Processing math: 100%

Kybernetika 50 no. 6, 869-882, 2014

Inferring the residual waiting time for binary stationary time series

Gusztáv Morvai and Benjamin WeissDOI: 10.14736/kyb-2014-6-0869

Abstract:

For a binary stationary time series define σn to be the number of consecutive ones up to the first zero encountered after time n, and consider the problem of estimating the conditional distribution and conditional expectation of σn after one has observed the first n outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state the stopping times along which we estimate have density one.

Keywords:

stationary processes, nonparametric estimation

Classification:

62G05, 60G25, 60G10

References:

  1. P. Algoet: Universal schemes for learning the best nonlinear predictor given the infinite past and side information. IEEE Trans. Inform. Theory 45 (1999), 1165-1185.   CrossRef
  2. D. H. Bailey: Sequential Schemes for Classifying and Predicting Ergodic Processes. Ph. D. Thesis, Stanford University 1976.   CrossRef
  3. F. Bunea and A. Nobel: Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. Theory 54 (2008), 4, 1725-1735.   CrossRef
  4. W. Feller: An Introduction to Probability Theory and its Applications. Vol. II. Second edition. John Wiley and Sons, New York - London - Sydney 1971.   CrossRef
  5. L. Györfi, G. Morvai and S. Yakowitz: Limits to consistent on-line forecasting for ergodic time series. IEEE Trans. Inform. Theory 44 (1998), 886-892.   CrossRef
  6. G. Morvai and B. Weiss: Inferring the conditional mean. Theory Stoch. Process. 11 (2005), 112-120.   CrossRef
  7. G. Morvai and B. Weiss: Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005), 1496-1497.   CrossRef
  8. G. Morvai and B. Weiss: On sequential estimation and prediction for discrete time series. Stoch. Dyn. 7 (2007), 4, 417-437.   CrossRef
  9. G. Morvai and B. Weiss: On Universal estimates for binary renewal processes. Ann. Appl. Probab. 18 (2008), 5, 1970-1992.   CrossRef
  10. G. Morvai and B. Weiss: Estimating the residual waiting time for binary stationary time series. In: Proc. ITW2009, Volos 2009, pp. 67-70.   CrossRef
  11. G. Morvai and B. Weiss: A note on prediction for discrete time series. Kybernetika 48 (2012), 4, 809-823.   CrossRef
  12. B. Ya. Ryabko: Prediction of random sequences and universal coding. Probl. Inf. Trans. 24 (1988), 87-96.   CrossRef
  13. D. Ryabko and B. Ryabko: Nonparametric statistical inference for ergodic processes. IEEE Trans. Inform. Theory 56 (2010), 3, 1430-1435.   CrossRef
  14. A. N. Shiryayev: Probability. Springer-Verlag, New York 1984.   CrossRef
  15. H. Takahashi: Computational limits to nonparametric estimation for ergodic processes. IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999.   CrossRef
  16. Z. Zhou, Z. Xu and W. B. Wu: Long-term prediction intervals of time series. IEEE Trans. Inform. Theory 56 (2010), 3, 1436-1446.   CrossRef