣ .

Proposition 4.1. The polynomials y6, y7 and V are first integrals of Y . The polynomi-
als y1 and z are Darboux polynomials for Y with the cofactors 4y2 and 6y2, respectively.

P r o o f . It is obvious that Y y6 = Y y7 = 0 and Y y1 = 4y2y1. Now

Y

∣∣∣∣∣∣
y1 y2 y4

y2 y3 y5

y4 y5 y6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
4y1y2 y2 y4

2y1y3 + 2y1y4 + 3y1z y3 y5

2y1y5 y5 y6

∣∣∣∣∣∣
+

∣∣∣∣∣∣
y1 2y1y3 + 2y1y4 + 3y1z y4

y2 4y1y5 + 6y2z y5

y4 2y1y6 + 3y4z y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 y2 2y1y5

y2 y3 2y1y6 + 3y4z
y4 y5 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2y1y2 y2 y4

2y1y4 + 3y1z y3 y5

0 y5 y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 2y1y3 y4

y2 2y1y5 + 3y2z y5

y4 0 y6

∣∣∣∣∣∣
+

∣∣∣∣∣∣
y1 y2 2y1y5

y2 y3 2y1y6 + 3y4z
y4 y5 0

∣∣∣∣∣∣
= 2y1

∣∣∣∣∣∣
y2 y2 y4

y4 y3 y5

0 y5 y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 y3 y4

y2 y5 y5

y4 0 y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 y2 y5

y2 y3 y6

y4 y5 0

∣∣∣∣∣∣


+ 3z

∣∣∣∣∣∣
0 y2 y4

y1 y3 y5

0 y5 y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 0 y4

y2 y2 y5

y4 0 y6

∣∣∣∣∣∣ +

∣∣∣∣∣∣
y1 y2 0
y2 y3 y4

y4 y5 0

∣∣∣∣∣∣


= 2y1

(
y2

∣∣∣∣ y3 y5

y5 y6

∣∣∣∣− y4

∣∣∣∣ y2 y4

y5 y6

∣∣∣∣− y3

∣∣∣∣ y2 y5

y4 y6

∣∣∣∣ + y5

∣∣∣∣ y1 y4

y4 y6

∣∣∣∣
+ y5

∣∣∣∣ y2 y3

y4 y5

∣∣∣∣− y6

∣∣∣∣ y1 y2

y4 y5

∣∣∣∣)

+ 3z

(
−y1

∣∣∣∣ y2 y4

y5 y6

∣∣∣∣ + y2

∣∣∣∣ y1 y4

y4 y6

∣∣∣∣− y4

∣∣∣∣ y1 y2

y4 y5

∣∣∣∣)

= 2y1

∣∣∣∣∣∣
y2 y2 y4

y3 y3 y5

y5 y5 y6

∣∣∣∣∣∣−
∣∣∣∣∣∣

y4 y1 y4

y5 y2 y5

y6 y4 y6

∣∣∣∣∣∣
− 3z

∣∣∣∣∣∣
y1 y1 y4

y2 y2 y5

y4 y4 y6

∣∣∣∣∣∣ = 0.
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Further
Y z = Y (y3 − 2y4) = 4y1y5 + 6y2z − 2 · 2y1y5 = 6y2z.

�

To study further properties of Y it is convenient to relate it to an infinitesimal action
of sl3 on R7. For that, define the the vector fields eα, eβ , eα+β , fα, fβ , fα+β by

eα = 2y2
∂

∂y1
+ y3

∂

∂y2
+ y5

∂

∂y4
, fα = y1

∂

∂y2
+ 2y2

∂

∂y3
+ y4

∂

∂y5
,

eα+β = y2
∂

∂y4
+ y3

∂

∂y5
+ 2y5

∂

∂y6
, fα+β = y4

∂

∂y2
+ 2y5

∂

∂y3
+ y6

∂

∂y5
,

eβ = y1
∂

∂y4
+ y2

∂

∂y5
+ 2y4

∂

∂y6
, fβ = 2y4

∂

∂y1
+ y5

∂

∂y2
+ y6

∂

∂y4
,

and the vector fields hα, hβ by

hα = [eα, fα] = −2y1
∂

∂y1
+ 2y3

∂

∂y3
− y4

∂

∂y4
+ y5

∂

∂y5
,

hβ = [eα, fα] = 2y1
∂

∂y1
+ y2

∂

∂y2
− y5

∂

∂y5
− 2y6

∂

∂y6
.

By direct computation one gets the following.

Proposition 4.2. An R-linear span L of the vector fields eα, eα+β , eβ , fα, fα+β , fβ ,
hα, hβ is the Lie algebra sl3 with respect to the commutator bracket.

Now we can write Y in the form

Y = 2y1eα + 2y1fα+β + 3zfα

= 2y1(eα + fα+β) + 3(y7 − 2y4 + y3)fα

= (2y1eα + 3y3fα) + (2y1fα+β − 6y4fα) + 3y7fα.

Let us define
Z = (2y1eα + 3y3fα) + (2y1fα+β − 6y4fα).

The following proposition relates Darboux polynomials for Z with Darboux polynomials
for Y .

Proposition 4.3. Suppose F is an indecomposable Darboux polynomial for Y with a
cofactor p. Let us write F in the form

F = F0 + · · ·+ Fdy
d
7 , (10)

where Fi are polynomials in variables different from y7 and Fd 6= 0, and p in the form

p = p1y1 + · · ·+ p7y7,

where p1, . . . , p7 are real numbers. Then
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1. Fd is a first integral for fα;

2. p7 = 0;

3. F0 is a non-zero Darboux polynomial for Z with the cofactor p, where

Z = (2y1eα + 3y3fα) + (2y1fα+β − 6y4fα).

P r o o f . Comparing coefficients of yd+1
7 in the equation

Y F = pF,

we get that 3fαFd = p7Fd. Therefore fαFd = p7
3 Fd. This shows that Fd is an eigenvector

for the linear operator fα, acting on the vector space of homogeneous polynomials of
degree d in the variables y1, . . . , y6. It is easy to check that fα is a nilpotent operator,
therefore all eigenvalues of fα are zero. This shows that p7 = 0 and Fd is a first integral
for fα.

Now, suppose F0 = 0. Then F is divisible by y7, which contradicts our assumption
that F is indecomposable. Thus F0 6= 0. Comparing the terms free of y7 in Y F = pF
and using p7 = 0, we get that ZF0 = pF0. Thus F0 is a Darboux polynomial for Z with
the cofactor p. �

Note that Z does not involve y7 and therefore can be considered as a polynomial
vector field on R6. Now we define several different gradings on R[y1, . . . , y6]. We start
with the ring homomorphism

φ : R[y1, . . . , y6] 7→ R[s1, s2, s3]

defined by

φ(y1) = s2
2, φ(y2) = s1s2, φ(y3) = s2

1,

φ(y4) = s2s3, φ(y5) = s1s3, φ(y6) = s2
3.

For every triple (k1, k2, k3) ∈ N3, we define V (k1, k2, k3) to be the φ-preimage of the set{
λsk1

1 sk2
2 sk3

3

∣∣∣ λ ∈ R
}

.

It is obvious that R[y1, . . . , y6] =
⊕

(k1,k2,k3)∈N3 V (k1, k2, k3). Moreover

V (k1, k2, k3)V (l1, l2, l3) ⊂ V (k1 + l1, k2 + l2, k3 + l3),

for any (k1, k2, k3), (l1, l2, l3) ∈ N.

Proposition 4.4. For every (k1, k2, k3), we have

eα(V (k1, k2, k3)) ⊂ V (k1 + 1, k2 − 1, k3),
fα(V (k1, k2, k3)) ⊂ V (k1 − 1, k2 + 1, k3),

fα+β(V (k1, k2, k3)) ⊂ V (k1 − 1, k2, k3 + 1).
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P r o o f . Let F ∈ V (k1, k2, k3). Then it follows from the definition of the subspaces
V (k1, k2, k3) that

∂F

∂y1
∈ V (k1, k2 − 2, k3),

∂F

∂y2
∈ V (k1 − 1, k2 − 1, k3),

∂F

∂y3
∈ V (k1 − 2, k2, k3),

∂F

∂y4
∈ V (k1, k2 − 1, k3 − 1),

∂F

∂y5
∈ V (k1 − 1, k2, k3 − 1),

∂F

∂y6
∈ V (k1, k2, k3 − 2).

Using this and the formulae for eα, fα and fα+β , the result follows. �

Given any triple of integers i = (i1, i2, i3) we define grading V i
k on R[y1, . . . , y6] by

V i
k =

⊕
i1k1+i2k2+i3k3=k

V (k1, k2, k3).

Then, from Proposition 4.4 we get that eα, fα and fα+β are homogeneous with respect
to any grading V i

k . Let us define

Z1 = 2y1eα + 3y3fα, Z2 = 2y1fα+β − 6y4fα.

Thus Z = Z1 + Z2. From Proposition 4.4 we get

Z1(V (k1, k2, k3)) ⊂ V (k1 + 1, k2 + 1, k3),
Z2(V (k1, k2, k3)) ⊂ V (k1 − 1, k2 + 2, k3 + 1).

Thus one get that also the vector fields Z1 and Z2 are homogeneous with respect to any
grading V i

k , k ∈ Z on R[y1, . . . , y6].

Proposition 4.5. The vector field Z is homogeneous of degree one for the gradings
V 1,1,1

k , k ∈ Z, and V 1,2,0
k , k ∈ Z, of degrees 2 and 3, respectively.

P r o o f . One checks both facts for Z1 and Z2, and the result follows from the relation
Z = Z1 + Z2. �

Corollary 4.6. Suppose F is a Darboux polynomial for Z and p is its cofactor. Then
p = cy2 for some c ∈ R.

P r o o f . By Theorem 3.6, we can assume that F is homogeneous with respect to the
gradings V 1,1,1

k , k ∈ Z, and V 1,2,0
k , k ∈ Z. Then ZF = pF implies that p is homogeneous

of degree 2 with respect to the grading V 1,1,1
k and of degree 3 with respect to the grading

V 1,2,0
k . But V 1,1,1

2 is generated by y1, . . . , y6 as a vector space. Moreover, every yi is
homogeneous with respect to the grading V 1,2,0

k and only y2 ∈ V (1, 1, 0) has degree 3.
Thus V 1,1,1

2 ∩ V 1,2,0
3 is generated by y2 as a vector space. This shows that p = cy2 for

some c ∈ R. �

To show that the constant c in Corollary 4.6 is necessarily a positive even integer,
we have to perform further analysis on the properties of the vector fields Z1 and Z2.
For every polynomial F on R6, we write Fk1,k2,k3 for its component with respect to the
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direct sum decomposition R[y1, . . . , y6] =
⊕

(k1,k2,k3)∈N3 V (k1, k2, k3). Define supp(F )
as the set of those integers (k1, k2, k3) such that Fk1,k2,k3 6= 0. Note that, if F ∈ V 1,1,1

d

and F ∈ V 1,2,0
k then

supp(F ) = { (k1, k2, k3) ∈ Λ(3) | k1 + k2 + k3 = d, k1 + 2k3 = k} .

Proposition 4.7. Let F ∈ V 1,1,1
d ∩V 1,2,0

k be a Darboux polynomial for Z with a cofactor
cy2. Let (k1, k2, k3) be the element of supp(F ) with the minimal possible first coordinate
and (l1, l2, l3) the element of supp(F ) with the maximal possible first coordinate. Then
Fk1,k2,k3 is a first integral for Z2, and Fl1,l2,l3 is a Darboux polynomial for Z1 with the
cofactor cy2.

P r o o f . From the definitions of (l1, l2, l3) and (k1, k2, k3), we get

(ZF )l1+1,l2+1,l3 = Z1Fl1,l2,l3 ,

(y2F )l1+1,l2+1,l3 = y2Fl1,l2,l3 ,

(ZF )k1−1,k2+2,k3+1 = Z2Fk1,k2,k3 .

Therefore, the equality ZF = cy2F implies that

Z1Fl1,l2,l3 = cy2Fl1,l2,l3 ,

Z2Fk1,k2,k3 = 0.

�

A consequence of Proposition 4.7 is that any cofactor of Z appears among cofactors
of Z1. Let us write Z1 explicitly as

Z1 = 4y1y2
∂

∂y1
+ 5y1y3

∂

∂y2
+ 6y2y3

∂

∂y3
+ 2y1y5

∂

∂y4
+ 3y3y4

∂

∂y5
.

Proposition 4.8. Let F be an irreducible Darboux polynomial for Z1 with a cofactor
cy2. Then, either F is a scalar multiple of y1 or F |y1=0 ∈ R[y2, . . . , y6] is a non-zero

Darboux polynomial for Z ′
1 := 3y3

(
2y2

∂
∂y3

+ y4
∂

∂y5

)
with the cofactor cy2.

P r o o f . Let us write F in the form

F = F0 + F1y1 + · · ·+ Fdy
d
1 ,

where Fi ∈ R[y2, . . . , y6] and Fd 6= 0. Then F |y1=0 = F0. If F0 = 0 then F is divisible
by y1. Since F is irreducible, we get that F is a scalar multiple of y1. Now assume that
F0 6= 0. Then

(Z1F )|y1=0 = (Z1F0)|y1=0 = 6y2y3
∂F0

∂y3
+ 3y3y4

∂F0

∂y5
= Z ′

1F0,

and (cy2F )y1=0 = cy2F0. Thus, we get that Z ′
1F0 = cy2F0. �

We describe all Darboux polynomials for the vector field Z ′
1 on R[y2, . . . , y6] in the

next proposition. Define I = 2y2y5 − y3y4. The direct computation shows that I is
a first integral for Z ′

1.
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Proposition 4.9. Every Darboux polynomial for Z ′
1 in R[y2, . . . , y6] is of the form Fyd

3

with F ∈ R[y2, y4, y6, I]. In particular, any cofactor of Z ′
1 is of the form 6dy2 with d

a non-negative integer.

P r o o f . If F ∈ R[y2, y4, I], then F is a first integral for Z ′
1 since y2, y4, y6, and I are

first integrals for Z ′
1. Thus, by Propostion 3.2, Fyd

3 is a Darboux polynomial for Z ′
1.

Now, suppose that F is a Darboux polynomial for Z ′
1 with a cofactor p. We con-

sider F as an element of the ring R = R[y±1
2 , y3, y4, y5, y6]. Using the relation y5 =

1
2y2

(I + y3y4), every element F in R can be written in the form F0(y2, y4, y6, I) +
F1(y2, y4, y6, I)y3 + · · · + Fd(y2, y4, y6, I)yd

3 , where Fj are elements of R[y±1
2 , y4, y6, I]

and Fd 6= 0. Since Z ′
1Fj = 0 for all j and Z ′

1y3 = 6y2y3, we get

Z ′
1F = 6y2F1y3 + 2 · 6y2F2y

2
3 + · · ·+ d · 6y2Fdy

d
3 .

Suppose p = k2y2 + k3y3 + k4y4 + k5y5 + k6y6 is the cofactor of F . Then, comparing
the coefficients of yd+1

3 in Z ′
1F and pF , we see that k3 = 0. Further, comparing the

coefficients of yd
3 in Z ′

1F and pF , we get p = 6dy2. Comparing the coefficients yj
3 with

j ≤ d− 1, we see that Fj = 0 for j ≤ d− 1. Therefore F = Fdy
d
3 , with Fd ∈ R. Since F

is a polynomial and y3 is not invertible in R, we get that also Fd is a polynomial and
this proves the proposition. �

Now we state the main theorem.

Theorem 4.10. Suppose F is Darboux polynomial for the vector field Y with a cofactor
p. Then p = 2ky2 for some non-negative integer k.

P r o o f . By Proposition 3.4 we can assume that F is irreducible. Then by Propo-
sition 4.3 there is a non-zero Darboux polynomial F0 for Z with the cofactor p. Let
F0 =

∏m
s=1 Gks

s be a prime decomposition of F0. Then, by Corollary 4.6, every co-
factor ps of Gs is of the form csy2 for some c ∈ R. By Proposition 3.2, we get
p = (k1c1 + · · · + kmcm)y2. Thus, it is enough to show that every cs is a non-negative
even integer. By Proposition 4.8, we get that Gs is either a scalar multiple of y1 or a
non-zero Darboux polynomial of Z ′

1. In the first case cs = 4. In the second case, cs = 6d
for some non-negative integer d by Proposition 4.9. �

Let us define the vector field Ỹ on R[y1, . . . , y8] by

Ỹ = Y − 2y2y8
∂

∂y8
.

Note that y8 is a Darboux polynomial for Ỹ with the cofactor −2y2. Moreover, if F is a
Darboux polynomial for Y with the cofactor p = 2dy2, d ∈ N, then F is also a Darboux
polynomial for Ỹ with the same cofactor. Therefore, by Proposition 3.2, we get that
Fyd

8 is a polynomial first integral of Ỹ .

Corollary 4.11. To classify Darboux polynomials of Y it is enough to classify polyno-
mial first integrals for Ỹ .
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5. CONCLUSION

We showed that to find solutions of (1) it is enough to find solutions of the system (8).
Note that this system is five dimensional and does not depend on n. Every solution of
(8) gives an integral curve of the quadratic vector field Y . We studied the existence of
rational integrals for Y . Several first integrals of Y were identified in Proposition 4.1.
We reduced the problem of finding rational integrals for Y to the problem of finding first
integrals for the quadratic vector field Ỹ . We plan to solve this problem using computer
algebra systems.
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