Kybernetika 51 no. 2, 212-230, 2015

Characterizations of Archimedean n-copulas

Włodzimierz WysockiDOI: 10.14736/kyb-2015-2-0212

Abstract:

We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.

Keywords:

Archimedean operation, additive generator, diagonal generator, multiplicative generator, (Archimedean) $n$-copula, (Archimedean) $n$-quasicopula

Classification:

62H20

References:

  1. C. Alsina, R. B. Nelsen and B. Schweizer: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89.   DOI:10.1016/0167-7152(93)90001-y
  2. I. Cuculescu and R. Theodorescu: Copulas: diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742.   CrossRef
  3. W. A. Dudek and V. S. Trokhimenko: Menger algebras of multiplace functions. Universitatea de Stat din Moldova, Chişin{\u a}u, 2006 (in Russian).   CrossRef
  4. F. Durante and C. Sempi: Copula theory: an introduction. In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31.   DOI:10.1007/978-3-642-12465-5_1
  5. Encyclopedia of statistical sciences: Vol. 2, second edition. Wiley 2006, pp. 1363-1367.   CrossRef
  6. K. T. Fang and B. Q. Fang: Some families of multivariate symmetric distributions related to exponential distribution. J. Multivariate Anal. 24 (1998), 109-122.   DOI:10.1016/0047-259x(88)90105-4
  7. W. Feller: An introduction to probability theory and its applications. Vol. II, second edition. Wiley, New York 1971.   CrossRef
  8. C. Genest and J. MacKay: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159.   DOI:10.2307/3314660
  9. C. Genest and J. MacKay: The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 (1986), 280-285.   DOI:10.1080/00031305.1986.10475414
  10. C. Genest, L. J. Quesada-Molina, J. A. Rodr{í}guez-Lallena and C. Sempi: A characterization of quasicopulas. J. Multivariate Anal. 69 (1999), 193-205.   DOI:10.1006/jmva.1998.1809
  11. L. M. Gluskin: Positional operatives. Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian).   CrossRef
  12. L. M. Gluskin: Positional operatives. Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian).   CrossRef
  13. L. M. Gluskin: Positional operatives. Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian).   CrossRef
  14. T. P. Hutchinson and C. D. Lai: Continuous bivariate distributions. Emphasising applications. Rumsby Scientific, Adelaide 1990.   CrossRef
  15. P. Jaworski: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863-2871.   DOI:10.1016/j.ins.2008.09.006
  16. H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997.   DOI:10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r
  17. M. N. Jouini and R. T. Clemen: Copula models for aggregating expert opinions. Oper. Research 44 (1996), 444-457.   DOI:10.1287/opre.44.3.444
  18. C. H. Kimberling: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 (1974), 152-164.   DOI:10.1007/bf01832852
  19. M. Kuczma: Functional equations in a single variable. Monografie Mat. 46, PWN, Warszawa 1968.   CrossRef
  20. C. H. Ling: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.   CrossRef
  21. A. J. McNeil and J. Nešlehová: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059-3097.   DOI:10.1214/07-aos556
  22. R. B. Nelsen: An introduction to copulas. Springer, 2006.   DOI:10.1007/0-387-28678-0
  23. R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodr{í}guez-Lallena and M. Úbeda-Flores: Multivariate Archimedean quasi-copulas. In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185.   DOI:10.1007/978-94-017-0061-0_19
  24. L. Rüschendorf: Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios. Springer, 2013 (Chapter 1).   DOI:10.1007/978-3-642-33590-7
  25. A. Stupňanová and A. Kolesárová: Associative $n$-dimensional copulas. Kybernetika 47 (2011), 93-99.   CrossRef
  26. E. A. Sungur and Y. Yang: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659-1676.   DOI:10.1080/03610929608831791
  27. R. E. Williamson: Multiple monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207.   DOI:10.1215/s0012-7094-56-02317-1
  28. W. Wysocki: Constructing Archimedean copulas from diagonal sections. Statist. Probab. Lett. 82 (2012), 818-826.   DOI:10.1016/j.spl.2012.01.008
  29. W. Wysocki: When a copula is archimax. Statist. Probab. Lett. 83 (2013), 37-45.   DOI:10.1016/j.spl.2012.01.008