Kybernetika 51 no. 2, 193-211, 2015

Generalized madogram and pairwise dependence of maxima over two regions of a random field

Cecília Fonseca, Luísa Pereira, Helena Ferreira and Ana Paula MartinsDOI: 10.14736/kyb-2015-2-0193


Spatial environmental processes often exhibit dependence in their large values. In order to model such processes their dependence properties must be characterized and quantified. In this paper we introduce a measure that evaluates the dependence among extreme observations located in two disjoint sets of locations of $\mathbb{R}^2$. We compute the range of this new dependence measure, which extends the existing $\lambda$-madogram concept, and compare it with extremal coefficients, finding generalizations of the known relations in the pairwise approach. Estimators for this measure are introduced and asymptotic normality and strong consistency are shown. An application to the annual maxima precipitation in Portuguese regions is presented.


max-stable random field, dependence coefficients, extreme values




  1. J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels: Statistics of Extremes: Theory and Applications. John Wiley 2004.   DOI:10.1002/0470012382
  2. D. Cooley, P. Naveau and P. Poncet: Variograms for spatial max-stable random fields. Dependence in Probability and Statistics 187 (2006), 373-390.   DOI:10.1007/0-387-36062-x_17
  3. S. G. Coles: Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. B 55 (1993), 797-816.   CrossRef
  4. L. de Haan: A spectral representation for max-stable proesses. Ann. Probab. 12 (1984), 1194-1204.   DOI:10.1214/aop/1176993148
  5. L. de Haan and J. Pickands: Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 (1986), 477-492.   DOI:10.1007/bf00344716
  6. J. D. Fermanian, D. Radulovic and M. Wegkamp: Weak convergence of empirical copula processes. Bernoulli 10 (2004), 847-860.   DOI:10.3150/bj/1099579158
  7. H. Ferreira: Dependence between two multivariate extremes. Statist. Probab. Lett. 81 (2011), 5, 586-591.   DOI:10.1016/j.spl.2011.01.014
  8. D. Gilat and T. Hill: One-sided refinements of the strong law of large numbers and the Glivenko-Cantelli Theorem. Ann. Probab. 20 (1992), 1213-1221.   DOI:10.1214/aop/1176989688
  9. A. Krajina: An M-Estimator of Multivariate Dependence Concepts. Tilburg University Press, Tilburg 2010.   CrossRef
  10. P. Naveau, A. Guillou, D. Cooley and J. Diebolt: Modelling pairwise dependence of maxima in space. Biometrika 96 (2009), 1, 1-17.   DOI:10.1093/biomet/asp001
  11. G. Neuhaus: On the weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 4, 1285-1295.   DOI:10.1214/aoms/1177693241
  12. S. I. Resnick: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin 1987.   DOI:10.1007/978-0-387-75953-1
  13. M. Ribatet: A User's Guide to the Spatial Extremes Package. Unpublished, 2009.
  14. M. Schlather: Models for stationary max-stable random fields. Extremes 5 (2002), 1, 33-44.   DOI:10.1023/a:1020977924878
  15. M. Schlather and J. Tawn: A dependece measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 (2003), 139-156.   DOI:10.1093/biomet/90.1.139
  16. R. L. Smith: Max-stable processes and spatial extremes. Unpublished manuscript, 1990.
  17. R. L. Smith and I. Weissman: Characterization and Estimation of the Multivariate Extremal Index. Technical Report, Department of Statistics, University of North Carolina 1996.
  18. A. Van Der Vaart and J. A. Wellner: Weak Convergence and Empirical Processes. Springer-Verlag, New York 1996.   DOI:10.1007/978-1-4757-2545-2
  19. P. Vatan: Max-infinite divisibility and max-stability in infinite dimensions. Probability in Banach Spaces V, Lect. Notes in Math. 1153 (1985), 400-425.   DOI:10.1007/bfb0074963
  20. Z. Zhang and R. L. Smith: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 (2004), 4, 1113-1123.   DOI:10.1239/jap/1101840556
  21. Z. Zhang and R. L. Smith: On the estimation and application of max-stable processes. J. Statist. Planning Inference 140 (2010), 5, 1135-1153.   DOI:10.1016/j.jspi.2009.10.014