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ON THE QUADRATIC FRACTIONAL OPTIMIZATION
WITH A STRICTLY CONVEX QUADRATIC CONSTRAINT

Maziar Salahi, Saeed Fallahi

In this paper, we have studied the problem of minimizing the ratio of two indefinite quadratic
functions subject to a strictly convex quadratic constraint. First utilizing the relationship be-
tween fractional and parametric programming problems due to Dinkelbach, we reformulate the
fractional problem as a univariate equation. To find the root of the univariate equation, the
generalized Newton method is utilized that requires solving a nonconvex quadratic optimiza-
tion problem at each iteration. A key difficulty with this problem is its nonconvexity. Using
Lagrange duality, we show that this problem can be solved by solving a convex univariate
minimization problem. Attainment of the global optimality conditions is discussed. Our pre-
liminary numerical experiments on several randomly generated test problems show that, the
new approach is much faster in finding the global optimal solution than the known semidefinite
relaxation approach, especially when solving large scale problems.
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1. INTRODUCTION

Fractional optimization problems has attracted much attention in the last decades due
to the wide range of applications in different areas including signal processing, com-
munications, financial analysis, location theory and etc. [13, 14]. They are in general
nonconvex, however in most recent works convex optimization approach has been suc-
cessfully applied to solve various classes of them [3, 4, 5, 6]. In [4] authors have derived
an efficient global optimization algorithm for the regularized total least squares prob-
lem and applied it on problems arising from the inverse Laplace transform and image
processing. Tuy et al. [18] have proposed a new approach for optimizing polynomial
fractional functions under polynomial constraints. Their approach is based on refor-
mulation into a monotone optimization problem. Benson [7, 8] has studied fractional
programs that involve ratios of convex terms and presented a new branch and bound
algorithm that requires solving a sequence of convex optimization problems. He also
has focused on linear sum-of-ratios problems and used a simplicial branch and bound
duality-bounds algorithm to globally solve them [9]. Shen and Yuan [16] have proposed
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a branch and bound approach for the global optimization problem of the sum of gen-
eralized polynomial fractional functions under generalized polynomial constraints. In
[1] Amaral et al. have developed an RLT-based algorithm for the global optimization
of a nonconvex problem that arises in total least squares with inequality constraints,
and in the correction of infeasible linear systems of equalities. A well known and old ap-
proach to tackle these problems, goes back to Dinkelbach, who has proved an interesting
and useful relationship between fractional and parametric optimization problems [10].
His idea has been applied by several authors [3, 21]. Yamamoto and Konno [19] have
proposed an efficient algorithm for solving convex-convex quadratic fractional programs
that combines the classical Dinkelbach approach, the integer programming approach for
solving nonconvex quadratic programs, and a standard nonlinear programming solver.
Most recently, in [21] authors have applied Dinkelbach’s idea to the following quadratic
fractional optimization problem with two convex quadratic constraints:

min
xT A1x + bT

1 x + c1

xT A2x + bT
2 x + c2∥∥PT x + q

∥∥ ≤ ξ,

‖x‖ ≤ ∆.

They have developed a generalized Newton based iterative algorithm to solve the prob-
lem with no global convergence guarantee. In this paper, we consider the following
problem with a strictly convex quadratic constraint

min
xT A1x + fT

1 x + c1

xT A2x + fT
2 x + c2

xT A3x + fT
3 x + c3 ≤ 0, (QCQFO)

where AT
i = Ai ∈ Rn×n, fi ∈ Rn, ci ∈ R, i = 1, 2, 3, xT A2x+fT

2 x+c2 > 0 in the feasible
region and A3 is assumed to be positive definite. Special case of regularized total least
squares (RTLS) problem is in the form of (QCQFO) which appears in disciplines such
as signal processing, automatic control, economic, biology and medicine. Although the
problem can be cast as a semidefinite optimization (SDO) problem which is polynomially
solvable, but such an approach is computationally expensive specially when solving large
scale problems [5]. In this paper, a new diagonalization approach is introduced to solve
the underlying problem and compared with a knwon SDO relaxation approach. Our
preliminary numerical experiments show the efficiency of the diagonalization approach
to the SDO relaxation on finding the global optimal solution.

2. PARAMETRIC PROGRAMMING APPROACH

The following theorem gives the relation between (QCQFO) and a parametric program-
ming problem [10].

Theorem 2.1. The following two statements are equivalent:

•

α = min
xT A1x + fT

1 x + c1

xT A2x + fT
2 x + c2

xT A3x + fT
3 x + c3 ≤ 0. (1)
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• F (α) = 0, where

F (α) := min
{

xT A1x + fT
1 x + c1 − α(xT A2x + fT

2 x + c2)
}

(2)

xT A3x + fT
3 x + c3 ≤ 0.

The function F in (2) is continuous, concave and strictly decreasing with a unique
root [21]. Thus by Theorem (2.1) the root of F is also an optimal solution of (1).
Therefore, in the sequel we focus on (2). A subgradient of F at iteration k is given by
−(xT

k A2xk + fT
2 xk + c2) [21], where

xk ∈ argmin
{

xT A1x + fT
1 x + c1 − αk(xT A2x + fT

2 x + c2)
}

xT A3x + fT
3 x + c3 ≤ 0.

Thus the iterations of the generalized Newton method to find the root of F is

αk+1 := αk −
F (αk)

−(xT
k A2xk + fT

2 xk + c2)

= αk −
(xT

k A1xk + fT
1 xk + c1)− αk(xT

k A2xk + fT
2 xk + c2)

−(xT
k A2xk + fT

2 xk + c2)

=
xT

k A1xk + fT
1 xk + c1

xT
k A2xk + fT

2 xk + c2
.

Now the generalized Newton algorithm can be outlined as follows.

Parametric generalized Newton method

Inputs: A1, A2, A3 ∈ Rn×n, A3 � 0, f1, f2, f3 ∈ Rn, c1, c2, c3 ∈ R, k = 0, starting point
α0 ∈ R, and an accuracy parameter ε > 0.
begin
while |F (αk)| ≥ ε
Solve the following minimization subproblem to obtain a global optimum xk:

min
{

xT A1x + fT
1 x + c1 − αk(xT A2x + fT

2 x + c2)
}

xT A3x + fT
3 x + c3 ≤ 0. (3)

Calculate F (αk) =
{

xT A1x + fT
1 x + c1 − αk(xT A2x + fT

2 x + c2)
}

.

Set

αk+1 :=
xT

k A1xk + bT
1 xk + c1

xT
k A2xk + bT

2 xk + c2
,

k := k + 1.

end
end
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The main computational effort at each iteration is to solve the (3). One may use
semidefinite optimization (SDO) relaxation to solve these subproblems, which is expen-
sive even for medium scale problems [20]. In the sequel we present an efficient algorithm
to solve the nonconvex problem in which the problem reduces to a univariate minimiza-
tion using a diagonalization method.

3. DIAGONALIZATION AND UNIVARIATE MINIMIZATION

In this section, first we present some preliminary results from linear algebra.

Lemma 3.1. Let A,B ∈ Rn×n with A = AT and B = BT � 0. Then there exists a
nonsingular matrix Q and diagonal matrix D such that

QT AQ = D, QT BQ = I.

P r o o f . Let B = LLT be the Cholesky factorization of B and set C = L−1A(L−1)T .
Since C is symmetric, there exists an orthogonal matrix P such that PT CP = D, where
D is diagonal. Let Q = (L−1)T P, then

QT AQ = PT L−1A(L−1)T P = PT CP = D,

and
QT BQ = PT L−1(LLT )(L−1)T P = PT P = I.

�

Since by our assumption A3 is positive definite, then by Lemma 3.1 there exists a
nonsingular matrix Q and a diagonal matrix D such that QT (A1 − αkA2)Q = D =
diag(d1, . . . , dn) and QT A3Q = I. By the change of variables x := Qx, b := QT (f1 −
αkf2), c := (c1−αkc2) and b3 := QT f3, problem(3) is equivalent to the following problem:

min xT Dx + bT x + c

‖x‖2 + bT
3 x + c3 ≤ 0. (4)

The associated Lagrangian of (4) is

L(x, µ) = xT Dx + bT x + c + µ
(
‖x‖2 + bT

3 x + c3

)
,

and thus the Lagrange dual of (4) becomes

max
µ≥0

g(µ)

where
g(µ) = min

x

{
xT (D + µI)x + (b + µb3)T x

}
+ µc3 + c.

Since

xT (D + µI)x + (b + µb3)T x =
n∑

i=1

(di + µ)x2
i + (b + µb3)ixi,
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if there exist j such that dj + µ < 0 or dj + µ = 0 when (b + µb3)j 6= 0, then the inner
minimization gives the value −∞. Let

T :=
{

1, . . . , n
}

, µ1 = max
{

0,max
i∈T

{−di}
}

,

J1 =
{

i ∈ T
∣∣∣ − di = µ1

}
, J2 =

{
i ∈ J1

∣∣∣ (b + µ1b3)i = 0
}

,

and for any finite set A, n(A) denotes the number of elements in A. We have the
following cases:

1. D � 0
In this case we have dj + µ > 0 for all j. Therefore the inner minimization is the
following convex minimization problem

g(µ) = min
x

n∑
i=1

(di + µ)x2
i + (b + µb3)ixi.

2. D � 0, n(J1) = n(J2) 6= 0
In this case µ might be µ1, therefore the inner minimization is the following convex
minimization problem

g(µ) = min
{

g1(µ), g2(µ1)
}

,

where, for µ > µ1

g1(µ) = min
x

n∑
i=1

(di + µ)x2
i + (b + µb3)ixi,

and

g2(µ1) = min
x

∑
i∈T\J2

(di + µ1)x2
i + (b + µ1b3)ixi.

3. n(J1) > n(J2)
In this case µ can not be µ1, therefore the inner minimization is the following
convex minimization problem for µ > µ1

g(µ) = min
x

n∑
i=1

(µ + di)x2
i + (b + µb3)ixi.

As one can see, in all cases g(µ) is the optimal value of separable strictly convex mini-
mization problem, thus to solve it, it is sufficient to solve the following single variables
problems for each j

min
xj∈R

{
(dj + µ)x2

j + (b + µb3)jxj

}
. (5)
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Now since the objective in (5) is separable and strictly convex, thus the minimum is the
root of

2xj(dj + µ) + (b + µb3)j = 0 ∀j,

i. e.,

xj = − (b + µb3)j

2(dj + µ)
.

Therefore

min
x

∑
i

(di + µ1)x2
i + (b + µ1b3)ixi = −1

4

∑
i∈S(µ)

(b + µb3)2i
(di + µ)

,

where

S(µ) =


T, if

(
µ ≥ µ1

∧
J1 = φ

) ∨ (
µ > µ1, n(J1) > n(J2)

)
,

T \ J2, if µ = µ1, n(J1) = n(J2) 6= 0,

and the Lagrange dual of (4) is equivalent to the following one-dimensional problem:

min
µ≥0

f(µ), (6)

where

f(µ) =
1
4

∑
i∈S(µ)

(b + µb3)2i
(di + µ)

− µc3.

Theorem 3.2. If µ∗ is an optimal solution of (6), then

x∗∗ =


x∗, if

(
µ∗ > µ1

) ∨ (
µ∗ = µ1 = 0

) ∨ (
µ∗ = µ1 > 0, lim

µ↘µ∗
f

′
(µ) = 0

)
,

x∗ + α∗ek, if µ∗ = µ1 = −dk > 0, k ∈ J2, lim
µ↘µ∗

f
′
(µ) > 0,

is optimal for (4), where

x∗j = lim
µ→µ∗

− (b + µb3)j

2(dj + µ)
, j ∈ T, (7)

ek is the standard unit vector in Rn and α∗ is the root of following quadratic equation
of variable α:

α2 + α
(
2eT

k x∗ + bT
3 ek

)
+

(
‖x∗‖2 + bT

3 x∗ + c3

)
= 0.

P r o o f . For (4), suppose that there exists x0 ∈ Rn with ‖x0‖2 + bT
3 x0 + c3 < 0. If x

be a feasible point of (4), then, it is a global minimizer of (4) if and only if there exists
scalar µ ≥ 0 such that the following condition holds: (see Lemma 4.4.1 of Chapter 4 in
[2])
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(i) 2(D + µI)x = −(b + µb3) (KKT Condition)

(ii) µ
(
‖x‖2 + bT

3 x + c3

)
= 0 (Complementary Slackness)

(iii) (D + µI) � 0 (Second Order Condition).

We have the following cases:

1. µ∗ > µ1:
In this case, it is necessary that

f
′
(µ∗) = 0.

By the definition of µ1 and x∗, it is obvious that conditions (i) and (iii) hold for
x∗ and µ∗. For the complementary slackness condition (ii), we have(

‖x∗‖2 + bT
3 x∗ + c3

)
= −f

′
(µ∗) = 0,

which implies that µ∗
(
‖x∗‖2 + bT

3 x∗ + c3

)
= 0.

2. µ∗ = µ1 = 0:
In this case D � 0, so condition (iii) hold for µ∗. Moreover, by (7) and µ∗ = 0 it
is obvious that conditions (i) and (ii) hold for x∗ and µ∗.

3. µ∗ = µ1 = −dk > 0, k ∈ J2 and lim
µ↘µ∗

f
′
(µ) > 0:

Since D + µ∗I is positive semi definite but not positive definite, then we have

(D + µ∗I)ek = 0.

Moreover, for µ > µ∗ we have

f
′
(µ) =

1
4

n∑
i=1

2b3i(b + µb3)i

(di + µ)
− 1

4

n∑
i=1

(b + µb3)2i
(di + µ)2

− c3,

and we have

lim
µ↘µ∗

f
′
(µ) = lim

µ↘µ∗

1
4

n∑
i=1

2b3i(b + µb3)i

(di + µ)
− lim

µ↘µ∗

1
4

n∑
i=1

(b + µb3)2i
(di + µ)2

− c3

= −bT
3 x∗ − ‖x∗‖2 − c3,

which lim
µ↘µ∗

f
′
(µ) > 0 implies that ‖x∗‖2 + bT

3 x∗ + c3 < 0. Now we consider the

following quadratic equation of variable α:

α2 + α
(
2eT

k x∗ + bT
3 ek

)
+

(
‖x∗‖2 + bT

3 x∗ + c3

)
= 0.

Thus
4 =

(
2eT

k x∗ + bT
3 ek

)2

− 4
(
‖x∗‖2 + bT

3 x∗ + c3

)
> 0,
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therefore the quadratic equation has a root α∗. Now it is easy to verify that
x∗ + α∗ek is a required boundary global optimal solution:

(x∗ + α∗ek)T (x∗ + α∗ek) + bT
3 (x∗ + α∗ek) + c3 = 0,

(D + µ∗I)(x∗ + α∗ek) = (D + µ∗I)x∗ + α∗(D + µ∗I)ek

= (D + µ∗I)x∗ = − 1
2 (b + µ∗b3).

4. µ∗ = µ1 > 0 and lim
µ↘µ∗

f
′
(µ) = 0:

By the definition of x∗ and µ1, it is obvious that conditions (i) and (iii) hold for
x∗ and µ∗. For the complementary slackness condition (ii), we have(

‖x∗‖2 + bT
3 x∗ + c3

)
= − lim

µ↘µ∗
f

′
(µ) = 0,

which implies that µ∗
(
‖x∗‖2 + bT

3 x∗ + c3

)
= 0.

�

4. SDO RELAXATION

In this section, we present the known SDO relaxation approach to solve (3) globally
under specific conditions, see [20]. The homogenized version of (3) is

min xT (A1 − αkA2)x + (f1 − αkf2)T xt + (c1 − αkc2)t2

xT A3x + fT
3 xt + c3t

2 ≤ 0. (8)

Clearly, if (t, xT )T with t 6= 0 solves (8), then x
t solves (3). Problem (8) in matrix form,

including the condition t2 = 1, can be written as

min Q0 • X̂

Q1 • X̂ ≤ 0, (9)

Q2 • X̂ = 1,

where

A •B = Tr(AT B), X̂ =
[

t2 txT

tx xxT

]
,

and

Q0 =

[
c1 − αkc2

(f1−αkf2)
T

2
(f1−αkf2)

2 A1 − αkA2

]
, Q1 =

[
c3

fT
3
2

f3
2 A3

]
, Q2 =

[
1 01×n

0n×1 0n×n

]
.

The SDO relaxation of (9) is given by

min Q0 •X

Q1 •X ≤ 0,

Q2 •X = 1, (10)
X � 0(n+1)×(n+1),
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where

X =
[

X00 xT
0

x0 X

]
,

and its dual problem is

max y1

Z = Q0 − y1Q1 − y2Q2, (11)
Z�0(n+1)×(n+1),

y2 ≤ 0.

Various sufficient conditions have been derived for ensuring the strong duality of different
nonconvex QP problems. In [22] the authors have established new sufficient conditions
for verifying zero duality gap between (10) and (11). They have demonstrated that the
duality gap is zero if and only if there exists an optimal solution X to (10) satisfying
X = x0x

T
0 . Now, we show in Lemma 4.1 that, under a simple condition, both (10) and

(11) are strictly feasible, thus both are solvable with zero duality gap.

Lemma 4.1. If c3 < 0, then both problems (10) and (11) satisfy the Slater regularity
conditions. Hence both problems attain their optimal values and the duality gap is zero.

P r o o f . Let

X =
[

1 01×n

0n×1 λIn

]
,

where λ > 0 such that c3 + λTr(A3) ≤ 0. Then X � 0, Q1 • X ≤ 0 and Q2 • X = 0.
Therefore it is strictly feasible for (10). For the dual problem (11), by choosing y2 <
λmin(A1 − αA2, A3) and y1 sufficiently small negative number, the Schur complement
theorem gives

Z =
[

c1 − αc2 − y1 − y2c3 (b1 − αb2 − y2b3)T
/
2

(b1 − αb2 − y2b3)/2 A1 − αA2 − y2A3

]
� 0.

Thus Z is a strictly feasible solution for (11). Consequently, the strong duality theorem
[20] imply that both (10) and (11) have optimal solutions with zero duality gap. �

In the next theorem, it is shown that the global optimal solution of (3) can be derived
from an optimal solution of (10) in polynomial time.

Theorem 4.2. If (10) has an optimal solution X∗ and strong duality holds, then it has
a rank one optimal solution which further gives us a global optimal solution of (3).

P r o o f . Suppose X∗ is an optimal solution of rank r for (10) and (Z∗, y∗1 , y∗2) is an
optimal solution for (11). Then we have the following cases:

1. Q1 •X∗ < 0:
From the complementary condition in this case, obviously y∗1 = 0. Now Suppose

X∗ =
r∑

i=1

x∗i (x∗i )
T
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be a rank one decomposition [17] of X∗ for which (x∗i )
T

Q1x
∗
i ≤ 0 for all i =

1, . . . , r. By the second constraint of (10), for at least one k, 1 ≤ k ≤ r, we have
x∗k =

(
t∗k, (x̄∗k)T

)T
, with t∗k 6= 0.

2. Q1 •X∗ = 0:
Suppose

X∗ =
r∑

i=1

x∗i (x∗i )
T

be a rank one decomposition of X∗ for which (x∗i )
T

Q1x
∗
i = 0 for all i = 1, . . . , r.

By the second constraint of (10), for at least one k, 1 ≤ k ≤ r, we have x∗k =(
t∗k, (x̄∗k)T

)T
, with t∗k 6= 0.

Now for both cases by denoting z∗k =
[
1, (z̄∗k)T

]T with z̄∗k = x̄∗
k

t∗k
, and Y ∗ = z∗k(z∗k)T , one

can easily check that

Q1 • Y ∗ ≤ 0, Q2 • Y ∗ = 1, y∗1 (Q1 • Y ∗) = 0.

Therefore Y ∗ is a rank one optimal solution for (10) and thus z̄∗k is an optimal solution
for (3). �

5. HOMOGENEOUS CASE

In this section, we consider the following homogenous nonconvex quadratic optimization
problem:

min
xT A1x + c1

xT A2x + c2

xT A3x + c3 ≤ 0, (12)

where where AT
i = Ai ∈ Rn×n, ci ∈ R, i = 1, 2, 3, xT A2x + c2 > 0 in the feasible

region and A3 is assumed to be positive definite. According to the Theorem 3.2, we
can construct the primal solution of non-homogenous case via a dual approach, but
in the homogenous case (12), it is more simple and we do not need to solve the dual
problem in (6). Instead, we solve directly the equivalent linear optimization problem to
get the global optimal solution. First using the Dinkelbach’s idea for (12), one requires
solving the following nonconvex quadratic optimization problem at each iteration of the
generalized Newton method.

min xT
(
A1 − αkA2

)
x + c1 − αkc2 (13)

xT A3x + c3 ≤ 0.

Since A3 � 0, then by Lemma 3.1 there exists a nonsingular matrix Q and a diagonal
matrix D such that QT (A1−αkA2)Q = D = diag(d1, . . . , dn) and QT A3Q = I. Now by
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the change of variables x := Qx and c := (c1 − αkc2), problem (13) is equivalent to the
following problem:

min xT Dx + c

‖x‖2 + c3 ≤ 0. (14)

By setting yi := x2
i , problem (14) is equivalent to the following linear optimization

problem.

min dT y + c
n∑

i=1

yi + c3 ≤ 0, (15)

yi ≥ 0, i = 1, 2, . . . , n.

Therefore, by utilizing the generalized Newton algorithm, which requires solving a linear
optimization problem at each iteration, one can get the global optimal solution of (12).

6. COMPUTATIONAL EXPERIMENTS

In this section we give comparison of the new approach with the known SDO relaxation
on several randomly generated test problems. Computations are performed in MATLAB
7.13.0 on a 2.3GHz laptop with 4 GB of RAM. To solve the SDO problems we have used
SeDuMi 1.21 and to solve the one dimensional problem (6) we have used the fminbnd
command in MATLAB. Both solvers are used with their default tolerance setting. For
the generalized Newton method, the initial point is set to be α0 = 1 and we choose
ε = 10−6 as the tolerance of the optimality. The test problems are generated using the
following MATLAB code:

Random test problems generator

• n=input(′ enter the size of the problem = ′);

• A1 = rand(n);A1 = A1 + A′1; f1 = rand(n, 1); c1 = rand;

• A2 = rand(n);A2 = A2 ∗A′2; f2 = rand(n, 1); c2 = 10 ∗ rand;

• A3 = rand(n);A3 = (A3 ∗A′3) + eye(n); f3 = 10 ∗ rand(n, 1); c3 = −10 ∗ rand;

We then use the following MATLAB code to compute matrix Q for diagonalization.

Diagonalization scheme for A indefinie and B � 0

— L = chol(B);

— C = L
′ \ (A/L);
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— [U,∼,∼] = svd(C ∗ C
′
);

— Q = L \U;

The computational results are reported in Tables 1 and 2, where we report the dimension
of problem (size), minimum CPU time in seconds (min), maximum CPU time in seconds
(max) and average CPU time in seconds (mean) at termination.

Fig. 1. Average iterations number versus the dimensions of the

problems for the generalized Newton algorithm.

To show the convergence and the speed of parametric generalized Newton method and
also to examine the effect of problem size on the number of iterations for the generalized
Newton algorithm, we have generated 10 test problems as described above for each
dimension. As we observe, the average of iteration increase as the problems dimension
increase (Figure 1). Graphs demonstrating the convergence and the speed of parametric
generalized Newton method for two different randomly generated test problems appear
in Figure 2. The horizontal axis in these figures is the iterations number k, while the
vertical axis gives log10(|F(α)|). In this case, the slope of the straight lines shows the
speed of the parametric generalized Newton method. The righthand plot in Figure 2
shows the convergence and the speed of parametric generalized Newton method with
both SDO relaxation and Diagonalization method. As the figures illustrate, the hybrid
of generalized Newton algorithm with SDO relaxation converge in fewer iteration, but
as in Tables 1 and 2, it is clear that SDO relaxation become so expensive as the problem
dimensions increase.

7. CONCLUSIONS

In this paper, we have presented a generalized Newton algorithm to solve an indefinite
fractional quadratic optimization problem with a strictly convex quadratic constraint.
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Fig. 2. Graphs of log10(|F(α)|) versus the iteration number for two

different randomly generated test problems.

To solve the underlying indefinite quadratically constraint quadratic problem at each
iteration, we have used two approaches, a new diagonalization scheme which requires
solving a one dimensional optimization problem and the known SDO relaxation. Our
computational experiments on several randomly generated test problems with various
dimensions have shown that the diagonalization approach is much faster than the SDO
relaxation based approach for both homogenous and nonhomogenous case, specially
when solving large scale problems. The extension of our approach to the other classes
of fractional optimization problems, is left for future research.

ACKNOWLEDGEMENT

The authors would like to thank both reviewers for their comments and suggestions and Iran Na-
tional Science Foundation (INSF) for supporting this research under project number 91001892.

(Received September 24, 2014)

R E FER E NCE S

[1] P. Amaral, J. Judice, and H.D. Sherali: A reformulation-linearization-convexification
algorithm for optimal correction of an inconsistent system of linear constraints. Comput.
Oper. Res 35 (2008), 1494–1509. DOI:10.1016/j.cor.2006.08.007

[2] M. S. Bazaraa , H. D. Sherali, and C. M. Shetty: Nonlinear Programming. Wiley, New
York 1993. DOI:10.1002/0471787779

[3] A. Beck and A. Ben-Tal: On the solution of the Tikhonov regularization of the regularized
total least squares problem. SIAM J. Optim. 17 (2006), 98–118. DOI:10.1137/050624418

[4] A. Beck, A. Ben-Tal, and M. Teboulle: Finding a global optimal solution for a quadrati-
cally constrained fractional quadratic problem with applications to the regularized total
least squares. SIAM J. Matrix Anal. Appl. 28 (2006), 425–445. DOI:10.1137/040616851

[5] A. Beck and M. Teboulle: On minimizing quadratically constrained ratio of two quadratic
functions. J. Convex Anal. 17 (2010), 789–804.

http://dx.doi.org/10.1016/j.cor.2006.08.007
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1137/050624418
http://dx.doi.org/10.1137/040616851


308 M. SALAHI AND S. FALLAHI

[6] A. Beck and M. Teboulle: A convex optimization approach for minimizing the ratio
of indefinite quadratic functions over an ellipsoid. Math. Program. 118 (2009), 13–35.
DOI:10.1007/s10107-007-0181-x

[7] H. P. Benson: Fractional programming with convex quadratic forms and functions. Eur.
J. Oper. Res. 173 (2006), 351–369. DOI:10.1016/j.ejor.2005.02.069

[8] H. P. Benson: Solving sum of ratios fractional programs via concave minimization. J.
Optim. Theory Appl. 135 (2007), 1–17. DOI:10.1007/s10957-007-9199-8

[9] H. P. Benson: A simplicial branch and bound duality-bounds algorithm for the linear sum-
of-ratios problem. Eur. J. Oper. Res. 182 (2007), 597–611. DOI:10.1016/j.ejor.2006.08.036

[10] W. Dinkelbach: On Nonlinear Fractional Programming. Manage Sci. 13 (1967), 492–498.
DOI:10.1287/mnsc.13.7.492

[11] M. Grant and S. Boyd: CVX: Matlab software for disciplined convex programming,
version 2.0 beta. 2013. http://cvxr.com/cvx

[12] A. J. Laub: Matrix Analysis for Scientists and Engineers. SIAM 2005.
DOI:10.1137/1.9780898717907

[13] A. W. Lo and A. C. MacKinlay: Maximizing predictability in the stock and bond markets.
Macroecon. Dyn. 1 (1997), 102–134. DOI:10.1017/s1365100597002046

[14] J. A. Ohlson, W. T. Ziemba: Optimal portfolio policies for an investor with a power
utility function facing a log normal securities market. J. Financ. Quant. Anal. 11 (1976),
57–71. DOI:10.2307/2330229

[15] T.K. Pong and H. Wolkowicz: The generalized trust region subproblem. Comput. Optim.
Appl. 58 (2014), 273–322. DOI:10.1007/s10589-013-9635-7

[16] P. P. Shen, G. X. Yuan: Global optimization for the sum of generalized polynomial
fractional functions. Math. Methods Oper. Res. 65 (2007), 445–459. DOI:10.1007/s00186-
006-0130-0

[17] J. F. Sturm and S. Zhang: On cones of nonnegative quadratic functions. Math. Oper.
Res. 28 (2003), 246–267. DOI:10.1287/moor.28.2.246.14485

[18] H. Tuy, P. T. Trach and H. Konno: Optimization of polynomial fractional functions. J.
Glob. Optim. 29 (2004), 19–44. DOI:10.1023/b:jogo.0000035016.74398.e6

[19] R. Yamamoto and H. Konno: An efficient algorithm for solving convex-convex quadratic
fractional programs. J. Optim. Theory Appl. 133 (2007), 241–255. DOI:10.1007/s10957-
007-9188-y

[20] Y. Ye and Sh. Zhang: New results on quadratic minimization. SIAM J. Optim. 14
(2003), 245–267. DOI:10.1137/s105262340139001x

[21] A. Zhang and Sh. Hayashi: Celis-Dennis-Tapia based approach to quadratic fractional
programming problems with two quadratic constraints. Numer. Algebra Control. Optim.
1 (2011), 83–98. DOI:10.3934/naco.2011.1.83

[22] X. J. Zheng, X. L. Sun, D. Li, and Y. F. Xu: On zero duality gap in nonconvex quadratic
programming problems. J. Glob. Optim. 52 (2012), 229–242. DOI:10.1007/s10898-011-
9660-y

Maziar Salahi, Faculty of Mathematical Sciences, University of Guilan, Rasht. Iran.
e-mail: salahim@guilan.ac.ir

Saeed Fallahi, Faculty of Mathematical Sciences, University of Guilan, Rasht. Iran.
e-mail: saeedf808@gmail.com

http://dx.doi.org/10.1007/s10107-007-0181-x
http://dx.doi.org/10.1016/j.ejor.2005.02.069
http://dx.doi.org/10.1007/s10957-007-9199-8
http://dx.doi.org/10.1016/j.ejor.2006.08.036
http://dx.doi.org/10.1287/mnsc.13.7.492
http://cvxr.com/cvx
http://dx.doi.org/10.1137/1.9780898717907
http://dx.doi.org/10.1017/s1365100597002046
http://dx.doi.org/10.2307/2330229
http://dx.doi.org/10.1007/s10589-013-9635-7
http://dx.doi.org/10.1007/s00186-006-0130-0
http://dx.doi.org/10.1007/s00186-006-0130-0
http://dx.doi.org/10.1287/moor.28.2.246.14485
http://dx.doi.org/10.1023/b:jogo.0000035016.74398.e6
http://dx.doi.org/10.1007/s10957-007-9188-y
http://dx.doi.org/10.1007/s10957-007-9188-y
http://dx.doi.org/10.1137/s105262340139001x
http://dx.doi.org/10.3934/naco.2011.1.83
http://dx.doi.org/10.1007/s10898-011-9660-y
http://dx.doi.org/10.1007/s10898-011-9660-y

	Introduction
	Parametric programming approach
	Diagonalization and Univariate Minimization
	SDO Relaxation
	Homogeneous Case
	Computational experiments
	Conclusions

