Kybernetika 51 no. 1, 59-80, 2015

Robust observer-based control of switched nonlinear systems with quantized and sample output

Carlos Perez and Manuel MeraDOI: 10.14736/kyb-2015-1-0059


This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented as Bilinear Matrix Inequalities (BMI's). Finally, two examples are given to verify the efficiency of the proposed method.


quantization, switched systems, robust stabilization


93D21, 93C57


  1. K. Aihara and H. Suzuki: Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (2010), 4893-4914.   DOI:10.1098/rsta.2010.0237
  2. V. Azhmyakov: On the geometric aspects of the invariant ellipsoid method: Application to the robust control design. In: Proc. 50th IEEE Conference on Decision and Control and demonstratedntrol Conference, Orlando 2011, pp. 1353-1358.   DOI:10.1109/cdc.2011.6161180
  3. A. Balluchi, L. Benvenuti, M. D. Di Benedetto and A. Sangiovanni-Vincentelli: The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem. Automatica 49 (2013), 915-925.   DOI:10.1016/j.automatica.2013.01.037
  4. M. Barkhordari Yazdi and M. R. Jahed-Motlagh: Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chemical Engrg. J. 155 (2009), 838-843.   DOI:10.1016/j.cej.2009.09.008
  5. F. Blanchini and S. Miani: Set-Theoretic Methods in Control. Birkhauser, Boston 2008.   DOI:10.1007/978-0-8176-4606-6_9
  6. M. Branicky: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 57 (1998), 3038-3050.   DOI:10.1109/tac.2012.2199169
  7. M. C. F. Donkers, W. P. M. H. Hemmels, N. Van den Wouw and L. Hetel: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Automat. Control 56 (2011), 9, 2101-2115.   DOI:10.1109/tac.2011.2107631
  8. A. F. Filipov: Differential Equations with Discontinuous Right-hand Side. Kluwer, Dordrecht 1988.   CrossRef
  9. E. Fridman: Descriptor discretized Lyapunov functional method: Analysis and design. IEEE Trans. Automat. Control 51 (2006), 890-897.   DOI:10.1109/tac.2006.872828
  10. E. Fridman and S. I. Niculescu: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18 (2008), 3, 364-374.   DOI:10.1002/rnc.1230
  11. E. Fridman and M. Dambrine: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 10, 2258-2264.   DOI:10.1016/j.automatica.2009.05.020
  12. M. Fu and L. Xie: The sector bound approach to quantized feedback control. IEEE Trans. Automat. Control 50 (2005), 11, 1698-1711.   DOI:10.1109/tac.2005.858689
  13. H. Gao and T. Chen: A new approach to quantized feedback control systems. Automatica 44 (2008), 2, 534-542.   DOI:10.1016/j.automatica.2007.06.015
  14. J. C. Geromel and P. Colaneri: Stability and stabilization of continuous-time switched linear systems. SIAM J. Control Optim. 45 (2006), 5, 1915-1930.   DOI:10.1137/050646366
  15. J. D. Glover and F. C. Schweppe: Control of linear dynamic systems with set constrained disturbance. IEEE Trans. Automat. Control 16 (1971), 5, 411-423.   DOI:10.1109/tac.1971.1099781
  16. S. Gonzalez-Garcia, A. Polyakov and A. Poznyak: Linear feedback spacecraft stabilization using the method of invariant ellipsoids. In: Proc. 41st Southeastern Symposium on System Theory 2009, pp. 195-198.   DOI:10.1109/ssst.2009.4806834
  17. S. Gonzalez-Garcia, A. Polyakov. and A. Poznyak: Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique. In: American Control Conference, St. Louis 2009, pp. 1160-1165.   DOI:10.1109/acc.2009.5160434
  18. P. Hartman: Ordinary Differential Equations. Second edition. Society for Industrial and Applied Mathematics, Philadelphia 2002.   DOI:10.1137/1.9780898719222
  19. J. P. Hespanha and A. S. Morse: Stability of switched systems with average dwell-time. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2655-2660.   DOI:10.1109/cdc.1999.831330
  20. A. Kruszewski, W. J. Jiang, E. Fridman, J. P. Richard and A. Toguyeni: A switched system approach to exponential stabilization through communication network. IEEE Trans. Control Systems Technol. 20 (2012), 887-900.   DOI:10.1109/tcst.2011.2159793
  21. A. B. Khurzhanski and P. Varaiya: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45 (2006), 1369-1394.   DOI:10.1137/s0363012903437605
  22. J. Li, Y. Liu, R. Mei and B. Li: Robust H$_\infty$ output feedback control of discrete time switched systems via a new linear matrix inequality formulation. In: Proc. 8th World Congress on Intelligent Control and Automation 2010, pp. 3377-3382.   DOI:10.1109/wcica.2010.5553817
  23. D. Liberzon: Switching in systems and control. In: Systems \& Control. Foundations \& Applications, Birkhauser, Boston 2003.   DOI:10.1007/978-1-4612-0017-8
  24. D. Liberzon: Stabilizing a switched linear system by sampled-data quantized feedback. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 8321-8328.   DOI:10.1109/cdc.2011.6160212
  25. D. Liberzon: Finite data-rate feedback stabilization of switched and hybrid linear systems. Automatica 50 (2014), 2, 409-420.   DOI:10.1016/j.automatica.2013.11.037
  26. H. Lin and P. J. Antsaklis: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322.   DOI:10.1109/tac.2008.2012009
  27. Y. Liu, Y. Niu and D. Ho: Sliding mode control for linear uncertain switched systems. In: Proc. 31st Chinese Control Conference, Hefei 2012, pp. 3177-3181.   CrossRef
  28. T. Liu, Z. P. Jiang and D. J. Hill: Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Trans. Automat. Control 57 (2012),5, 1326-1332.   DOI:10.1109/tac.2012.2191870
  29. T. Liu, Z. P. Jiang and D. J. Hill: A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica 48 (2012), 1, 145-152.   DOI:10.1016/j.automatica.2011.09.041
  30. N. B. Lozada-Castillo, H. Alazki and A. S. Poznyak: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises. IMA J. Math. Control Inform. 30 (2013), 1-19.   DOI:10.1093/imamci/dns008
  31. G. N. Nair, F. Fagnani, S. Zampieri and R. J. Evans: Feedback control under data rate constraints: an overview. Proc. of the IEEE 95 (2007), 108-137.   DOI:10.1109/jproc.2006.887294
  32. H. Nie, Z. Song, P. Li and J. Zhao: Robust H$_\infty$ dynamic output feedback control for uncertain discrete-time switched systems with time-varying delays. In: Proc. 2008 Chinese Control and Decision Conference, Yantai-Shandong 2008, pp. 4381-4386.   DOI:10.1109/ccdc.2008.4598158
  33. P. Ordaz, H. Alazki and A. Poznyak: A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika 49 (2013), 6, 911-934.   CrossRef
  34. C. Peng and Y. C. Tian: Networked H$_\infty$ control of linear systems with state quantization. Inform. Sci. 177 (2007), 5763-5774.   DOI:10.1016/j.ins.2007.05.025
  35. B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter: Ellipsoidal parameter or state estimation under model uncertainty. Automatica 40 (2004), 1171-1179.   DOI:10.1016/j.automatica.2004.02.014
  36. B. T. Polyak and M. V. Topunov: Suppression of bounded exogenous disturbances: Output feedback. Autom. Remote Control 69 (2008), 801-818.   DOI:10.1134/s000511790805007x
  37. A. S. Poznyak: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques. Elsevier, Amsterdam 2008.   DOI:10.1134/s0005117909110174
  38. A. S. Poznyak, V. Azhmyakov and M. Mera: Practical output feedback stabilization for a class of continuous-time dynamic system under sample-data outputs. Int. J. Control 84 (2011), 1408-1416.   DOI:10.1080/00207179.2011.603097
  39. R. Shorten, F. Wirth, O. Manson, K. Wulff and C. King: Stability criteria for switched and hybrid systems. SIAM Rev. 49 (2007), 545-592.   DOI:10.1137/05063516x
  40. Z. Sun and S. S. Ge: Stability Theory of Switched Dynamical Systems, Communications and Control Engineering. Springer-Verlag, London 2011.   DOI:10.1007/978-0-85729-256-8
  41. S. Tatikonda and S. Mitter: Control under communication constraints. IEEE Trans. Automat. Control 49 (2004), 1056-1068.   DOI:10.1109/tac.2004.831187
  42. Y. Wang, V. Gupta and P. Antsaklis: On passivity of a class of discrete-time switched nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 692-702.   DOI:10.1109/tac.2013.2287074
  43. L. Yanyan, Z. Jun and G. Dimirovski: Passivity, feedback equivalence and stability of switched nonlinear systems using multiple storage functions. In: Proc. 30th Chinese Control Conference, Yantai 2011, pp. 1805-1809.   CrossRef
  44. W. A. Zhang and L. Yu: Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Automat. Control 52 (2007), 1705-1710.   DOI:10.1109/tac.2007.904284