Kybernetika 50 no. 6, 978-1002, 2014

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim and Jan ValdmanDOI: 10.14736/kyb-2014-6-0978

Abstract:

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta$. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.

Keywords:

finite element method, obstacle problem, a posteriori error estimate, functional majorant, variational inequalities, Raviart-Thomas elements

Classification:

34B15, 65K15, 65L60, 74K05, 74M15, 74S05

References:

  1. M. Ainsworth and J. T. Oden: A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000.   CrossRef
  2. I. Babu{š}ka and T. Strouboulis: The finite Element Method and its Reliability. Oxford University Press, New York 2001.   CrossRef
  3. W. Bangerth and R. Rannacher: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003.   CrossRef
  4. D. Braess, R. H. W. Hoppe and J. Schöberl: A posteriori estimators for obstacle problems by the hypercircle method. Comput. Vis. Sci. 11 (2008), 351-362.   CrossRef
  5. F. Brezi, W. W. Hager and P. A. Raviart: Error estimates for the finite element solution of variational inequalities I. Numer. Math. {\mi 28} (1977), 431-443.   CrossRef
  6. H. Buss and S. Repin: A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170.   CrossRef
  7. C. Carstensen and C. Merdon: A posteriori error estimator competition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-692.   CrossRef
  8. Z. Dostál: Optimal Quadratic Programming Algorithms. Springer 2009.   CrossRef
  9. R. S. Falk: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974), 963-971.   CrossRef
  10. M. Fuchs and S. Repin: A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640.   CrossRef
  11. R. Glowinski, J. L. Lions and R. Trémolieres: Numerical Analysis of Variational Inequalities. North-Holland 1981.   CrossRef
  12. B. Gustafsson: A simple proof of the regularity theorem for the variational inequality of the obstacle problem. Nonlinear Anal. 10 (1986), 12, 1487-1490.   CrossRef
  13. P. Harasim AD J. Valdman: Verification of functional a posteriori error estimates for obstacle problem in 1D. Kybernetika 49 (2013), 5, 738-754.   CrossRef
  14. I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek: Solution of variational inequalities in mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988.   CrossRef
  15. D. Kinderlehrer and G. Stampacchia: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York 1980.   CrossRef
  16. J. L. Lions and G. Stampacchia: Variational inequalities. Comm. Pure Appl. Math. 20 (1967), 493-519.   CrossRef
  17. P. Neittaanmäki and S. Repin: Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates). Elsevier, 2004.   CrossRef
  18. R. H. Nochetto, K. G. Seibert and A. Veeser: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003), 631-658.   CrossRef
  19. T. Rahman and J. Valdman: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements. Appl. Math. Comput. 219 (2013), 7151-7158.   CrossRef
  20. S. Repin: A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69 (230) (2000), 481-500.   CrossRef
  21. S. Repin: A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214.   CrossRef
  22. S. Repin: Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin, POMI 271 (2000), 188-203.   CrossRef
  23. S. Repin: A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008.   CrossRef
  24. S. Repin and J. Valdman: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008), 1, 51-81.   CrossRef
  25. S. Repin and J. Valdman: Functional a posteriori error estimates for incremental models in elasto-plasticity. Centr. Eur. J. Math. 7 (2009), 3, 506-519.   CrossRef
  26. M. Ulbrich: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, 2011.   CrossRef
  27. J. Valdman: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Adv. Numer. Anal. (2009).   CrossRef
  28. Q. Zou, A. Veeser, R. Kornhuber and C. Gräser: Hierarchical error estimates for the energy functional in obstacle problems. Numer. Math. 117 (2012), 4, 653-677.   CrossRef