Kybernetika 50 no. 6, 914-928, 2014

Stability and contagion measures for spatial extreme value analyzes

Cecília Fonseca, Helena Ferreira, Luísa Pereira and Ana Paula MartinsDOI: 10.14736/kyb-2014-6-0914


As part of global climate change an accelerated hydrologic cycle (including an increase in heavy precipitation) is anticipated (Trenberth \cite{trenb1, trenb2}). So, it is of great importance to be able to quantify high-impact hydrologic relationships, for example, the impact that an extreme precipitation (or temperature) in a location has on a surrounding region. Building on the Multivariate Extreme Value Theory we propose a contagion index and a stability index. The contagion index makes it possible to quantify the effect that an exceedance above a high threshold can have on a region. The stability index reflects the expected number of crossings of a high threshold in a region associated to a specific location ${\bf i}$, given the occurrence of at least one crossing at that location. We will find some relations with well-known extremal dependence measures found in the literature, which will provide immediate estimators. For these estimators an application to the annual maxima precipitation in Portuguese regions is presented.


spatial extremes, max-stable processes, extremal dependence




  1. J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels: Statistics of Extremes: Theory and Applications. John Wiley, 2004.   CrossRef
  2. S. G. Coles: Regional modelling of extreme storms via max-stable processes. J. R. Stat. Soc. Ser. B 55 (1993), 797-816.   CrossRef
  3. A. C. Davison and R. Huser: Space-time modelling of extreme events. J. R. Stat. Soc. Ser. B 76 (2013), 439-461.   CrossRef
  4. J. Einmahl, J. Li and R. Liu: Extreme value theory approach to simultaneous monitoring and thresholding of multiple risk indicators. CentER Discussion Paper (Int. Rep. 2006-104) Econometrics, 2006.   CrossRef
  5. H. Ferreira: Dependence between two multivariate extremes. Stat. Probab. Lett. 81 (2011), 586-591.   CrossRef
  6. H. Ferreira and M. Ferreira: On extremal dependence: some contributions. Test 21 (2012), 566-583.   CrossRef
  7. C. Fonseca, L. Pereira, H. Ferreira and A. P. Martins: Generalized madogram and pairwise dependence of maxima over two disjoint regions of a random field. arXiv: \url{}, 2012.   CrossRef
  8. J. L. Geluk, L. De Haan and C. G. De Vries: Weak and strong financial fragility. Tinbergen Institute Discussion Paper, TI 2007-023/2.   CrossRef
  9. A. Krajina: An M-Estimator of Multivariate Dependence Concepts. Tilburg University Press, Tilburg 2010.   CrossRef
  10. H. Li: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 46 (2009), 262-282.   CrossRef
  11. S. I. Resnick: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin 1987.   CrossRef
  12. M. Schlather: Models for stationary max-stable random fields. Extremes 5 (2002), 33-44.   CrossRef
  13. M. Schlather and J. Tawn: A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 (2003), 139-156.   CrossRef
  14. R. Schmidt: Tail dependence for elliptically countered distributions. Math. Methods Oper. Res. 55 (2002), 301-327.   CrossRef
  15. R. Schmidt and U. Stadmüller: Non parametric estimation of tail dependence. Scand. J. Stat. 33 (2006), 307-335.   CrossRef
  16. M. Sibuya: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11 (1960), 195-210.   CrossRef
  17. R. L. Smith: Max-stable processes and spatial extremes. Unpublished manuscript. \url{}, 1990.   CrossRef
  18. R. L. Smith and I. Weissman: Characterization and estimation of the multivariate extremal index. Technical Report, Department of Statistics, University of North Carolina. \url{}, 1996.   CrossRef
  19. J. Tiago de Oliveira: Structure theory of bivariate extremes, extensions. Est. Mat., Est. and Econ. 7 (1992/93), 165-195.   CrossRef
  20. K. E. Trenberth: Atmospheric moisture residence times and cycling implications for rainfall rates and climate change. Climate Change 39 (1998), 667-694.   CrossRef
  21. K. E. Trenberth: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climate Change 42 (1999) 327-339.   CrossRef
  22. Z. Zhang and R. L. Smith: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 (2004), 1113-1123.   CrossRef