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STABILITY OF NONLINEAR H-DIFFERENCE SYSTEMS
WITH N FRACTIONAL ORDERS

Ma lgorzata Wyrwas, Ewa Pawluszewicz and Ewa Girejko

In the paper we study the subject of stability of systems with h-differences of Caputo–,
Riemann–Liouville– and Grünwald–Letnikov–type with n fractional orders. The equivalent de-
scriptions of fractional h-difference systems are presented. The sufficient conditions for asymp-
totic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability
of the considered systems with n-orders.
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1. INTRODUCTION

The fractional calculus is a field of mathematics that grows out of the traditional defi-
nitions of integrals, derivatives, difference operators and deals with fractional integrals,
derivatives and differences of any order. Basic information on fractional calculus, con-
cepts, ideas and their applications can be found for example in [16, 20, 32]. Dynamical
systems are one of the most active areas, and several authors focused on the stability
of fractional order systems, see for instance [6, 8, 9, 12, 14, 15, 17, 21, 22, 23, 24, 29, 30, 31,
33,34,35,36]. Due to the lack of a geometric interpretation of the fractional derivatives
and differences, it is difficult to find a valid tool to analyze the stability of fractional
equations, and to our knowledge there are some works on the stability of solutions for ei-
ther fractional differential equations, see [6,14,21,22,23,24,30,31,33,34,36] or fractional
difference equations, see [8, 9, 12,15,17,29,35].

In the paper we focus on h-difference operators, so we are interested in the discrete
fractional calculus that was initiated by Miller and Ross in [25]. Their work found
its continuation in [1, 3, 4, 5, 7, 13, 17, 25, 26, 32] and others. The calculus of fractional
h-differences was given for instance in [4, 5, 26,28].

In this paper, the conditions for stability of the fractional h-difference systems are
presented. The stability of systems defined by the fractional difference equations (h = 1)
was studied for example in [8,9,15,35]. In [8,9] authors examine the asymptotic stability
of nonlinear fractional difference equations with h = 1. They consider implicit discrete
equations, so they have to prove the existence of solutions of the considered equations.

DOI: 10.14736/kyb-2015-1-0112

http://doi.org/10.14736/kyb-2015-1-0112


Stability of nonlinear h-difference systems 113

Since we study explicit fractional difference systems with equilibrium points, solutions
of the considered systems always exist and in the paper we show the recurrence formula
for the solutions. Note that in [8, 9] the authors study the stability of difference equa-
tions while we formulate the conditions for the systems of h-difference equations with
n fractional orders. There exist relations between cases h > 0 and h = 1 for fractional
summation and differences, see [10], so we recall the transitions formulas between these
operators. Later on, based on the given formulas and some results from [8,9], we prove
the sufficient conditions for the stability and asymptotic stability of the trivial solution
of the considered systems. Additionally, the Lyapunov theorems presented in [35] are
generalized in this paper for the considered systems. It is well known that in nonlinear
systems, Lyapunov’s direct method provides a way to analyze the stability of a system
without explicitly solving equations. The method generalizes the idea that the system
is stable if there exists a Lyapunov function, a candidate for the system. The Lyapunov
stability of differential equations has been studied in [14] where the authors propose
Lyapunov stability theorem for fractional systems without delay and extend the theo-
rem for fractional systems with delay. The difference between proposed theory and the
fractional Lyapunov direct one is that they take the integer derivative instead of the
fractional derivative of the positive definite function V . The similar idea is used in [35]
where the integer difference is taken instead of fractional one of the Lyapunov function V .
In [35] we propose Lyapunov stability theorems for the Caputo–type difference systems
with two fractional orders and with the step h = 1. The proposed method can be ex-
tended for studying the stability of solutions to the Caputo–, Riemann–Liouville–type as
well as Grünwald–Letnikov–type h-difference (with arbitrary h > 0) fractional nonlinear
systems with n orders. Therefore the facts presented in the paper are the generalization
of results given in [35]. In [27] it is shown that the Riemann–Liouville–type fractional
h-difference operator and the Caputo–type fractional h-difference operator are related
to each other. Moreover, the Grünwald–Letnikov–type fractional h-difference operator
can be expressed by the Riemann–Liouville–type fractional h-difference operator. So,
systems with these operators can be studied simultaneously. The analysis of Lyapunov
direct method to h-fractional systems is the same for all h-difference operators, so we de-
cided to formulate the sufficient conditions for the stability of the fractional h-difference
systems with n orders with the Caputo– and Riemann–Liouville–type operators as facts.
In the paper we show that the positive number h that appears in the presented operators
can be treated as a parameter.

The paper is organized as follows. In Section 2 we gather some definitions, nota-
tions and results needed in the sequel. Some of the presented results concerning h-
factorial functions, where h > 0, are the generalizations of properties given in [8,9] (e. g.
Lemmas 2.3 and 2.4). Section 3 contains the equivalent description of nonlinear frac-
tional difference systems with n-orders. Since the Grünwald–Letnikov–type fractional
h-difference operator can be directly expressed by the the Riemann–Liouville–type frac-
tional h-difference operator, we consider only the Riemann–Liouville– and Caputo–type
ones. The sufficient conditions for asymptotic stability of considered systems are given
in Section 4. In Subsection 4.1 the analysis of Lyapunov direct method to nonlinear
h-fractional systems is briefly presented. The proofs of results given in this part are the
same as in [35] for the Caputo–type difference systems with two fractional orders, so we
only state the conditions for stability where the Lyapunov function is used and for the
proofs we refer the reader to [35]. Finally, Section 5 provides the conclusions.
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2. PRELIMINARIES

Let FD denote the set of real valued functions defined on D. Let α > 0 and h > 0. For
a ∈ R we define (hN)a := {a, a+h, a+2h, ...} and the forward operator σ : (hN)a → (hN)a

is defined by σ(t) := t+h. The next definitions of h-difference operators were originally
given in [5], here we propose a simpler notation.

Definition 2.1. For a function x ∈ F(hN)a
the forward h-difference operator is defined

as

(∆hx)(t) :=
x(σ(t))− x(t)

h
, t = a+ nh, n ∈ N0 ,

while the h-difference sum is given by(
a∆−1

h x
)
(t) := h

n∑
k=0

x(a+ kh) ,

where t = a+ (n+ 1)h, n ∈ N0, and
(
a∆−1

h x
)
(a) := 0.

Definition 2.2. For arbitrary t, α ∈ R the h-factorial function is defined by

t
(α)
h := hα Γ( t

h + 1)
Γ( t

h + 1− α)
, (1)

where Γ is the Euler gamma function, t
h 6∈ Z− := {−1,−2,−3, . . .}, and we use the

convention that division at a pole yields zero.

There is the following relation between the h-factorial function and a factorial func-
tion with h = 1

t
(α)
h := hα

(
t

h

)(α)

1

. (2)

Hereinafter, if h = 1, we will write t(α) instead of t(α)
1 . If we use the general binomial

coefficient
(
a
b

)
:= Γ(a+1)

Γ(b+1)Γ(a−b+1) , then (1) can be rewritten as

t
(α)
h = hαΓ(α+ 1)

( t
h

α

)
.

For the general binomial coefficient we use the same convention as for the h-factorial
function, i. e. the division at a pole yields zero. Moreover, for τ ∈ (hN)0 one gets

τ
(α)
h = hαΓ(α+ 1)

(
n

α

)
= hαn(α) = hα

( τ
h

)(α)

,

where τ = nh, n ∈ N0, hα and Γ(α+ 1) are positive numbers.
Now, we will present some of the properties of the h-factorial function in order to

show that they are very similar to the properties of a factorial function with h = 1.
In [2] the authors show the following formula for fractional functions with h = 1

t(β+γ) = (t− γ)(β) · t(γ) . (3)

The formula (3) can be generalized for arbitrary h-factorial functions, where h > 0, as
follows:
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Lemma 2.3. Let t(β+γ)
h , (t− γh)(β)

h and t(γ)
h be well defined. Then

t
(β+γ)
h = (t− γh)(β)

h · t(γ)
h

or equivalently, ( t
h

β + γ

)
·
(
β + γ

β

)
=

( t
h − γ

β

)
·
( t

h

γ

)
. (4)

P r o o f . By (2) and (3) we get

t
(β+γ)
h = hβ+γ ·

(
t

h

)(β+γ)

= hβ ·
(
t

h
− γ

)(β)

· hγ ·
(
t

h

)(γ)

= (t− γh)(β)
h · t(γ)

h .

�

Similarly, the following inequality

t(−β) > (t+ α)(−β)
h , (5)

where α, β, t > 0, presented in [9], can be generalized for h > 0 in the following way:

Lemma 2.4. Let γ, α, t > 0 and t(−α)
h , (t+ γh)(−α)

h be well defined. Then

t
(−α)
h > (t+ γh)(−α)

h .

or equivalently, ( t
h

−α

)
>

( t
h + γ

−α

)
. (6)

P r o o f . By (2) and (5) we have

t
(−α)
h = h−α

(
t

h

)(−α)

> h−α

(
t

h
+ γ

)(−α)

= (t+ γh)(−α)
h .

�

The h-factorial function is used to define the fractional h-sum of order α > 0 for a
real valued function.

Definition 2.5. For a function x ∈ F(hN)a
the fractional h-sum of order α > 0 is given

by

(
a∆−α

h x
)
(t) :=

h

Γ(α)

n∑
k=0

(t− σ(a+ kh))(α−1)
h x(a+ kh)

= hα
n∑

k=0

( t−a
h − k − 1
α− 1

)
x(a+ kh) ,

where t = a+ (α+ n)h, σ(a+ sh) = a+ sh+ h and
(
a∆0

hx
)
(t) := x(t).
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Note that a∆−α
h : F(hN)a

→ F(hN)a+αh
. Accordingly to the definition of the h-factorial

function we can write that for t = a+ (α+ n)h, n ∈ N0:

(
a∆−α

h x
)
(t) = hα

n∑
k=0

Γ(α+ n− k)
Γ(α)Γ(n− k + 1)

x(a+ kh) = hα
n∑

k=0

(
n− k + α− 1

n− k

)
x(a+ kh) .

Moreover, for p 6= 0 the following relation:

∆h(t− a)(p)
h = hpΓ(p+ 1)∆h

( t−a
h

p

)
= hp−1Γ(p+ 1)

( t−a
h

p− 1

)
= p(t− a)(p−1)

h

holds. In [10] it is shown that if ψ(r) = (r − a+ µh)(µ)
h , r ∈ (hN)a, t ∈ (hN)a+αh, then

the following power rule formula

(
a∆−α

h ψ
)
(t) =

Γ(µ+ 1)
Γ(µ+ α+ 1)

(t− a+ µh)(µ+α)
h = hµ+αΓ(µ+ 1)

( t−a
h + µ

µ+ α

)
(7)

holds. Then if ψ ≡ 1, for µ = 0 and t = nh+ a+ αh we have

(
a∆−α

h 1
)
(t) =

1
Γ(α+ 1)

(t− a)(α)
h =

Γ(n+ α+ 1)
Γ(α+ 1)Γ(n+ 1)

hα =
(
n+ α

n

)
hα .

From the application of the power rule it follows the rule for composing two fractional
h-sums. The proof for the case h = 1 one can find in [13] and for h > 0 in [26].

Proposition 2.6. (Mozyrska and Girejko [26]) Let x be a real valued function defined
on (hN)a, where a, h ∈ R, h > 0. For α, β > 0 the following equalities hold:(

a+βh∆−α
h

(
a∆−β

h x
))

(t) =
(

a∆−(α+β)
h x

)
(t) =

(
a+αh∆−β

h

(
a∆−α

h x
))

(t) , (8)

where t ∈ (hN)a+(α+β)h.

The fractional h-sum of order α > 0 is characterized by the following property and
later on used in the proofs of stability theorems.

Lemma 2.7. Let a ∈ R, xi : (hN)a → R, i = 1, 2, x1(a) = x2(a) and α > 0. If
x1(t) ≤ x2(t) for all t ∈ (hN)a, then(

a∆−α
h x1

)
(t) ≤

(
a∆−α

h x2

)
(t)

for arbitrary t ∈ (hN)a+αh.

P r o o f . Assume that x1(t) ≤ x2(t) for all t ∈ (hN)a. Then (x2 − x1)(t) ≥ 0 and

(
a∆−α

h (x2 − x1)
)
(t+ αh) =

h

Γ(α)

n∑
k=0

(t− σ(a+ kh))(α−1)
h (x2 − x1)(a+ kh) .
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Since h > 0, Γ(α) > 0 and both (t− σ(a+ kh))(α−1)
h > 0 and (x2 − x1)(t) ≥ 0,(

a∆−α
h (x2 − x1)

)
(t+ αh) ≥ 0 .

Therefore
(
a∆−α

h x1

)
(t) ≤

(
a∆−α

h x2

)
(t) for arbitrary t ∈ (hN)a+αh. �

As the first we present the Riemann–Liouville–type fractional h-difference operator.
The definition of this operator can be found, for example, in [2] (for h = 1) or in [5] (for
h > 0). Later on, the Caputo– and the Grünwald–Letnikov–type fractional h-difference
operator is given.

Definition 2.8. Let α ∈ (0, 1]. The Riemann–Liouville–type fractional h-difference
operator a∆α

h of order α for a function x ∈ F(hN)a
is defined by

(a∆α
hx) (t) =

(
∆h

(
a∆−(1−α)

h x
))

(t), t ∈ (hN)a+(1−α)h .

Note that a∆α
h : F(hN)a

→ F(hN)a+(1−α)h
for α ∈ (0, 1].

Definition 2.9. (Mozyrska and Girejko [26]) Let α ∈ (0, 1]. The Caputo–type h-
difference operator a∆α

h,∗ of order α for a function x ∈ F(hN)a
is defined by(

a∆α
h,∗x

)
(t) =

(
a∆−(1−α)

h (∆hx)
)

(t), t ∈ (hN)a+(1−α)h .

Note that: a∆α
h,∗ : F(hN)a

→ F(hN)a+(1−α)h
for α ∈ (0, 1].

For α ∈ (0, 1] one gets

(
a∆α

h,∗x
)
(t) = (a∆α

hx) (t)−
x(a) · (t− a)(−α)

h

Γ(1− α)
= (a∆α

hx) (t)− x(a)
hα

( t−a
h

−α

)
, (9)

for t ∈ (hN)a+(1−α)h.
The last operator that we take under our consideration is the fractional h-difference

Grünwald–Letnikov–type operator, see for example [18,19,32] for h = 1 and also for the
general case h > 0.

Definition 2.10. Let α ∈ R. The Grünwald–Letnikov–type h-difference operator a∆̃α
h

of order α for a function x ∈ F(hN)a
is defined by

(
a∆̃α

hx
)

(t) =

t−a
h∑

s=0

a(α)
s x(t− sh)

where

a(α)
s = (−1)s

(
α

s

)
1
hα

with (
α

s

)
=

{
1 for s = 0
α(α−1)...(α−s+1)

s! for s ∈ N.

Note that a∆̃α
h : F(hN)a

→ F(hN)a
.



118 M. WYRWAS, E. PAWLUSZEWICZ AND E. GIREJKO

Since the Grünwald–Letnikov–type h-difference operator can be expressed by the
Riemann–Liouville–type fractional h-difference operator, see [27], we restrict our con-
sideration only to the Caputo– and Riemann–Liouville–type fractional h-difference op-
erators.

Hereinafter, if h = 1, then we use n0∆
−α, a∆α

∗ and a∆α instead of n0∆
−α
1 , a∆α

1,∗ and
a∆α

1 , respectively.
The next propositions give useful identities of transforming fractional difference equa-

tions into fractional summations. These properties are the generalization of the results
given in [11].

Proposition 2.11. Let α ∈ (0, 1], h > 0, a = (α− 1)h, n0 ∈ N0, t0 = a+ n0h ∈ (hN)a

and x be a real valued function defined on (hN)t0
. Then

(
n0h∆−α

h (t0∆
α
hx)

)
(t) = x(t)− x(t0) ·

h1−α

Γ(α)
(t− n0h)

(α−1)
h = x(t)− x(t0) ·

( t−n0h
h

α− 1

)
,

for t ∈ (hN)αh+n0h.

P r o o f . Let us define the function x̃ : (hN)a → R as follows: x̃(t) := x(n0h+ t), where
t ∈ (hN)a. Using Definition 2.5 it is easy to see that for the functions y : (hN)b → R
and ỹ : (hN)0 → R such that ỹ(τ) = y(τ − b), τ ∈ (hN)0, we have(

b∆
−β
h y

)
(t) =

(
0∆

−β
h ỹ

)
(t− b) , (10)

where b ∈ R, β > 0, t ∈ (hN)b+βh.
Let ψ(τ1) := (t0∆

α
hx) (τ1), τ1 ∈ (hN)n0h and ψ̃(τ2) := (a∆α

h x̃) (τ2), τ2 ∈ (hN)0. Then,
by (10), for n ∈ N0 one gets:(

n0h∆−α
h (t0∆

α
hx)

)
(n0h+ αh+ nh) =

(
n0h∆−α

h ψ
)
(n0h+ αh+ nh)

=
(

0∆−α
h ψ̃

)
(αh+ nh)

=
(
0∆−α

h (a∆α
h x̃)

)
(αh+ nh) .

In [26, Proposition 4.4] the following relation(
0∆−α

h (a∆α
h x̃)

)
(t) = x̃(t)− x̃(a) · h

1−α

Γ(α)
(t)(α−1)

h = x̃(t)− x̃(a) ·
( t

h

α− 1

)
(11)

was showed. Hence, by (11), one gets(
0∆−α

h (a∆α
h x̃)

)
(αh+ nh) = x̃(αh+ nh)− x̃(a) · h

1−α

Γ(α)
(αh+ nh)(α−1)

h

= x(n0h+ αh+ nh)− x(t0) ·
h1−α

Γ(α)
(αh+ nh)(α−1)

h

= x(n0h+ αh+ nh)− x(t0) ·
(
n+ α

α− 1

)
.

Then for t = n0h+αh+nh ∈ (hN)αh+n0h one gets αh+nh = t−n0h and consequently,
the thesis holds. �
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Corollary 2.12. Let α ∈ (0, 1], a = α− 1, n0 ∈ N0, t0 = a+ n0 and x be a real valued
function defined on Nt0 . Then for h = 1 we have

(
n0∆

−α (t0∆
αx)

)
(t) = x(t)− x(t0) ·

(
t− n0

α− 1

)
= x(t)− x(t0) ·

(
n+ α

α− 1

)
= x(t)− x(t0) ·

(
n+ α

n+ 1

)
,

where t0 = α− 1 + n0 and t = α+ n0 + n ∈ Nα+n0 , n ∈ N0.

Proposition 2.13. Let α ∈ (0, 1], h > 0, a = (α− 1)h, t0 = a+ n0h ∈ (hN)a and x be
a real valued function defined on (hN)t0

. Then(
n0h∆−α

h

(
t0∆

α
h,∗x

))
(t) = x(t)− x(t0), t ∈ (hN)αh+n0h .

P r o o f . By Definition 2.9 and the formula (8) we have(
n0h∆−α

h

(
t0∆

α
h,∗x

))
(t) =

(
n0h∆−α

h

(
t0∆

−(1−α)
h (∆hx)

))
(t)

=
(
t0∆

−1
h (∆hx)

)
(t) .

Then by the definition of the fractional h-sum of order 1, see Definition 2.5, we get

(
t0∆

−1
h (∆hx)

)
(t) =

n∑
k=0

(t− σ(t0 + kh))(0)h [x(t0 + (k + 1)h)− x(t0 + kh)]

= x(t0 + (n+ 1)h)− x(t0) = x(αh+ n0h+ nh)− x(t0) = x(t)− x(t0)

for t = αh+ n0h+ nh ∈ (hN)αh+n0h. �

Corollary 2.14. Let α ∈ (0, 1], a = α− 1, n0 ∈ N0, t0 = a+ n0 and x be a real valued
function defined on Nt0 . Then(

n0∆
−α (t0∆

α
∗x)

)
(t) = x(t)− x(t0), t = α+ n0 + n ∈ Nα+n0 .

Let us now prove some properties of fractional operators that are used in the study
of stability of considered systems.

Lemma 2.15. Let β ∈ (0, 1], h > 0, b = (β − 1)h, t0 = b + n0h ∈ (hN)b, x and y be

real valued functions defined on (hN)b. If
(

t0∆
β
h,∗x

)
(nh) ≥

(
t0∆

β
h,∗y

)
(nh) for n ≥ n0

and x(t0) = y(t0), then x(t) ≥ y(t) for t ∈ (hN)t0
.

P r o o f . Assume that
(

t0∆
β
h,∗x

)
(nh) ≥

(
t0∆

β
h,∗y

)
(nh) for n ≥ n0 and x(t0) = y(t0).

Then by Lemma 2.7 we get(
n0h∆−β

h

(
t0∆

β
h,∗x

))
(t) ≥

(
n0h∆−β

h

(
t0∆

β
h,∗y

))
(t) , (12)
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for all t ∈ (hN)n0h+βh. From Proposition 2.13 the relation (12) can be rewritten as

x(nh+ βh)− x(t0) ≥ y(nh+ βh)− y(t0) ,

for all n ≥ n0. Since x(t0) = y(t0), we have x(nh + βh) ≥ y(nh + βh). Consequently,
x(t) ≥ y(t) for t ∈ (hN)t0

. �

Lemma 2.16. Let β ∈ (0, 1], h > 0, b = (β − 1)h, t0 = b + n0h ∈ (hN)b, x and y be

real valued functions defined on (hN)b. If
(

t0∆
β
hx

)
(nh) ≥

(
t0∆

β
hy

)
(nh) for n ≥ n0 and

x(t0) = y(t0), then x(t) ≥ y(t) for t ∈ (hN)t0
.

P r o o f . Assume that
(

t0∆
β
hx

)
(nh) ≥

(
t0∆

β
hy

)
(nh) for n ≥ n0 and x(t0) = y(t0).

Then by Lemma 2.7 we get(
n0h∆−β

h

(
t0∆

β
hx

))
(t) ≥

(
n0h∆−β

h

(
t0∆

β
hy

))
(t) , (13)

for all t ∈ (hN)n0h+βh. From Proposition 2.11 the relation (13) can be rewritten as
follows

x(nh+ βh)− x(t0) ·
(
n+ α

α− 1

)
≥ y(nh+ βh)− y(t0) ·

(
n+ α

α− 1

)
,

for all n ≥ n0. Since x(t0) = y(t0), we have x(nh + βh) ≥ y(nh + βh). Consequently,
x(t) ≥ y(t) for t ∈ (hN)t0

. �

There exist relations between fractional summation operators for any h > 0 and
h = 1 and between fractional difference operators for any h > 0 and h = 1. In [10] the
following properties that give transition between these operators are proved.

Lemma 2.17. (Ferreira and Torres [10]) Let x : (hN)a → R and α > 0. Then

(
a∆−α

h x
)
(t) = hα

(
a
h
∆−αx̄

) (
t

h

)
,

(
a∆α

h,∗x
)
(t) = h−α

(
a
h
∆α
∗ x̄

) (
t

h

)
and (a∆α

hx) (t) = h−α
(

a
h
∆αx̄

) (
t

h

)
,

where t ∈ (hN)a+αh and x̄(s) := x(sh).

Lemma 2.17 shows that the positive number h can be treated as a parameter and its
values do not influence on the property of the h-difference operators.

3. EQUIVALENT DESCRIPTIONS OF FRACTIONALH-DIFFERENCE SYSTEMS
WITH N ORDERS

Let i = 1, . . . , n and 0 < αi ≤ 1. Let us consider the following fractional Caputo
h-difference system with n orders α1, . . . , αn:(

t0i∆
αi

h,∗xi

)
(t) =fi(t, x1(a1 + t), x2(a2 + t), . . . , xn(an + t)) , (14)
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with initial values

xi(t0i) =x0i ∈ R , (15)

where ai = (αi − 1)h ∈ (−h, 0] ⊂ R, t0i = ai + n0h ∈ (hN)ai
, n0 ∈ N0, t ∈ (hN)n0h,

fi : (hN)0 × Rn → R, i = 1, . . . , n, are continuous. By Lemma 2.17 system (14) can be
rewritten as(

t0i
h

∆αi
∗ x̄i

) (
t

h

)
= hαifi

(
t, x̄1

(
α1 − 1 +

t

h

)
, . . . , x̄n

(
αn − 1 +

t

h

))
,

where x̄i (τ) := x(τh). Note that x̄i ∈ FNαi−1+n0
, i. e. x̄i : Nαi−1+n0 → R. Obviously,

for x̃i(k) := x̄i

(
t0i

h + k
)

= xi(t0i + kh), by (10), system (14) can also be rewritten as

(0∆αi
∗ x̃i) (k + 1− αi) = hαifi (kh+ n0h, x̃1 (k) , . . . , x̃n (k)) , (16)

where k ∈ N0 and x̃i ∈ FN0 , i. e. x̃i : N0 → R.

Remark 3.1. If the Riemann–Liouville–type fractional h-difference operator t0i∆
αi

h is
used instead of the Caputo–type h-difference operator t0i∆

αi

h,∗ in (14), then one gets the
fractional Riemann–Liouville h-difference system with n orders, i. e.

(t0i∆
αi

h xi) (t) =fi(t, x1(a1 + t), x2(a2 + t), . . . , xn(an + t)) . (17)

By Lemma 2.17 system (17) can be rewritten as(
t0i
h

∆αi x̄i

) (
t

h

)
= hαifi

(
t, x̄1

(
α1 − 1 +

t

h

)
, . . . , x̄n

(
αn − 1 +

t

h

))
,

where x̄i (τ) := x(τh). Note that x̄i ∈ FNαi−1+n0
, i. e. x̄i : Nαi−1+n0 → R. Obviously,

for x̃i(k) := x̄i

(
t0i

h + k
)

= xi(t0i + kh), by (10), system (17) can also be rewritten as

(0∆αi x̃i) (k + 1− αi) = hαifi (kh+ n0h, x̃1 (k) , . . . , x̃n (k)) , (18)

where k ∈ N0 and x̃i ∈ FN0 , i. e. x̃i : N0 → R. Moreover, by (9) one has

(0∆αi x̃i) (k + 1− αi) = (0∆αi
∗ x̃i) (k + 1− αi) + x̃i(0)

(
k + 1− αi

−αi

)
.

We restrict our consideration to the fractional Caputo and Riemann–Liouville h-difference
systems with n orders, because the Grünwald–Letnikov–type fractional h-difference op-
erator t0i

∆̃αi

h can be expressed using the Riemann–Liouville–type fractional h-difference
operator t0i∆

αi

h , see [27].

The constant vector Xe := (xe
1, x

e
2, . . . , x

e
n)T is an equilibrium point from time t0 =

n0h of fractional difference system (14) if and only if(
t0i

∆αi

h,∗x
e
i

)
(t) = fi (t, xe

1, x
e
2, . . . , x

e
n)

(and (t0i
∆αi

h xe
i ) (t) = fi (t, xe

1, x
e
2, . . . , x

e
n) in the case of the Riemann–Liouville h-difference

systems), i = 1, . . . , n for all t ∈ (hN)n0h.
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Remark 3.2. For the Caputo h-difference system
(

t0i
∆αi

h,∗x
e
i

)
(t) ≡ 0, so the constant

vector Xe = (xe
1, x

e
2, . . . , x

e
n)T is an equilibrium point from time t0 = n0h of the Caputo

fractional h-difference system (14) if and only if fi (t, xe
1, . . . , x

e
n) = 0, i = 1, . . . , n for all

t ∈ (hN)n0h.

For simplicity, we state all definitions and theorems for the case when the equilibrium
point is the origin of Rn, i. e. xe

i = 0, i = 1, . . . , n. There is no loss of generality in
doing so because any equilibrium point can be shifted to the origin via certain change
of variables. Assume that the equilibrium point for (14) or (17) is Xe 6= 0. Then for
j ∈ {1, . . . , n} such that xe

j 6= 0 we consider the change of variable yj(t) = xj(t) − xe
j .

The αjth order Caputo h-difference of yj is given by(
t0j

∆αj

h,∗yj

)
(t) =

(
t0j

∆αj

h,∗(xj − xe
j)

)
(t) = f(t, x1(t), . . . , xn(t))

= fj(t, y1(t) + xe
1, . . . , yn(t) + xe

n) = g1
j (t, y1(t), . . . , yn(t))

and similarly αjth order Riemann–Liouville h-difference of yj is given by

(
t0j

∆αj

h yj

)
(t) =

(
t0j

∆αj

h (xj − xe
j)

)
(t) = f(t, x1(t), . . . , xn(t))−

xe
j

hαj
·
( t−t0j

h

−αj

)
= fj(t, y1(t) + xe

1, . . . , yn(t) + xe
n)−

xe
j

hαj
·
( t−t0j

h

−αj

)
= g2

j (t, y1(t), . . . , yn(t)) ,

where g`
j(t, 0) = 0, ` = 1, 2, and in the new variables yj , j = 1, . . . , n, the fractional

h-difference systems have equilibriums at the origin.
Without loss of generality, let xe

i = 0, i = 1, . . . , n, be the equilibrium point. Then
for the Riemann–Liouville h-difference system we get (t0i∆

αi

h 0) (t) ≡ 0.
Let f̃i : (hN)n0h → R be defined as f̃i(kh) := fi(kh, x1(a1 + kh), . . . , xn(an + kh))

for i = 1, . . . , n and k ∈ Nn0 . We apply the operator n0h∆−αi

h to equations of (14) and
from Proposition 2.13 we get the Caputo recurrence formula of the following form

xi(αih+ n0h+ kh) = x0i + hαi

k∑
j=0

(
k − j + αi − 1

k − j

)
f̃i(n0h+ jh) ,

for k ∈ N0. Note that ai = (αi − 1)h, , t0i = ai + n0h, i = 1, 2, . . . , n, so

xi(t0i + (k + 1)h) = x0i + hαi

k∑
j=0

(
k − j + αi − 1

k − j

)
· f̃i(n0h+ jh)

= x0i + hαi

k∑
j=0

(
k − j − n0 + t0i

h

k − j

)
·

· fi(n0h+ kh, x1 (t01 + kh) , . . . , xn (t0n + kh)) .
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Since
(
j+αi−1

j

)
= (−1)j

(−αi

j

)
for j ≥ 1 and

(−αi

0

)
= 1, for all k ∈ N0 and i = 1, . . . , n

one gets:

xi(αih+ (n0 + k)h) =x0i + hαi

k∑
j=0

(−1)j

(
−αi

j

)
f̃i(n0h+ (k − j)h)

=x0i + hαi

k∑
j=0

(−1)j

(
−αi

j

)
· fi(n0h+ (k − j)h,

x1(α1 + n0h+ (k − j − 1)h), . . . , xn(αn + n0h+ (k − j − 1)h)) .

Applying the operator n0h∆−αi

h to the Riemann–Liouville h-difference system (17) and
using Proposition 2.11 one gets for k ∈ N0 the following equivalent recursive formulas
describing the system:

xi(t0i + (k + 1)h) = x0i ·
(
k + αi

k + 1

)
+ hαi

k∑
j=0

(
k − j + αi − 1

k − j

)
f̃i(n0h+ jh) ,

or

xi(t0i + (k + 1)h) = x0i ·
(
k + αi

k + 1

)
+ hαi

k∑
j=0

(−1)j

(
−αi

j

)
f̃i(n0h+ (k − j)h)

=x0i ·
(
k + αi

k + 1

)
+ hαi

k∑
j=0

(−1)j

(
−αi

j

)
· fi(n0h+ (k − j)h,

x1(α1 + n0h+ (k − j − 1)h), . . . , xn(αn + n0h+ (k − j − 1)h)) .

Note that if xi(t0i) = xe
i = 0, then xi(αi + n0h + kh) ≡ xe

i = 0, i = 1, . . . , n for all
k ∈ N0.

For k ∈ Nn0 , n0 ∈ N0, let us define

(
n0∆

(α)X
)

(k) :=


(

t01∆
α1
h,∗x1

)
(kh)

...(
t0n

∆αn

h,∗xn

)
(kh)

 (19a)

or (
n0∆

(α)X
)

(k) :=

 (t01∆
α1
h x1) (kh)

...
(t0n∆αn

h xn) (kh)

 (19b)

for the Caputo or Riemann–Liouville h-difference systems, respectively, and

F (k,X(k)) :=

f1(kh, x1(a1 + kh), x2(a2 + kh), . . . , xn(an + kh))
...

fn(kh, x1(a1 + kh), x2(a2 + kh), . . . , xn(an + kh))

 . (20)
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Applying (19a) and (20) to (14) (or applying (19b) and (20) to (17)) one can rewrite the
considered fractional Caputo (or Riemann–Liouville) h-difference system with n orders,
i. e. system (14) (or (17)), as follows(

n0∆
(α)X

)
(k) = F (k,X(k)) , (21)

where F : N0 × Rn → Rn. Then the initial value corresponding to (21) has the form

X0 :=

x1(a1 + n0h)
...

xn(an + n0h)

 =

x01

...
x0n

 ∈ Rn . (22)

Let us define inductively the sequence of mappings

Sk : Rn → Rn

by
S0(X) = X

Sk+1(X) = Ik ·X +
k∑

j=0

(−1)j · Λj · F (n0 + k − j, Sk−j(X)) ,

where Λj =


(−α1

j

)
0 . . . 0

0
(−α2

j

)
. . . 0

...
...

. . .
...

0 0 . . .
(−αn

j

)
 ∈ Rn×n, and

Rn×n 3 Ik =




1 . . . 0
...

. . .
...

0 . . . 1

 , for Caputo h-difference systems


(
k+α1
k+1

)
. . . 0

...
. . .

...
0 . . .

(
k+αn

k+1

)
 , for Riemann–Liouville h-difference systems.

Note that for k ≥ 0 X(k) = Sk(X0) is the solution of system (21) that is uniquely
defined by the initial state X0 ∈ Rn. Therefore

Sk(X0) =


x1(a1 + n0h+ kh)
x2(a2 + n0h+ kh)

...
xn(an + n0h+ kh)

 =


x̄1(a1

h + n0 + h)
x̄2(a2

h + n0 + h)
...

x̄n(an

h + n0 + h)

 =


x̃1(k)
x̃2(k)

...
x̃n(k)

 .

For each p ∈ Rn, let us denote by Sk(p) the value at time k of the solution of (21)
starting at p. Therefore the relation

X(k) = Sk(X0) = [x̃1(k), . . . , x̃n(k)]T
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gives us the equivalent description of the system (21) with the initial condition X0.
Note that corresponding to the equilibrium point Xe = (xe

1, . . . , x
e
n)T = (0, . . . , 0)T, the

system (21) has a constant solution Sk(Xe) ≡ Xe, k ∈ N0.
Let fi(t, 0, . . . , 0) = 0, i = 1, . . . , n, for all t ∈ Nn0 , so that the system (14) (or the

system (17) with Riemann–Liouville–type h-difference operator instead of Caputo one)
admits the trivial solution, i. e.

x1(a1 + t)
x2(a2 + t)

...
xn(an + t)

 ≡


0
0
...
0

 ∈ Rn,

for all t ∈ Nn0h. Then F (k, 0) = 0 for all k ∈ Nn0 and consequently system (21) admits
the trivial solution Sk(0) ≡ 0, k ∈ N0.

Remark 3.3. Note that by (19a), (20) and (22) the solutions of systems (14) and (21)
coincide. Of course, from (19b), (20) and (22) the solutions of systems (17) and (21) are
the same. Moreover, system (14) (or (17)) has the trivial solutions if and only if system
(21) has the trivial solution.

4. STABILITY

Let X(·, X0) denote the solution of (21) with initial condition (22). Then

X(k,X0) =


x1(a1 + n0h+ kh)
x2(a2 + n0h+ kh)

...
xn(an + n0h+ kh)

 =


x̃1(k)
x̃2(k)

...
x̃n(k)

 = Sk(X0) ,

where k ∈ N0 and xi : (hN)(αi−1)h → R, i = 1, . . . , n, are the solutions of (14) (or (17))
with the initial conditions (15). Therefore the stability of the system with both the
Caputo– and Riemann–Liouville–type h-difference operators is studied simultaneously.

Let ‖ · ‖ denote a vector norm.

Definition 4.1. The trivial solution of (21) ((14) or (17)) is said to be

(i) stable if, for each ε > 0 and n0 ∈ N0, there exists δ = δ (ε, n0) > 0 such that
‖X0‖ < δ implies ‖Sk(X0)‖ < ε, for all k ∈ Nn0 .

(ii) uniformly stable if it is stable and δ depends solely on ε, i. e. for each ε > 0 there
exists δ = δ (ε) > 0 such that ‖X0‖ < δ implies ‖Sk(X0)‖ < ε, for all k ∈ Nn0 .

(iii) attractive if there exists δ(t0) > 0 such that ‖X0‖ < δ implies

lim
k→∞

X (k,X0) = 0 .

(iv) asymptotically stable if it is stable and attractive.
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(v) uniformly asymptotically stable if it is uniformly stable and, for each ε > 0, there
exists T = T (ε) ∈ N0 and δ0 > 0 such that ‖X0‖ < δ0 implies ‖Sk(X0)‖ < ε for
all k ∈ Nn0+T and for all n0 ∈ N0.

(vi) globally asymptotically stable if it is asymptotically stable for all X0 ∈ Rn.

(vii) globally uniformly asymptotically stable if it is uniformly asymptotically stable for
all X0 ∈ Rn.

In order to show the stability of the fractional-order system the comparison prin-
ciple given in Lemma 2.15 can be used. The following example shows the conditions
(i. e. negative values of functions fi, i = 1, 2, . . . , n) that guarantee the stability of the
equilibrium point.

Example 4.2. Consider the fractional-order system defined by the following equations:(
t0∆

αi

h,∗xi

)
(t) = fi(t, x1((α1 − 1)h+ t), . . . , xn((αn − 1)h+ t)) , (23)

where i = 1, 2, . . . , n, αi ∈ (0, 1], t0i = (αi − 1)h + n0h, t ∈ (hN)n0h, xi(t0i) = x0i ≥ 0,
fi : (hN)n0h × Rn → R, xe = (xe

1, . . . , x
e
n) = (0, . . . , 0) is the equilibrium point of (23)

and fi(t, x1((α1 − 1)h+ t), . . . , xn((αn − 1)h+ t)) < 0. Note that
(

t0∆
αi

h,∗x
e
i

)
(t) = 0 >

fi(t, x1((α1 − 1)h+ t), . . . , xn((αn − 1)h+ t)) =
(

t0∆
αi

h,∗xi

)
(t). Hence, by Lemma 2.15

we get xi(t) ≤ x0i for t ∈ (hN)t0 . Since x = 0 is the equilibrium point of (23) and
0 ≤ xi ≤ xe

i , the equilibrium point xe = 0 is stable.
Moreover, if one replaces the Caputo–type difference operator t0∆

αi

h,∗ by the Riemann–
Liouville–type operator t0∆

αi

h in the left hand side of (23), then by Lemma 2.16 one
gets xi(t) ≤ x0i for t ∈ (hN)t0 and similarly as for the Caputo difference systems we
have 0 ≤ xi ≤ xe, so the equilibrium point xe = 0 is stable.

In many cases the stability of systems can be checked on the bases on the right hand
side of the equations. Note that the considered systems can be transformed to the forms
(16) and (18), where the Caputo– and Riemann–Liouville–type difference operators, i.e
0∆α

∗ and 0∆α, are used, respectively. Therefore basing on the results from [9] we get
the sufficient conditions that guarantee the stability of the considered systems.

Let gh,αi : N1 → R be defined as follows

gh,αi(k) :=

{
0, for the Riemann–Liouville difference systems,
h−αi ·

(
k
−αi

)
, for the Caputo difference systems.

Theorem 4.3. Let i = 1, . . . , n. If there exist constants β1i ∈ (αi, 1) and L1i ≥ 0 such
that for all k ∈ N1 we have

|fi(n0h+ kh, x1(t01 + kh), . . . , xn(t01 + kh)) + xi(t0i) · gh,αi
(k)|

≤ L1i · h−αi ·
(
n0 + αi + k

−β1i

)
, (24)

then the solution X(·, X0) is attractive.
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P r o o f . For the Riemann–Liouville difference systems by (24) and using the results
from [9, Theorem 3.3], the solutions of (17) are in the set

S1 = {X(k) = (x1(t01 + kh), . . . , xn(t0n + kh)) :

|xi(t0i + kh)| 6
(
αi + k

−γ1i

)
for k ∈ Nn0

}
,

where γ1i = 1
2 (β1i − αi) > 0 and n0 ∈ N0 such that

Γ(1− γ1i) ·
[
|x0|

Γ(αi)
(n1 + αi + γ1i)(

1
2 (αi+β1i)−1) +L1i

(n1 + αi + γ1i)(−γ1i)

Γ(1 + αi − β1i)

]
≤ 1 .

From (9) the Caputo difference system (14) can be rewritten as the Riemann–Liouville
one as follows:

(t0i
∆αi

h xi) (t) =fi(t, x1(a1 + t), x2(a2 + t), . . . , xn(an + t)) + xi(t0i) · gh,αi(k) . (25)

Note that the solutions of (25) coincide with the solutions of (14) and due to (24) they
are in the set S1.

Since(
αi + k

−γ1i

)
=

Γ(αi + k + 1)
Γ(1− γ1i)Γ(αi + k + γ1i + 1)

=
1

Γ(1− γ1i)
(αi + k)−γ1i

[
1 +O

(
1

αi + k

)]
tends to 0 as k →∞ , the vector function X(k) = (x1(t01 + kh), . . . , xn(t0n + kh)) that
belongs to S1 tends to zero as k →∞ as well. Hence X(·, X0) = X(k) is attractive.

�

Theorem 4.4. Let i = 1, . . . , n and ‖xi‖ = supk∈N0
|xi(t0i + kh)|. If there exist con-

stants β2i ∈ (αi, 1) and L2i ≥ 0 such that

|fi(n0h+ kh, x1(t01 + kh), . . . , xn(t01 + kh)| ≤ L2i · h−αi ·
(
n0 + αi + k

−β2i

)
· ‖xi‖ , (26)

for k ∈ N0, then the trivial solution of (21) is stable provided that

ci := L2i

(
αi − 1
β2i − 1

)
=

L2iΓ(αi)
Γ(β2i)Γ(1 + αi − β2i)

< 1 , (27)

for i = 1, . . . , n.

P r o o f . Let X(k) = Sk(X0) be the solution of (21) satisfying the initial condition
X(0) = X0 and

ιki =

{
1, for the Caputo difference systems,(
k+αi−1

k

)
=

(
k+αi−1

αi−1

)
, for the Riemann–Liouville difference systems.
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Since αi − 1 < 0, by (6) for k ∈ N1 we have
(
k+αi−1

αi−1

)
≤

(
αi−1
αi−1

)
= 1 and consequently,

0 < ιki ≤ 1. Then X(k) = (x1(t01 + kh), . . . , xn(t0n + kh)) ∈ Rn and using (6), (7),
Definition 2.5 and assumption (26) one gets

|xi(t0i + kh)| ≤ |x0i|ιki + hαi

k−1∑
j=0

(
k + αi − j − 2
k − j − 1

)
· |f̃i(n0h+ jh)|

≤ |x0i|ιki + L2i ·
k−1∑
j=0

(
k + αi − j − 2
k − j − 1

)
·
(
n0 + αi + j

−β2i

)
· ‖xi‖

= |x0i|ιki + L2i · 0∆−αi

(
n0 + αi + k − 1

−β2i

)
· ‖xi‖

= |x0i|ιki + L2i ·
(
n0 + αi + k − 1

αi − β2i

)
· ‖xi‖

≤ |x0i|+ L2i

(
αi − 1
αi − β2i

)
‖xi‖ = |x0i|+ ci‖xi‖ ,

for k ≥ 1. Therefore

‖xi‖ ≤
1

1− ci
|x0i| .

Let C = maxi ci. For any given ε > 0 let δ = 1−C
n ε and ‖X0‖E =

√∑n
i=1 x

2
0i < δ. Then

we get

‖X(k)‖E = ‖Sk(X0)‖E =

√√√√ n∑
i=1

(xi(t0i + kh))2 ≤
n∑

i=1

|xi(t0i + kh)|

≤
n∑

i=1

‖xi‖ ≤
n∑

i=1

1
1− ci

|x0i| ≤
1

1− C

n∑
i=1

|x0i| ≤
n

1− C
max

i
|x0i|

≤ n

1− C

√√√√ n∑
i=1

x2
0i =

n

1− C
‖X0‖E <

n

1− C
δ = ε .

Hence the trivial solution of (21) is stable. �

As a simple consequence of Theorems 4.3 and 4.4 we get the following result:

Corollary 4.5. If the conditions (24) and (26) hold, then the solution X(·, X0) is
asymptotically stable provided that (27) holds.

Additionally, Theorem 3.6 given in [9] can be generalized for h-difference systems as
follows:

Theorem 4.6. Let i = 1, . . . , n. If there exist constants β3i ∈
(
αi,

1
2 (1 + αi)

)
, γ2i =

1
2 (1− αi) and L3i ≥ 0 such that for all k ∈ N0 we have
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|fi(n0h+ kh, x1(t01 + kh), . . . , xn(t01 + kh) + x(t0i) · gh,αi(k)|

≤ L3i · h−αi ·
(
n0 + αi + γ2i + k

−β3i

)
|xi(t0i + kh)| , (28)

then the solution X(·, X0) is attractive, i. e. it is in the following set

S2 =
{
X(k) = (x1(t01 + kh), . . . , xn(t0n + kh)) :

|xi(t0i + kh)| 6
(
αi + k

−γ2i

)
for k ∈ Nn2

}
,

where n2 ∈ N0 such that

Γ(1− γ2i) ·
[
|x0|

Γ(αi)
(n2 + αi + γ2i)(−γ2i) +L3i

(n2 + αi + γ2i)(αi−β3i)

Γ(1 + αi − β3i − γ2i)

]
≤ 1 . (29)

P r o o f . Note that by (28) we have

|xi(t0i + kh)| ≤|x0i| ·
(
k + αi − 1

k

)
+ hαi

k−1∑
j=0

(
k + αi − j − 2
k − j − 1

)
|f̃i(n0h+ jh) + x(t0i) · gh,αi

(k)|

≤|x0i| ·
(
k + αi − 1

k

)
+ L3i

k−1∑
j=0

(
k + αi − j − 2

αi − 1

)(
n0 + αi + γ2i + j

−β3i

)
|xi(t0i + jh)|

≤|x0i| ·
(
k + αi − 1

k

)
+ L3i

k−1∑
j=0

(
k + αi − j − 2

αi − 1

)(
αi + γ2i + j

−β3i

)(
αi + j

−γ2i

)

=|x0i| ·
(
k + αi − 1

k

)
+ L3i

k−1∑
j=0

(
k + αi − j − 2

αi − 1

)(
αi + j

−γ2i − β3i

)

=|x0i| ·
(
k + αi − 1

k

)
+ L3i0∆−αi

(
αi + k − 1
−γ2i − β3i

)
=|x0i| ·

(
k + αi − 1

k

)
+ L3i

(
αi + k − 1

αi − γ2i − β3i

)
.

Then by (29) for k ≥ n2 one gets

|xi(t0i + kh)| ≤|x0i|
(
k + αi − 1
αi − 1

)
+ L3i

(
αi + k − 1

αi − γ2i − β3i

)
≤Γ(1− γ2i) ·

[
|x0|

Γ(αi)
(k + αi + γ2i)(−γ2i)

+L3i
(k + αi + γ2i)(αi−β3i)

Γ(1 + αi − β3i − γ2i)

](
αi + k

−γ2i

)
≤

(
αi + k

−γ2i

)
.
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Hence the solutions of (21) are in S2. Since(
αi + k

−γ2i

)
=

Γ(αi + k + 1)
Γ(1− γ2i)Γ(αi + k + γ2i + 1)

=
1

Γ(1− γ2i)
(αi + k)−γ2i

[
1 +O

(
1

αi + k

)]
tends to 0 as k →∞ , the vector function X(k) = (x1(t01 + kh), . . . , xn(t0n + kh)) that
belongs to S2, tends to zero as k →∞. Hence X(·, X0) = X(k) is attractive. �

Theorem 4.7. If the conditions (26) and (28) hold, then the solutionX(·, X0) is asymp-
totically stable provided that (27) holds.

P r o o f . From Theorem 4.4 the condition (26) gives the stability of the trivial solution
provided that (27) holds. Assumption (28) implies that the solution X(·, X0) = X(k) is
attractive. Hence X(·, X0) is asymptotically stable. �

Example 4.8. Let h > 0, 0.5 < β1 < 1 and 0.25 < β2 < 1. Let us consider the
following system of equations:(

t01∆
0.5
h x1

)
(kh) =

(
k+0.5
−β1

)
sin(x2(kh− 0.75h)) (30a)(

t02∆
0.25
h x2

)
(kh) =

(
k+0.25
−β2

)
· x1(kh− 0.5h) , (30b)

where t01 = −0.5h and t02 = −0.75h, k ∈ N0, with initial conditions x1(−0.5h) = x01

and x2(−0.75h) = x02. Since

|f1(kh, x2(kh− 0.75h))| =
∣∣∣∣(k + 0.5

−β1

)
sin(x2(kh− 0.75h))

∣∣∣∣ ≤ (
k + 0.5
−β1

)
,

there exists L11 = h0.5 > 0 and by Theorem 4.3 we get

|x1(kh− 0.5h)| ≤
(

k + 0.5
1
2 (0.5− β1)

)
,

for all k ∈ N1. Moreover, since
(

k+0.5
1
2 (0.5−β1)

)
< 1 for all k ∈ N0, |f2(kh), x1(kh− 0.5h)| =∣∣∣(k+0.25

−β2

)
x1(kh− 0.5h)

∣∣∣ ≤ (
k+0.25
−β2

)
. Consequently, there exists L12 = h0.75 > 0 and by

Theorem 4.3 we get

|x2(kh− 0.75h)| ≤
(

k + 0.25
1
2 (0.25− β2)

)
,

for all k ∈ N1. Therefore the solution is attractive, i. e.

lim
k→∞

(x1(kh− 0.5h), x2(kh− 0.75h)) = (0, 0) .

Note that
‖x1‖ = sup

k∈N0

|x1(kh− 0.5h)| < max {1, |x01|}

and
‖x2‖ = sup

k∈N0

|x2(kh− 0.75h)| < max {1, |x01|} .
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Then if h < (Γ(0.25))−4, then condition (27) is satisfied and by Theorem 4.4 the consid-
ered system is stable. Note that the point (0, 0) is the equilibrium point of the considered
system.

Let β1 = β2 = 0.6. Then the values of x1 and x2 for n = 1, . . . , 50 are displayed in
Figures 1(a) and 1(b), respectively.

(a) the graph of x1 (b) the graph of x2

Fig. 1. The graphs for Example 4.8.

Fig. 2. The phase portrait for Example 4.8.

Figure 2 shows the phase portrait of (x1, x2) for n = 0, . . . , 50, at which we see that
the trajectory is tending to the equilibrium point (0, 0).

4.1. Lyapunov stability

The facts presented in this section are the generalization of the results given in [35],
where the Caputo–type fractional difference systems with two orders and h = 1 were
studied. The class-K functions are applied to the analysis of fractional Lyapunov direct
method.
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Definition 4.9. A continuous function φ : [0, ρ] → [0,∞) is said to belong to class-K
(or be class-K function) if φ(0) = 0 and φ is strictly increasing.

Definition 4.10. If φ : [0,∞) → [0,∞), φ ∈ K, and limr→∞ φ(r) = ∞, then φ is said
to belong to class-KR (or be class-KR function).

Let U be a neighbourhood of the origin.

Definition 4.11. A real valued function V defined on N0 × U is said to be positive
definite if and only if V (k, 0) = 0 for all k ∈ N0 and there exists φ ∈ K such that
φ(r) ≤ V (k,X), ‖X‖ = r, (k,X) ∈ N0 × U .

Definition 4.12. A real valued function V defined on N0×U , is said to be decrescent if
and only if V (k, 0) = 0 for all k ∈ N0 and there exists ϕ ∈ K such that V (k,X) ≤ ϕ(r),
‖X‖ = r, (k,X) ∈ N0 × U .

Now, let us formulate conditions providing stability of solutions of the nonlinear h-
fractional system with n orders given by (21), in particular by (14) or (17). Since the
solutions of both (14) and (17) are given as sequences (X(n,X0))n∈N0

parameterized
by h, the sufficient conditions for Lyapunov stability given in [35] for systems with two
fractional orders with the Caputo–type operator with h = 1 can be generalized for
system (21). We present them as facts; for the proofs see [35].

Let V : N0 → R and V (k) := V (k,X(k)) for k ∈ N0.

Fact 4.13. If there exist a neighborhood U of the origin and a continuous, positive
definite and decrescent scalar function V : N0 × U → [0,∞) such that(

∆V
)
(k) := V (k + 1)− V (k) ≤ 0

for all k ∈ N0, then the trivial solution of (21) (or equivalently system (14) or (17)) is
uniformly stable.

Fact 4.14. If there exist a neighbourhood U of the origin and a continuous, positive
definite and decrescent scalar function V : N0 × U → [0,∞) such that(

∆V
)
(k) 6 −ψ (‖X(k)‖)

for all k ∈ N0, where ψ ∈ K, then the trivial solution of (21) (or equivalently system
(14) or (17)) is uniformly asymptotically stable.

Fact 4.15. If there exists a continuous function V : N0 × RN → [0,∞) such that

∀(k,X) ∈ Nn0 × Rn : φ(‖X(k)‖) ≤ V (k) ≤ ϕ(‖X(k)‖) ,

∀n0 ∈ N0, (k,X) ∈ Nn0 × Rn :
(
∆V

)
(k) ≤ −ψ (‖X(k)‖) ,

where φ, ϕ, ψ ∈ KR, then the trivial solution of (21) (or equivalently system (14) or
(17)) is globally uniformly asymptotically stable.
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Fig. 3. The graph of ∆V (k) for 0 ≤ k ≤ 50.

Example 4.16. (Continuation of Example 4.8) For system (30) one can choose the
function V (x1, x2) = x2

1 + x2
2 that is positive definite and decrescent. The simulations

made in Maple (see Figure 3) show that

∆V (k) ≤ 0 ,

where V (k) = V (x1(kh − 0.5h), x2(kh − 0.75h)) and ∆V (k) = (x1(kh+ 0.5h))2 +
(x2(kh+ 0.25h))2 − (x1(kh− 0.5h))2 − (x2(kh− 0.75h))2. Since ∆V (k) ≤ 0 holds for
all k ≥ 0, by Fact 4.13 the trivial solution of the considered system is uniformly stable.

5. CONCLUSIONS

The sufficient conditions for stability of the fractional h-difference systems with n-orders
are presented. We discuss the asymptotic stability of the considered systems. Addition-
ally, we show that the well known Lyapunov direct method can be used to study the
stability of considered systems since these systems can be described in recurrence way
as sequences that are parameterized by the orders αi, i = 1, . . . , n and h. Therefore the
conditions for stability are like in the discrete time case.

Our future work will be devoted to study the Mittag–Leffler stability of fractional
difference systems.
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