Kybernetika 51 no. 1, 150-172, 2015

Drive network to a desired orbit by pinning control

Quanjun Wu and Hua ZhangDOI: 10.14736/kyb-2015-1-0150


The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology.


time delay, complex dynamical network, pinning control, directed coupling, DCN oscillator


74H65, 70K40


  1. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Morenob and C. Zhoug: Synchronization in complex networks. Phys. Rep. 469 (2008), 93-153.   DOI:10.1016/j.physrep.2008.09.002
  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang: Complex networks: structure and dynamics. Phys. Rep. 424 (2006), 175-308.   DOI:10.1016/j.physrep.2005.10.009
  3. S. M. Cai, J. Zhou, L. Xiang and Z. R. Liu: Robust impulsive synchronization of complex delayed dynamical networks. Phys. Lett. A 372 (2008), 4990-4995.   DOI:10.1016/j.physleta.2008.05.077
  4. S. M. Cai, Q. B. He, J. J. Hao and Z. R. Liu: Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes. Phys. Lett. A 374 (2010), 2539-2550.   DOI:10.1016/j.physleta.2010.04.023
  5. T. P. Chen, X. W. Liu and W. L. Lu: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I. Reg. Pap. 54 (2007), 1317-1326.   DOI:10.1109/tcsi.2007.895383
  6. Y. Chen, J. H. Lü, X. H. Yu and Z. L. Lin: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301.   DOI:10.1137/110850116
  7. Y. Chen, J. H. Lü and Z. L. Lin: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775.   DOI:10.1016/j.automatica.2013.02.021
  8. W. L. Guo, F. Austin, S. H. Chen and W. Sun: Pinning synchronization of the complex networks with non-delayed and delayed coupling. Phys. Lett. A 373 (2009), 1565-1572.   DOI:10.1016/j.physleta.2009.03.003
  9. Z. Li and J. J. Lee: New eigenvalue based approach to synchronization in asymmetrically coupled networks. Chaos 17 (2007), 043117-043117.   DOI:10.1063/1.2804525
  10. X. Li, X. F. Wang and G. R. Chen: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I. Reg. Pap. 51 (2004), 2074-2087.   DOI:10.1109/tcsi.2004.835655
  11. H. T. Liang, Z. Wang, Z. M. Yue and R. H. Lu: Generallized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205.   CrossRef
  12. B. Liu, W. L. Lu and T. P. Chen: Pinning consensus in networks of multiagents via a single impulsive controller. IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 1141-1149.   DOI:10.1109/tnnls.2013.2247059
  13. H. T. Lu: Chaotic attractors in delayed neural networks. Phys. Lett. A 298 (2002), 109-116.   DOI:10.1016/s0375-9601(02)00538-8
  14. W. L. Lu: Adaptive dynamical networks via neighborhood information: synchronization and pinning control. Chaos 17 (2007), 023122-023122.   DOI:10.1063/1.2737829
  15. W. L. Lu and T. P. Chen: New approach to synchronization analysis of linearly coupled ordinary differential systems. Phys. D 213 (2006), 214-230.   DOI:10.1016/j.physd.2005.11.009
  16. S. J Lu and L. Chen: A general synchronization method of chaotic communication system via kalman filtering. Kybernetika 44 (2008), 43-52.   CrossRef
  17. J. Q. Lu, Z. D. Wang, J. D. Cao, D. W. C. Ho and J. Kurths: Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurc. Chaos 22 (2012), 1250176-1250176.   DOI:10.1142/s0218127412501763
  18. J. H. Lü, X. Yu, G. R. Chen and D. Z. Cheng: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I. Reg. Pap. 51 (2004), 787-796.   DOI:10.1109/tcsi.2004.823672
  19. J. H. Lü, X. Yu and G. R. Chen: Chaos synchronization of general complex dynamical networks. Phys. A 334 (2004), 281-302.   DOI:10.1016/j.physa.2003.10.052
  20. J. H. Lü and G. R. Chen: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 841-846.   DOI:10.1109/tac.2005.849233
  21. M. H. Ma, H. Zhang, J. P. Cai and J. Zhou: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika {\mi49} (2013), 539-553.   CrossRef
  22. M. Porfiri and M. di Bernardo: Criteria for global pinning-controllability of complex networks. Automatica 44 (2008), 3100-3106.   DOI:10.1016/j.automatica.2008.05.006
  23. M. Porfiri and F. Fiorilli: Node-to-node pinning control of complex networks. Chaos 19 (2009), 013122-013122.   DOI:10.1063/1.3080192
  24. Q. Song and J. D. Cao: On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans. Circuits Syst. I. Reg. Pap. 57 (2010), 672-680.   DOI:10.1109/tcsi.2009.2024971
  25. F. Sorrentino, M. Bernardo, F. Garofalo and G. R. Chen: Controllability of complex networks via pinning. Phys. Rev. E 75 (2007), 046103-046103.   DOI:10.1103/physreve.75.046103
  26. Y. Tang, Z. D. Wang and J A. Fang: Pinning control of fractional-order weighted complex networks. Chaos 19 (2009), 013112-013112.   DOI:10.1063/1.3068350
  27. X. F. Wang and G. R. Chen: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 49 (2002), 54-62.   DOI:10.1109/81.974874
  28. X. F. Wang and G. R. Chen: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12 (2002), 187-192.   DOI:10.1142/s0218127402004292
  29. X. F. Wang and G. R. Chen: Pinning control of scale-free dynamical networks. Phys. A 310 (2002), 521-531.   DOI:10.1016/s0378-4371(02)00772-0
  30. Y. Y. Wu, W. Wei, G. Y. Li and J. Xiang: Pinning control of uncertain complex networks to a homogeneous orbit. IEEE Trans. Circuits Syst. II Exp. Briefs 56 (2009), 235-239.   DOI:10.1109/tcsii.2009.2015350
  31. W. Wu, W. J. Zhou and T. P. Chen: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I. Reg. Pap. 56 (2009), 829-839.   DOI:10.1109/tcsi.2008.2003373
  32. W. G. Xia and J. D. Cao: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120-013120.   DOI:10.1063/1.3071933
  33. J. Xiang and G. R. Chen: Analysis of pinning-controlled networks: a renormalization approach. IEEE Trans. Automat. Control 54 (2009), 1869-1875.   DOI:10.1109/tac.2009.2020668
  34. L. Y. Xiang, Z. X. Liu, Z. Q. Chen, F. Chen and Z. Z. Yuan: Pinning control of complex dynamical networks with general topology. Phys. A 379 (2007), 298-306.   DOI:10.1016/j.physa.2006.12.037
  35. L. Y. Xiang and J. J. H. Zhu: On pinning synchronization of general coupled networks. Nonlin. Dynam. 64 (2011), 339-348.   DOI:10.1007/s11071-010-9865-5
  36. W. W. Yu, G. R. Chen and J. H. Lü: On pinning synchronization of complex dynamical networks. Automatica 45 (2009), 429-435.   DOI:10.1016/j.automatica.2008.07.016
  37. J. Zhou and T. P. Chen: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I. Reg. Pap. 53 (2006), 733-744.   DOI:10.1109/tcsi.2005.859050
  38. J. Zhou, J. A. Lu and J. H. Lü: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 652-656.   DOI:10.1109/tac.2006.872760
  39. J. Zhou, J. A. Lu and J. H. Lü: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 996-1003.   DOI:10.1016/j.automatica.2007.08.016
  40. J. Zhou, Q. J. Wu and L. Xiang: Pinning complex delayed dynamical networks by a single impulsive controller. IEEE Trans. Circuits Syst. I. Reg. Pap. 58 (2011), 2882-2893.   DOI:10.1109/tcsi.2011.2161363
  41. J. Zhou, Q. J. Wu and L. Xiang: Impulsive pinning complex dynamical networks and applications fo firing neuronal synchronization. Nonlin. Dynam. 69 (2012), 1393-1403.   DOI:10.1007/s11071-012-0355-9
  42. J. Zhou, Q. J. Wu, L. Xiang, S. M. Cai and Z. R. Liu: Impulsive synchronization seeking in complex delayed dynamical networks. Nonlin. Anal.: Hybrid Syst. 5 (2011), 513-524.   DOI:10.1016/j.nahs.2010.10.013