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ON CAPACITY REGIONS OF DISCRETE ASYNCHRONOUS
MULTIPLE ACCESS CHANNELS

Lóránt Farkas and Tamás Kói

A general formalization is given for asynchronous multiple access channels which admits
different assumptions on delays. This general framework allows the analysis of so far unex-
plored models leading to new interesting capacity regions. The main result is the single letter
characterization of the capacity region in case of 3 senders, 2 synchronous with each other and
the third not synchronous with them.
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1. INTRODUCTION

Ahlswede [1] and Liao [12] showed that if two senders communicate synchronously over a
discrete memoryless multiple access channel (MAC) which is characterized by a stochas-
tic matrix W (y|x1, x2), it is possible to communicate with arbitrary small average prob-
ability of error if the rate pair is inside the following pentagon:

0 ≤ R1 ≤ I(X1 ∧ Y |X2)
0 ≤ R2 ≤ I(X2 ∧ Y |X1)

R1 + R2 ≤ I(X1, X2 ∧ Y ) (1)

for some independent input random variables X1, X2, where P (Y = y|X1 = x1, X2 =
x2) = W (y|x1, x2). Moreover, the convex hull of the union of these pentagons can also
be achieved, via time sharing, while no rate pair outside this convex hull is achievable.

The discrete memoryless asynchronous multiple access channel (AMAC) arises when
the senders cannot synchronize the starting times of their codewords, rather, there is an
unknown delay between these starting times. Cover, McEliece and Posner [3] showed
that if the delay is bounded by bn depending on the codeword length n such that bn

n → 0
then the convex closure is still achievable by a generalized time sharing method.

Poltyrev [15] and Hui and Humblet [11] addressed models with arbitrary delays known
(in [15]) or unknown (in [11]) to the receiver. For such models, the capacity region was
shown to be the union of the pentagons above although with some gaps in the proofs,
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see Appendix A. Verdú [18] studied asynchronous channels with memory. His model
slightly differs from common models: the time runs over a torus rather than from −∞
to ∞. Later, Grant, Rimoldi, Urbanke and Whiting [8] showed that in the informed
receiver case the union can be achieved by rate splitting and successive decoding. The
gap in the achievability proof of [11] for the uninformed receiver case has been filled in
the book of El Gamal and Kim [7].

This paper is an extended version of the ISIT 2011 contribution [5], originating from
the authors’ effort to derive the AMAC capacity region without gaps in the proof (the
result in [7] was unknown to us at the time, as was, apparently, to the reviewers of [5]).
More than doing that, in [5] a general formalization for AMACs was introduced leading
to the first (somewhat artificial) example that the capacity region could be strictly
between the union and its convex closure.

Here, the general model of [5] is developed in more detail. The capacity region de-
pends on the distribution of the delays typically through the support of that distribution.
Even for a given delay distribution, several model versions are analyzed in parallel, and
shown not to differ substantially. The general (not single letter) converse of [5] is also
treated more deeply.

The main result of this paper is a single letter characterization of the capacity region
for 3 senders, two synchronized with each other and the third unsynchronized with them.
Its converse part is derived from the general converse. To prove the achievability we had
to combine the techniques of rate splitting and successive decoding developed by Grant,
Rimoldi, Urbanke, Whiting [8] and Rimoldi [13] with time sharing.

2. MODEL OF CODING FOR THE AMAC

In this paper vectors (finite sequences) will be denoted by boldface symbols. Further-
more, [K] denotes the set {1, 2, . . . ,K}.

A K-senders asynchronous discrete memoryless multiple-access channel (K-AMAC)
is defined in terms of K finite input alphabets Xm,m ∈ [K], a finite output alphabet
Y, and a stochastic matrix W : X1 × X2 × · · · × XK → Y describing the probability
distribution of the output given the inputs.

Definition 2.1. A codebook system of block-length n for a K-AMAC W consists of
K codebooks C1, C2, . . . , CK , where the codebook Cm of the mth sender has 2nRm

codewords of length n whose symbols are from Xm. The rate vector of this codebook
system is R = (R1, R2 . . . , RK).

The system is symbol synchronized but not frame synchronized. The differences
between the timing of the receiver and the timings of the senders are represented by a
K-tuple of delays as in Definition 2.3.

The senders have two-way infinite sequences of random messages, and assign code-
words to their consecutive messages. The codewords go through the channel. The
sequences of the senders’ codewords and hence also the output symbol sequence are
two-way infinite sequences. Fix the location of the 0th output symbol. The message of
sender m ∈ [K] whose codeword affects the 0’th output is denoted by Mm,0. The time
difference between the 0th output and the first output influenced by the message Mm,0
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is referred to as the delay of sender m, see Figure 1. Formally, we use the following
definitions, where n denotes the block-length in Definition 2.1.

Definition 2.2. For each integer j ∈ Z and for each m ∈ [K] let Mm,j be a uniformly
distributed random variable taking values in the set {1, 2, . . . , 2nRm}. All these ran-
dom variables are mutually independent. The two-way infinite sequence {Mm,j , j ∈ Z}
represents the message flow sent by the mth sender. For each integer j ∈ Z and for
each m ∈ [K] let Xm,j denote the Mm,jth codeword in the codebook of sender m. Let
Xm,nj+i be the ith symbol of Xm,j where i ∈ {0, 1, . . . , n− 1}.

Note, though the codebooks are fixed, the sent codewords are random because the
underlying random messages.

Definition 2.3. Let
D(n) = (D1(n), D2(n), . . . , DK(n)) (2)

be a K-tuple of random variables, not necessarily independent of each other but inde-
pendent of the message random variables Mm,j (and hence also of Xm,j), taking values
in the set {0, 1, . . . , n − 1}. Dm(n) will represent the delay of sender m relative to the
receiver’s timing. The joint distribution of delays is known to the senders and the re-
ceiver. The realizations of the random variables D1(n), D2(n), . . . , DK(n) are not known
to the senders and, depending on the model, may be known or unknown to the receiver.
The sequence D = {D(1),D(2), . . . ,D(n), . . . } will be called the delay system. When
dealing with a fixed block-length n, we also write D instead of D(n).

Remark 2.4. Our definition allows arbitrary distributions for the delays for each block-
length n. Clearly, in practical models these distributions can not be arbitrary, but have
to satisfy consistency conditions. We have chosen this general model since we think that
any practical model can be described this way.

Example 2.5. Let Dm(n), m ∈ [K], be mutually independent random variables with
uniform distribution on {0, 1, . . ., n−1}. Following [11] it is called the totally asyn-
chronous case in the paper.

Example 2.6. Let K =2, let D1(n),D2(n) be independent random variables uniformly
distributed on the even numbers in {0, 1, . . . , n− 1}. It is called the even delays case in
the paper.

Example 2.7. Let K = 3, let D1(n) = D2(n) be random variable uniformly distributed
on {0, 1, . . . , n − 1} and let D3(n) be a random variable independent of D1(n) and
uniformly distributed on {0, 1, . . . , n − 1}. It is called the partly asynchronous three
senders case in the paper.

For fixed n, the output sequence is defined as follows:

Definition 2.8. Let Ynj+i be the output random variable of the channel with transition
matrix W when the inputs are X1,nj+i+D1(n), X2,nj+i+D2(n), . . . , XK,nj+i+DK(n) where
i ∈ {0, 1, . . . , n− 1}.
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Formally, the conditional distribution of Ynj+i given all messages, delays (hence also
all inputs) and other outputs, only depends on the values x1, x2, . . . , xn of X1,nj+i+D1(n),
X2,nj+i+D2(n), . . . , XK,nj+i+Dk(n), and equals W (·|x1, x2, . . . , xK).

It is possible to define the decoder in several ways. We will consider two different
definitions, which give the strongest version of the converse respectively the direct parts
of the coding theorems.

Definition 2.9. An informed infinite decoder is defined as a function which assigns
to each two way infinite output sequence {yl, l ∈ Z} and each realization of D(n) =
(D1(n), D2(n), . . . , DK(n)), a K-tuple of messages {m̂m,0,m ∈ [K]}.

Definition 2.10. An uninformed L-block decoder, L ∈ Z+, is defined as a function
which assigns to each (2Ln− 1)-tuple {yl, l ∈ {−Ln + 1, . . . , 0, . . . , Ln− 1}} of possible
output realizations a K-tuple of messages {m̂m,0,m ∈ [K]}.

The codebooks and the decoder form an n-length coding/decoding system.

Fig. 1. The setting for two senders.

The definitions above determine the probability structure of the model, for each
fixed n ∈ Z+. For each m ∈ [K] the random variable sequence {Mm,j , j ∈ Z} is the
two way infinite message flow of the mth sender. The corresponding flow of code-
words is {Xm,j , j ∈ Z}. The flows of the senders, the channel transition and the
delay system D, define a two way infinite output random variable sequence {Yl, l ∈
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Z}. In case of uninformed L-block decoder the receiver examines the output block
Y−Ln+1, Y−Ln+2, . . . , Y0, Y1, . . . YLn−1 from which estimates {M̂m,0,m ∈ [K]} are cre-
ated. In case of an informed infinite decoder the whole output sequence and the realiza-
tions of delays can be used to form estimates {M̂m,0,m ∈ [K]}. The receiver is assumed
to perform the same but shifted decoding procedure at each time instance {nk, k ∈ Z}.
Hence the estimates {M̂m,j ,m ∈ [K] , j ∈ Z} are also defined. See Fig. 1. for this model,
in case K = 2.

We will consider two different error definitions. As is standard for multiple-access
channels, both errors are averages over messages. However, our first error type also
involves averaging over delays, while the second one takes maximum over the possible
delays.

Definition 2.11. The average error is:

Pn
e = Pr

{
K⋃

m=1

{
Mm,0 6= M̂m,0

}}
. (3)

Definition 2.12. The maximal error is:

Pn
e (∗) = max

d(n):Pr{D(n)=d(n)}>0
Pr

{
K⋃

m=1

{
Mm,0 6= M̂m,0

}
|D(n) = d(n)

}
. (4)

Remark 2.13. The average error depends on the joint distribution of delays (D1(n),
D2(n), . . . , DK(n)), while the maximal error depends on the joint distribution of the
delays only through its support.

Remark 2.14. The two kinds of error are related very closely. If Pn
e (∗) → 0 then

Pn
e → 0. On the other hand, if Pn

e → 0 exponentially as n → ∞ and if
mind(n):Pr{D(n)=d(n)}>0 Pr {D(n) = d(n)} tends to 0 slower than exponentially then also
Pn

e (∗) → 0 exponentially.

We have defined several types of models according to the various definitions of decoder
and of error. For the sake of brevity, the following definition is meant to define a capacity
region simultaneously for all cases. Here, in case of L-block decoder, a proper choice of
L is understood (not depending on n). In particular cases, a suitable L will be specified,
not entering the question whether a smaller L would also do.

Definition 2.15. Corresponding to the delay system D, a vector (R1, R2, . . . , RK) is
an achievable rate vector if for every ε > 0, δ > 0 for all N0 ∈ Z+ there exists a
coding/decoding system with blocklength n > N0 with rates coordinate-wise exceeding
(R1−δ,R2−δ, . . . , RK−δ) and with error less than ε. The set of achievable rate vectors
is the capacity region of the K-AMAC.

Remark 2.16. In the definition above we used the ’optimistic’ definition of capacity
region, rather than the more usual ’pessimistic one’, see [4]1. The reason is that in the
even delays case there are differences in the performance of coding/decoding systems of
even and odd blocklength (see Theorem 5.1).

1In short, in the ’optimistic’ definition it is enough to show that there is a ”good” coding/decoding
system for a sequence of blocklength nk →∞.
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Remark 2.17. If for some region achievability is proved in case of uninformed L-block
decoder with maximal error, and the converse is proved in case of informed infinite
decoder with average error, then for any combination of the model assumptions above
the capacity region is equal to this region.

Lemma 2.18. For either type of AMAC model, if D and D′ are two delay systems such
that for some 0 < α ≤ 1 for all n ∈ Z+ and d(n) ∈ {0, 1, . . . , n− 1}K

Pr {D′(n) = d(n)} ≥ αPr {D(n) = d(n)} , (5)

then the capacity region under delay system D′ is contained (perhaps strictly) in the
capacity region under delay system D.

P r o o f . Consider an arbitrary n length coding/decoding system. Then Pn
e,D′(n) ≥

αPn
e,D(n) and Pn

e,D′(n)(∗) ≥ Pn
e,D(n)(∗) hold, where the lower indices indicate the under-

lying delay system. This proves the lemma. �

Remark 2.19. For either type of decoder, if two delay systems D and D′ have the
same support set for each n, then the capacity regions corresponding to delay systems
D and D′ coincide in case of maximal error. Furthermore, if the equation (5) is fulfilled
by D and D′ and it is also fulfilled when the roles of D and D′ are reversed, then by
Lemma 2.18 the capacity regions also coincide in case of average error.

3. A GENERAL CONVERSE

In this section a general converse theorem is proved, which depends on the delay system.
In the following sections, this general converse is used to derive the capacity region of
special cases.

For all subset S of [K] write

XS = (Xi)i∈S , Sc = [K] \ S, (6)

and for all R = (R1, R2, . . . , RK) write

R(S) =
∑
i∈S

Ri. (7)

Let D = D(n) denote the delay vector. Let XB,i+DB
denote the random vector with

components Xl,i+Dl
, l ∈ B where B ⊂ [K] and Xm,j is defined as in definition 2.2;

similar notation is used where + is replaced by ⊕ which means addition modulo n.

Theorem 3.1. For any n length coding/decoding system with rate vector R = (R1, R2,
. . . , Rk) for a K senders AMAC W with informed infinite decoder, the following bounds
hold for all S ⊂ [K]:

R(S) ≤ I(XS,Q⊕DS
∧ ỸQ|XSc,Q⊕DSc , Q,D) + εn. (8)

Here εn = (R([K]))Pn
e + 1

n , the random variable Q is uniformly distributed on {0, 1, . . . ,
n − 1} and is independent of D and the message flows of the senders. Further, the
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conditional distribution of ỸQ on the condition that the values of Q, D and the messages
Mm,j (hence also of X1,Q⊕D1 , X2,Q⊕D2 , . . . , XK,Q⊕DK

) are given, depends only on the
values x1, x2, . . . , xK of the latter random variables and is equal to W (·|x1, x2, . . . , xK).

Remark 3.2. Theorem 3.1 will be used for sequences of coding/decoding systems with
Pn

e → 0. In this case εn also tends to 0.

P r o o f . For the sake of clarity just the two senders special case is addressed here, the
full proof of Theorem 3.1 can be found in Appendix B. In case of two senders the bounds
(8) are:

R1 ≤ I(X1,Q⊕D1 ∧ ỸQ|X2,Q⊕D2 , Q,D1, D2) + εn (9)

R2 ≤ I(X2,Q⊕D2 ∧ ỸQ|X1,Q⊕D1 , Q,D1, D2) + εn (10)

R1 + R2 ≤ I(X1,Q⊕D1 , X2,Q⊕D2 ∧ ỸQ|Q,D1, D2) + εn. (11)

Note that nεn = n(R1 + R2)P
(n)
e + 1. Hence

nεn ≥ H(M1,0,M2,0|M̂1,0, M̂2,0) (12)

by Fano’s inequality.

Fig. 2. The random variables that play role in the bound on the sum

R1 + R2.

We just bound R1 + R2. The bounds for R1 and R2 can be derived similarly (See
also Appendix B).

Take a window of the receiver consisting of N+1 n-length blocks YN+1 = {Y0, Y1, . . . ,
Yn(N+1)−1}. This window fully covers the code-blocks X1,1,X1,2, . . . ,X1,N of sender 1
and X2,1,X2,2, . . . ,X2,N of sender 2, denoted by XN

1 and XN
2 respectively. The code-

words at the sides of the output window are X1,0,X2,0,X1,N+1,X2,N+1, denote this
quadruple by Xsw (where sw stands for ”side of the window”). Then we have

Nn(R1 + R2) = H(MN
1 ,MN

2 ) (13)

= I(MN
1 ,MN

2 ∧ M̂N
1 , M̂N

2 ) + H(MN
1 ,MN

2 |M̂N
1 , M̂N

2 ) (14)
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≤ I(MN
1 ,MN

2 ∧ M̂N
1 , M̂N

2 ) +
N∑

i=1

H(M1,i,M2,i|M̂1,i, M̂2,i) (15)

≤ I(MN
1 ,MN

2 ∧ M̂N
1 , M̂N

2 ) + Nnεn (16)

≤ I(XN
1 ,XN

2 ∧YN+1,Xsw, D1, D2) + Nnεn (17)

where (16) comes from (12) and (17) comes from the Markov relation

(MN
1 ,MN

2 ) 
 (XN
1 ,XN

2 ) 
 (YN+1,Xsw, D1, D2)



 (YN+1,Yc, D1, D2) 
 (M̂N
1 , M̂N

2 ). (18)

Here Yc denote the whole output sequence except YN+1. Note that in [5] the Markov
relation (XN

1 ,XN
2 ) 
 (YN+1, D1, D2) 
 (YN+1,Yc) was assumed, which need not hold

in general2. It seems that Poltyrev [15] also made this error.
Introduce the notation |X | = max(|X1|, |X2)|. Continuing the bounds (13) – (17),

Nn(R1 + R2) ≤ I(XN
1 ,XN

2 ∧YN+1,Xsw, D1, D2) + Nnεn (19)

=H(XN
1 ,XN

2 ) + Nnεn −H(XN
1 ,XN

2 |YN+1,Xsw, D1, D2) (20)

=H(XN
1 ,XN

2 |D1, D2) + Nnεn −H(XN
1 ,XN

2 |YN+1, D1, D2)

+ H(XN
1 ,XN

2 |YN+1, D1, D2)−H(XN
1 ,XN

2 |YN+1,Xsw, D1, D2) (21)

= I(XN
1 ,XN

2 ∧YN+1|D1, D2) + Nnεn + I(Xsw ∧XN
1 ,XN

2 |YN+1, D1, D2) (22)

≤H(YN+1|D1, D2)−H(YN+1|XN
1 ,XN

2 , D1, D2) + 4n log |X |+ Nnεn (23)

=H(YN+1|D1, D2) + 4n log |X |+ Nnεn

−
N∑

j=0

n−1∑
i=0

H(Ynj+i|Ynj+i−1
0 XN

1 ,XN
2 , D1, D2) (24)

≤
(N+1)n−1∑

j=0

H(Yj |D1, D2) + 4n log |X |+ Nnεn

−
N−1∑
j=1

n−1∑
i=0

H(Ynj+i|X1,nj+i+D1 , X2,nj+i+D2 , D1, D2). (25)

In (25) we dropped some negative terms (notice that j runs from 1 to N − 1). Intro-
duce the random variable Ỹi such that its conditional distribution given D1, D2 and the
messages Mm,j , depends only on the values x1, x2 of X1,i⊕D1 and X2,i⊕D2 , and is equal
to W (·|x1, x2). For all j the joint distribution of (D1, D2, X1,nj+i+D1 , X2,nj+i+D2 , Ynj+i)
is the same as the joint distribution of (D1, D2, X1,i⊕D1 , X2,i⊕D2 , Ỹi). Using this substi-

2For a simple counterexample, let W be the 2-user binary adder channel with X1 = X2 = {0, 1}
and Y = {0, 1, 2}, and let n = 2, N = 1. Both senders have the codewords 00 and 11. Elementary
calculations show that the conditional probability that Y−1 is equal to 2 given that Y0 = Y1 = Y2 =
Y3 = 1, D1 = 1, D2 = 0 is 1

4
, while given also that M1,1 = 1, M2,1 = 2 (and hence X1,1 = 00,X2,1 = 11)

this probability becomes 0.
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tution, (25) can be further bounded from above by:

≤(N − 1)
n−1∑
i=0

H(Ỹi|D1, D2) + 2n log |Y|+ 4n log |X |

− (N − 1)
n−1∑
i=0

H(Ỹi|X1,i⊕D1X2,i⊕D2 , D1, D2) + Nnεn (26)

=(N − 1)
n−1∑
i=0

I(X1,i⊕D1 , X2,i⊕D2 ∧ Ỹi|D1, D2) + Nnεn + 4n log |X |+ 2n log |Y|. (27)

Divide by nN and introduce the random variable Q uniformly distributed on {0, 1, . . . ,
n − 1}, independent of D1, D2 and the messages Mm,j and introduce ỸQ such that its
conditional distribution given Q, D1, D2 and the messages Mm,j , depends only on the
values x1, x2 of X1,Q⊕D1 and X2,Q⊕D2 , and is equal to W (·|x1, x2). Then

R1 + R2

≤N − 1
Nn

n∑
i=1

I(X1,i⊕D1 , X2,i⊕D2 ∧ Ỹi|D1, D2) + εn +
2 log |Y|

N
+

4 log |X |
N

(28)

≤N − 1
N

I(X1,Q⊕D1 , X2,Q⊕D2 ∧ ỸQ|Q,D1, D2) + εn +
2 log |Y|

N
+

4 log |X |
N

. (29)

If N →∞ then

R1 + R2 ≤ I(X1,Q⊕D1 , X2,Q⊕D2 ∧ ỸQ|Q,D1, D2) + εn. (30)

�

Corollary 3.3. Under the assumptions of Theorem 3.1 the following bounds hold in
the 2-senders case:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D, Q,D) + εn (31)

R2 ≤ I(X2,Q	D ∧ ŶQ|X1,Q, Q,D) + εn (32)

R1 + R2 ≤ I(X1,Q, X2,Q	D ∧ ŶQ|Q,D) + εn. (33)

Here Q is uniformly distributed on {0, 1, . . . , n− 1} and independent of D1, D2 and the
message flows of the senders, 	 denotes the subtraction modulo n, D = D1 	 D2 is
the relative delay between the two senders. Further, the conditional distribution of ŶQ

on the condition that the values of Q, D1, D2 and the messages Mm,j (hence also of
D, X1,Q, X2,Q	D) are given, depends only on the values x1, x2 of the last two random
variables and is equal to W (·|x1, x2).

P r o o f . Expand the right sides of the equations (9),(10),(11) as sums for the possible
values of Q,D1, D2, e. g.

I(X1,Q⊕D1 , X2,Q⊕D2 ∧ ỸQ|Q,D1, D2)

=
∑

q

∑
d1

∑
d2

1
n
· Pr(D1 = d1)Pr(D2 = d2) I(X1,q⊕d1 , X2,q⊕d2 ∧ Ỹq,d1,d2). (34)



1012 L. FARKAS AND T. KÓI

Substituting q′ = q⊕ d1 and d = d1 	 d2, and renaming q′ to q, the Corollary is proved.
�

4. KNOWN CAPACITY REGIONS WITH A NEW INSIGHT

4.1. The asynchronous one-sender model

In this section the asynchronous model from section 2 is analyzed where there is just one
sender (K = 1). This will provide the basics for the decoding method of the K-AMAC
in general.

In case of K = 1, W : X → Y denotes a classical DMC. For the sake of clarity,
we omit from the notations of Section 2 the index corresponding to the unique sender.
Let {x(1),x(2), . . . ,x(M)} denote the codewords of the codebook of the sender, where
M = 2nR is the number of codewords in the codebook of the sender. The coordinates
of x(i) are denoted by (x0(i), x1(i), . . . , xn−1(i)).

The difference between this model and the classical one is that the task of the receiver
is not just decoding the codewords but also to find the beginning of the codewords. Note
that related problems have been considered in the literature, for example in [16, 17]. The
known results, however, do not directly apply for our purposes.

Theorem 4.1. For each version of the model, the capacity region of the one sender
asynchronous model is [0,maxp(I(p, W ))], the same as that of the classical model, in
case of arbitrary delay system.

Remark 4.2. It has crucial importance in the proofs of Theorems 4.10 and 6.1 that in
the achievability proof below, beyond decoding the codewords, the receiver also finds
the delay of the sender.

P r o o f . The converse part follows from Theorem 3.1.
In order to prove the direct part it is enough to restrict attention to uninformed

L-block decoder and to maximal error; actually L = 1 suffices. Moreover, it is enough
to show that maxp(I(p, W )) is achievable rate for delay system uniformly distributed on
the set {0, 1, . . . , n− 1} (see also Remark 2.13).

Standard random coding argument is used, the main difficulty is summarized in
Remark 4.3. Let p be an arbitrary distribution over the input alphabet X1. Choose
the symbols of codewords in the codebook of rate 0 < R = I(p, W )− 2δ independently
according to p. Let Pn(xn,yn) be the joint distribution on Xn×Yn induced by the nth
power of p and by the memoryless channel W . Let qn be the marginal of Pn on Yn.
We define the decoder as follows. In order to estimate the 0th sent message M1,0, the
receiver first examines the n-tuple of outputs (Y−n+1, Y−n+2, . . . , Y0), then it examines
the next n-tuple (Y−n+2, Y−n+3, . . . , Y1), etc. until the n-tuple (Y0, Y1, . . . Yn−1). The
estimate will be M̂1,0 = s if among the examined n-tuples there is a unique one denoted
by Y n, for which ((X0(s), X1(s), . . . , Xn−1(s)), Y n) belongs to the typical set

Sδ
n :=

{
(xn,yn) : Pn(xn,yn) > 0 and

∣∣∣∣ 1
n

log
Pn(xn,yn)

pn(xn)qn(yn)
− I(p, W )

∣∣∣∣ ≤ δ

}
, (35)
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and also this s is unique. The following argument shows that, for this random code with
the above decoder,

Pn
e (d) = Pr

{
M1,0 6= M̂1,0|D1 = d

}
(36)

is exponentially small for each delay d.
By the symmetry of the random code it can be assumed that M1,−1 = 2, M1,0 = 1,

and M1,1 = 3 (the probability that they are not different is exponentially small). It is
clear from the classical channel coding theorem that if the decoder examines an n-tuple
Y n which is the output of the whole codeword X(1), then the decoder will find X(1) but
no other codewords jointly typical with Y n, with probability exponentially close to 1.

Hence, we only have to discuss the case when the decoder examines output symbols
in a window of length n when the input symbols were (Xn−l(2), . . . , Xn−1(2), X0(1), . . . ,
Xn−l−1(1)) for some n > l > 0 (the opposite cases, i. e., when the first part of the input
symbols come from X(1) and the second part from X(3), can be analyzed similarly).
We will show that the probability of incorrectly recognizing typicality in this window is
exponentially small. The probability, conditioned on the previously presented structure
of the examined window, that codewords X(s) will be typical with this examined output
n tuple can be written as:

Prcond

{
(X0(s), . . . , Xn−1(s), Y n) ∈ Sδ

n

}
=

∑
(xn(s),yn)∈Sδ

n

pn(xn(s)) · Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} (37)

=
∑

(xn(s),yn)∈Sδ
n

pn(xn(s))
qn(yn)
qn(yn)

· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)}

(38)

≤
∑

(xn(s),yn)∈Sδ
n

2−n(I(p,W )−δ)Pn(xn(s),yn)
qn(yn)

· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} (39)

= 2−n(I(p,W )−δ)
∑

(xn(s),yn)∈Sδ
n

Pn(xn(s)|yn)

· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} . (40)

In the above derivation the definition of the set Sδ
n is used, and in the last equation

Pn(xn(s)|yn) denotes the conditional probability induced by the joint distribution Pn.
We will show that the sum in (40) is ≤ 1. We have to use the structure of the examined
window. Recall the assumption that in this window the second part of X(2) and the
first part of X(1) were sent. We should distinguish three cases: {s 6= 2, s 6= 1}, {s = 1},
{s = 2}. In the first case Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} is equal to
Prcond {Y n = yn}. This proves that in this case the sum in (40) is indeed ≤ 1. The
remaining two cases can be treated very similarly. For the sake of brevity, concentrate
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on the case {s = 1}. Then the sum in (40) is bounded from above by∑
xn(2)∈Xn

pn(xn(2))
∑

(xn(1),yn)∈Xn×Yn[
n−1∏
h=0

P (xh(1)|yh)

] [
l−1∏
h=0

W (yh|xn−l+h(2))

] [
n−1∏
h=l

W (yh|xh−l(1))

]
.(41)

Sum in the following order: xn−1(1), yn−1, xn−2(1), yn−2, . . . , xl(1), yl. We get that
(41) is equal to

∑
xn(2)∈Xn

pn(xn(2))
∑

(xl(1),yl)∈X l×Yl

[
l−1∏
h=0

P (xh(1)|yh)

] [
l−1∏
h=0

W (yh|xn−l+r(2))

]
. (42)

This is equal to 1, because the terms of the inner sum may be regarded as a joint
distribution for a memoryless channel with inputs yi and outputs xi(1).

In the above derivation we demonstrated that the probability that the receiver finds
the sth codeword typical with an output n tuple whose input symbols consist of two
different codewords, can be bounded from above by 2−n(I(p,W )−δ). Using the union
bound over all codewords and over all the n tuples examined by the decoder, gives that
the probability of recognizing one of the codewords in a window where the inputs are
from two different codewords is less then n2−nδ.

The above paragraphs show that, for the random code, Pn
e (d) in (36) and hence also

the average error over delays is exponentially small. We can conclude that there exists
a sequence of deterministic coding-decoding systems with exponentially small average
error over delays. Optimizing the distribution p and taking into account Remark 2.14
we can see that maxp I(p, W ) is achievable in case of uninformed L = 1-block decoder
and maximal error. �

Remark 4.3. Cases {s = 1}, {s = 2} are the main difficulties in this proof. The tricky
summation in equation (41) which solves these difficulties is adopted from Gray [9].

Remark 4.4. Note that using [9] a stronger result can be proved: any sequence of de-
terministic codes which work well for the classical channel coding model, can be modified
to work well for the asynchronous model. Namely, if the same random synchronization
sequence of length k ≈ log2(n) is appended to each of the original codewords, then with
probability tending to 1 it is possible to detect the synchronization sequence and de-
code the original codewords. However, the authors believe that the proof without using
synchronization sequence is somewhat simpler.

4.2. The totally asynchronous case

From this point on, the paper strongly relies on the results of [8] and [13]. Though the
reader is assumed familiar with the concepts of successive decoding and rate splitting,
the basics will be summarized below.

Let W be a K-AMAC.



On capacity regions of discrete asynchronous MACs 1015

Definition 4.5. The convex polytope R [W ; p(x1, x2, . . . , xK)] is the set of K tuples
R ∈ (R+)K such that

R(S) ≤ I(XS ∧ Y |XSc) , S ⊆ [K] , (43)

where the joint distribution of X1, X2 . . . , XK is p(x1, x2 . . . , xK) and Y is connected to
X1, X2, . . . , XK by the channel W .

Definition 4.6. Let C denote the following set:

C :=
⋃

pX1×pX2×···×pXK

R [W ; pX1 × pX2 × · · · × pXK
] (44)

where the union is over all product distributions.

Definition 4.7. The dominant face of R [W ; pX1 × pX2 × · · · × pXK
] is its subset con-

sisting of all vectors (R1, R2, . . . , RK) with R([K]) = I(X[K] ∧ Y ). It is denoted by
D(R [W ; pX1 × pX2 × · · · × pXK

]).

Definition 4.8. We say that (R1, R2, . . . , RK) is dominated by (R̃1, R̃2, . . . , R̃K) if
R1 ≤ R̃1, R2 ≤ R̃2,. . . , RK ≤ R̃K .

It can be seen3 that the points of D(R [W ; pX1 × pX2 × · · · × pXK
]) cannot be domi-

nated by other points of R [W ; pX1 × pX2 × · · · × pXK
], but any point from R [W ; pX1×

pX2 × · · · × pXK
] can be dominated by a point from the dominant face.

Remark 4.9. According to Definition 2.15, if (R1, R2, . . . , RK) is dominated by an
achievable rate vector then the rate vector (R1, R2, . . . , RK) is also achievable.

According to [8] the vertices of D(R [W ; pX1 × pX2 × · · · × pXK
]) can be described in

the following way. Let π = (π1, π2, . . . , πK) be an ordering of [K]. For all i ∈ [K] let
Rπ

πi
be equal to I(Xπi ∧ Y |X{π1,...,πi−1}). For example if K = 3, and π = (2, 3, 1), then

Rπ
2 = I(X2 ∧ Y ), Rπ

3 = I(X3 ∧ Y |X2), Rπ
1 = I(X1 ∧ Y |X2, X3). Then the rate vector

Rπ = (Rπ
1 , Rπ

2 , . . . , Rπ
K) is a vertex, and all vertices of D(R [W ; pX1 × pX2 × · · · × pXK

])
can be written in this way with appropriate π. Note that the vertices Rπ need not be
all distinct.

In the Appendix of [8] it is proved for informed L = K block decoder that in the
totally asynchronous case Rπ ∈ D(R [W ; pX1 × pX2 × · · · × pXK

]) can be achieved by
successive decoding with ordering π. We summarize the proof for R{1,2,...,K}. The
coding/decoding system is randomly constructed the following way. The symbols of the
codebooks of the senders are chosen independently according to the appropriate input
distributions. The receiver first decodes by joint typicality the codewords of the first
sender, considering the random codewords of the other senders as noise. This means that
the receiver behaves as if there were only one sender and the channel was the following:

W 1(y|x1) =
∑

x2∈X2

∑
x3∈X3

· · ·
∑

xk∈XK

pX2(x2)pX3(x3) · · · pXK
(xK)W (y|x1, x2, . . . , xK).

(45)
3According to [8] it is a consequence of the fact thatR

ˆ
W ; pX1 × pX2 × · · · × pXK

˜
is a polymatroid,

which was observed in [10, 14].
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Next the receiver decodes the codewords of the second sender by joint typicality using
the already decoded codewords of the first sender, considering the other senders as noise.
This means that the receiver behaves as it would in a one sender model when the channel
was the following:

W 2(y, x1|x2) =
∑

x3∈X3

∑
x4∈X3

· · ·
∑

xk∈XK

pX1(x1)pX3(x3) · · · pXK
(xK)W (y|x1, x2, . . . , xK).

(46)
The codewords of the other senders are decoded similarly. In the final decoding step the
receiver decodes the codewords of the K’th sender by joint typicality using the already
decoded codewords of all the other senders. This means that the receiver behaves as it
would in a one sender model when the channel was the following:

WK(y, x1, x2, . . . , xK−1|xK) = pX1(x1)pX2(x2) · · · pXK−1(xK−1)W (y|x1, x2, . . . , xK).
(47)

More detail can be found in the Appendix of [8].
Now recall the notion of individual split from [8] with splitting function f(xa, xb) =

max(xa, xb). A split of sender i with input distribution pXi on Xi = {0, 1, . . . , |Xi| − 1}
results in two virtual senders ia, ib with distributions pXia and pXib

, also on Xi, explicitly
determined by pXi and a splitting parameter, such that the splitting function f(xa, xb) =
max(xa, xb) maps pXia × pXib

into pXi .
Section 2 of [8] shows in the totally asynchronous case that each R ∈ D(R [W ; pX1×

pX2 × · · · × pXK
]) can be achieved with Rate Splitting via at most K − 1 splits4. This

means that a good code for W with rate vector R can be obtained from a code with
successive decoding for an auxiliary channel W ′

R with 2K−1 virtual senders constructed
by splitting the original senders, perhaps some of them split repeatedly and others
not at all; the rate vector of this code equals the vertex R′π of the dominant face of
R

[
W ′

R; pX
′
1
× pX

′
2
× · · · × pX

′
2K−1

]
for some ordering π and distributions pX

′
1
× pX

′
2
×

· · · × pX
′
2K−1

. In particular, the i’th coordinate of R is the sum of those coordinates

of R′π that correspond to the virtual senders into which the i’th sender has been split,
i = 1, 2, . . . ,K.

Theorem 4.10. In the totally asynchronous case (Example 2.5), for each model version
the capacity region is C.

P r o o f . In the converse part it is enough to treat the case of an informed infinite
decoder and average error. The right side of eq. (8) can be bounded from above as
follows.

I(XS,Q⊕DS
∧ ỸQ|XSc,Q⊕DSc , Q,D) (48)

= H(ỸQ|XSc,Q⊕DSc , Q,D)−H(ỸQ|X[K],Q⊕D[K]
, Q,D) (49)

= H(ỸQ|XSc,Q⊕DSc , Q,D)−H(ỸQ|X[K],Q⊕D[K]
) (50)

≤ H(ỸQ|XSc,Q⊕DSc )−H(ỸQ|X[K],Q⊕D[K]
) (51)

= I(XS,Q⊕DS
∧ ỸQ|XSc,Q⊕DSc ) (52)

4The stronger result of Section 3 of [8] is not needed in this paper.
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where (50) comes from the fact that the output depends only on the input variables.
From the fact that the delays are independent and uniform it follows that the random

variables {Q⊕Di, i ∈ [K]} are independent, hence the random variables {Xi,Q⊕Di , i ∈
[K]} are also independent. On account of this, the converse statement follows from
Theorem 3.1.

The achievability part needs one modification of the proof in the Appendix of [8] of
the assertion that C is achievable with informed L = 2K − 1-block decoder, considering
maximal error. In order to get rid of the assumption that the delays are known to
the receiver, it is enough to use the synchronization method from Subsection 4.1 in
the successive steps of achievability of vertices. Note that it is important that in the
successive steps the decoder finds the exact delay of the actual sender (see Remark 4.2).

�

Remark 4.11. In case of two senders Corollary 3.3 leads to a stronger result. If the
relative delay D = D1 	 D2 is uniformly distributed on the set {0, 1, . . . , n − 1} then,
for each model version, the capacity region is C.

5. EVEN DELAYS

In [7] an artificial but interesting (from theoretical point of view) model is mentioned
as open problem: the possible delays are in the set {0, 1, . . . , αn} for some α ∈ (0, 1).
In this section, though this problem is not solved, a similar artificial model is analyzed
which also has theoretical interest.

Theorem 5.1. In the even delays case (Example 2.6), for each version of the model
the capacity region consists of those rate pairs that either belong to C or are linear
combinations with weights 1

2 , 1
2 of points in C. Moreover, using coding/decoding systems

of odd block-length, only C can be achieved.

P r o o f . In order to prove the direct part it is enough to restrict attention to unin-
formed L-block decoder and to maximal error. Let n be even. Then the senders can do
time sharing with weights 1

2 , 1
2 using separately the even and the odd symbols and using

the coding/decoding method of Theorem 4.10. Figure 3 demonstrates this fact. Note
that in this case L can be chosen as 3.

Fig. 3. Time sharing when the relative delay is uniform on even

numbers.

In the converse part it is enough to treat the case of an informed infinite decoder and
average error. The proof uses Corollary 3.3.
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Fig. 4. Capacity region in the totally asynchronous and in the even

delays case.

In case of coding/decoding systems of even length the relative delay is uniformly
distributed on the even numbers in {0, 1, . . . , n− 1}. Write the upper bounds in Corol-
lary 3.3 as a sum for the possible values of Q and define two random variables Q1, Q2 as
uniform on even/odd numbers and independent of each other and everything else. Then
the following can be written:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D, Q,D) + εn (53)

=
1
n

n−1∑
i=0

I(X1,i ∧ Ŷi|X2,i	D, D) + εn (54)

≤1
2

2
n

∑
i∈odd

I(X1,i ∧ Ŷi|X2,i	D) +
1
2

2
n

∑
i∈even

I(X1,i ∧ Ŷi|X2,i	D) + εn (55)

≤1
2

I(X1,Q1 ∧ ŶQ1 |X2,Q1	D) +
1
2

I(X1,Q2 ∧ ŶQ2 |X2,Q2	D) + εn. (56)

Similarly we get

R2 ≤
1
2

I(X2,Q1	D ∧ ŶQ1 |X1,Q1) +
1
2

I(X2,Q2	D ∧ ŶQ2 |X1,Q2) + εn (57)

R1 + R2 ≤
1
2

I(X1,Q1 , X2,Q1	D ∧ ŶQ1) +
1
2

I(X1,Q2 , X2,Q2	D ∧ ŶQ2) + εn (58)

where X1,Q1 ,X2,Q1	D and X1,Q2 ,X2,Q2	D are independent. This proves the converse
result for even blocklength (see [4] Lemma 14.4+, or its generalization, Lemma 6.3 in
Section 6 of this paper).

In the subsequent part of this proof the symbol n denotes odd integer. Now we prove
that with coding/decoding systems of odd length, just the union of the pentagons can
be achieved. Given such sequence of coding/decoding systems, where Pn

e → 0, let cn be
a sequence with cn → 0 and P n

e

cn
→ 0 such that cnn is integer.

Recall that the delays D1(n) and D2(n) are independent and uniformly distributed
random variables on the set {0, 2, . . . , n−1}. For all i ∈ {0, 1, . . . , n−1} let K(i) be the
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number of those pairs d1, d2 ∈ {0, 2, . . . , n− 1} for which the relative delay d = d1 	 d2

is equal to i, then:

K(i) =

{
n−i+1

2 if i is even
i+1
2 if i is odd.

Let D
′

1(n) and D′
2(n) be two random variables taking values in the set {0, 2, . . . , n−1}

with the following joint distribution. For each d1, d2 ∈ {0, 2, . . . , n − 1}, if d1 	 d2 ∈
{cnn, cnn+1, . . . , n−1−cnn} let Pr {D′

1(n) = d1, D
′
2(n) = d2} be equal to 1

n(1−2cn)K(d1	d2)
,

otherwise 0. Then for each d1, d2 ∈ {0, 2, . . . , n − 1} the following bound holds if n is
large enough:

4
(n + 1)2

= Pr {D1(n) = d1, D2(n) = d2} ≥ cnPr {D′
1(n) = d1, D

′
2(n) = d2} . (59)

Using the same idea as in the proof of Lemma 2.18 and the fact that P n
e

cn
→ 0 we can

conclude that the given sequence of coding/decoding systems has average error also
tending to 0 under the delay system D′ described by the random variables D′

1(n) and
D′

2(n). Hence if we show that under delay system D′ only C can be achieved, the
assertion is proved.

Under delay system D′ the relative delay D′(n) = D′
1(n) 	 D′

2(n) is uniformly dis-
tributed on the set {cnn, cnn+1, . . . , n−1−cnn}. By Corollary 3.3 the following bounds
hold for the rates:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D′ , Q,D′) + εn

R2 ≤ I(X2,Q	D′ ∧ ŶQ|X1,Q, Q,D′) + εn

R1 + R2 ≤ I(X1,Q, X2,Q	D′ ∧ ŶQ|Q,D′) + εn. (60)

Let D̄(n) be a random variable uniformly distributed on the set {0, 1, . . . , n − 1}.
As the variation distance between the product joint distributions of (Q,D′) and (Q, D̄)
tends to 0, the following differences also tend to 0 as n →∞:

I(X1,Q, X2,Q	D′ ∧ ŶQ|Q,D′)− I(X1,Q, X2,Q	D̄ ∧ ŶQ|Q, D̄),

I(X1,Q ∧ ŶQ|X2,Q	D′ , Q,D′)− I(X1,Q ∧ ŶQ|X2,Q	D̄, Q, D̄),

I(X2,Q	D′ ∧ ŶQ|X1,Q, Q,D′)− I(X2,Q	D̄ ∧ ŶQ|X1,Q, Q, D̄). (61)

Taking into account that X1,Q and X2,Q	D̄ are independent, the assertion is proved
(See also Remark 4.11). �

Example 5.2. There are two well-known examples ([2, 4]) which show that the convex
hull operation can be useful. Here we use [4]. Let the channel be defined by X1 = X2

= Y = {0, 1}, W (0|0, 0) = 1, W (1|1, 0) = W (1|0, 1) = 1 and W (1|1, 1) = W (0|1, 1) = 1
2 .

The capacity regions in the totally asynchronous and in the even delays case are shown
on Figure 4. In the even delays case a hill appears in the middle of the picture.

Remark 5.3. Similar results can be achieved if the distribution is uniform on numbers
which are divisible by 3. In this case time sharing with weights 1

3 , 2
3 becomes possible.
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Remark 5.4. This also means that if the senders of the totally asynchronous AMAC
want to time share with weights ( 1

2 , 1
2 ), they can do that if a one-shot 1-bit side-

information about the delays is available to the senders.

6. PARTLY ASYNCHRONOUS THREE-SENDERS CASE

In this section we will prove coding theorem in case of K = 3, when D1(n) = D2(n) and
D3(n) are independent and uniformly distributed on the set {0, 1, . . . , n− 1}.

Theorem 6.1. In the partly asynchronous three senders case (Example 2.7), for each
version of the model the capacity region is

⋃
pX3

Conv

 ⋃
pX1×pX2

R [W ; pX1 × pX2 × pX3 ]

 . (62)

In words, it consists of the convex combination of rate triples from C whose correspond-
ing convex polytopes are defined by the same third distribution.

Remark 6.2. Using the Carathéodory-Frenchel Theorem (e. g. Chapter 15 of [4]) in
Theorem 6.1, it suffices to take convex combinations involving at most three rate triples.

P r o o f . [Converse part of Theorem 6.1]
It is enough to treat the case of an informed infinite decoder and average error.

Theorem 3.1 can be used as follows.
If S ⊂ {1, 2, 3} then the following bound holds:

R(S) ≤
n∑

i=1

1
n

I(XS,i⊕DS
∧ Ỹi|XSc,i⊕DSc ,D) + εn. (63)

Summing over the possible values of D1 = D2 we get the following bounds:

R1 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X1,i⊕d ∧ Ỹi|X2,i⊕d, X3,i⊕D3 , D3) + εn

R2 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X2,i⊕d ∧ Ỹi|X1,i⊕d, X3,i⊕D3 , D3) + εn

R3 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X3,i⊕D3 ∧ Ỹi|X1,i⊕d, X2,i⊕d, D3) + εn

R1 + R2 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X1,i⊕d, X2,i⊕d ∧ Ỹi|X3,i⊕D3 , D3) + εn

R2 + R3 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X2,i⊕d, X3,i⊕D3 ∧ Ỹi|X1,i⊕d, D3) + εn
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R1 + R3 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X1,i⊕d, X3,i⊕D3 ∧ Ỹi|X2,i⊕d, D3) + εn

R1 + R2 + R3 ≤
n−1∑
i=0

n−1∑
d=0

1
n

1
n

I(X1,i⊕d, X2,i⊕d, X3,i⊕D3 ∧ Ỹi|D3) + εn. (64)

Note that, X3,i⊕D3 is independent of X1,i⊕d and X2,i⊕d, and has the same distribution
for all i. Note also that the above inequalities can be overestimated by dropping D3

from the condition (same argument as in Theorem 4.10). Hence the converse part follows
from Lemma 6.3 below. �

The achievability part in Theorem 6.1 is proved later in this section.

Lemma 6.3. Given k setsR
[
W ; pXi

1
× pXi

2
× pXi

3

]
, i ∈ [k], a vector (R1, R2, R3) equals

a convex combination with weights αi of k vectors from these sets if and only if they are
contained in R(α1, α2, . . . , αk) which is defined by the following inequalities:

0 ≤ R1 ≤
k∑

i=1

αi I(Xi
1 ∧ Y i|Xi

2, X
i
3)

0 ≤ R2 ≤
k∑

i=1

αi I(Xi
2 ∧ Y i|Xi

1, X
i
3)

0 ≤ R3 ≤
k∑

i=1

αi I(Xi
3 ∧ Y i|Xi

1, X
i
2)

R1 + R2 ≤
k∑

i=1

αi I(Xi
1, X

i
2 ∧ Y i|Xi

3)

R1 + R3 ≤
k∑

i=1

αi I(Xi
1, X

i
3 ∧ Y i|Xi

2)

R2 + R3 ≤
k∑

i=1

αi I(Xi
2, X

i
3 ∧ Y i|Xi

1)

R1 + R2 + R3 ≤
k∑

i=1

αi I(Xi
1, X

i
2, X

i
3 ∧ Y i). (65)

P r o o f . This proof follows the proof of Lemma 14.4+ in [4]. The sets R
[
W ; pXi

1
× pXi

2

×pXi
3

]
, i ∈ [k], and the set R(α1, α2, . . . , αk) are convex polytopes with 16 vertices.

Using the fact that the mutual and the conditional mutual information are always non-
negative, it can be easily derived that there are no redundant inequalities between the
defining equations of the sets R

[
W ; pXi

1
× pXi

2
× pXi

3

]
, i ∈ [k], and R(α1, α2, . . . , αk).

This means for example that it is not possible that the sum of the bounds for R1 + R2
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and R3 is strictly less then the bound for R1 + R2 + R3. Using this fact the vertices of
R

[
W ; pXi

1
× pXi

2
× pXi

3

]
, i ∈ [k], can be written in the following way. First v0

i = (0, 0, 0)
is a vertex. The remaining 15 vertices can be divided into three groups of equal size.
The first group consists of those vertices (R1, R2, R3) for which R1 is equal to its own
bound, i.e, of the vertices:

v1
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), 0, 0)

v2
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(X

i
2 ∧ Y i|Xi

3), 0)

v3
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(X

i
2 ∧ Y i|Xi

3), I(X
i
3 ∧ Y i))

v4
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), 0, I(Xi

3 ∧ Y i|Xi
2))

v5
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(X

i
2 ∧ Y i), I(Xi

3 ∧ Y i|Xi
2)) (66)

The two other groups (v6
i ,v

7
i , . . . ,v

10
i ) and (v11

i ,v12
i , . . . ,v15

i ) are obtained similarly.

Note that R
[
W ; pXi

1
× pXi

2
× pXi

3

]
can be degenerate in the sense that these six-

teen vertices need not be all distinct. The vertices of R(α1, α2, . . . , αk) are the points∑k
i=1 αiv

j
i , 0 ≤ j ≤ 15. As these vertices are contained in the (convex) set of convex

combinations with weights αi of vectors in the sets R
[
W ; pXi

1
× pXi

2
× pXi

3

]
, i ∈ [k],

therefore whole R(α1, α2, . . . , αk) is contained. The reverse inclusion is obvious. �

By Definition 4.7, the points (R1, R2, R3) of D(R [W ; pX1 × pX2 × pX3 ]) satisfy the
inequalities in (43), with R1 + R2 + R3 = I(X1, X2, X3 ∧ Y ). An edge of this dominant
face is characterized by another inequality in (43) fulfilled with equality. The set S
corresponding to that inequality will be called the type of this edge.

The following lemma states that rate triples lying on edges with a fixed type S behave
similarly in context of rate splitting and successive decoding. It can be considered as a
remark to the general theory of [8, 13] in the special case K = 3.

Lemma 6.4. For every fixed nonempty S ( {1, 2, 3} there exists a 4-senders channel
W ′ derived from W by splitting the first or the second sender, and an ordering π =
(π1, π2, π3, π4) of the 4 senders with the following property. If W ′ is derived from W by
splitting the first sender, then to any input distributions pX1 , pX2 , pX3 of W and for all
(R1, R2, R3) ∈ D(R [W ; pX1 × pX2 × pX3 ]) lying on the edge of type S, there exist input
distributions pX1a , pX1b

and non-negative numbers R1a, R1b with R1a + R1b = R1 such
that (R1a, R1b, R2, R3) is the vertex of D(R [W ′; pX1a × pX1b

× pX2 × pX3 ]) described by
ordering π. If W ′ is derived from W by splitting the second sender, then to any input
distributions pX1 , pX2 , pX3 of W and for all (R1, R2, R3) ∈ D(R [W ; pX1 × pX2 × pX3 ])
lying on the edge of dominant face with type S, there exist input distributions pX2a , pX2b

and non-negative numbers R2a, R2b with R2a + R2b = R2 such that (R1, R2a, R2b, R3)
is the vertex of D(R [W ′; pX1 × pX2a × pX2b

× pX3 ]) described by ordering π.

P r o o f . Assume for example that a rate triple (R1, R2, R3) ∈D(R [W ; pX1 × pX2 × pX3 ])
lies on the edge of type S = {1, 3}, hence R1 + R2 + R3 = I(X1, X2, X3 ∧ Y ), R1 +
R3 = I(X1, X3 ∧ Y |X2). The other cases are similar. Then R2 = I(X2 ∧ Y ) and
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(R1, R3) lies on D(R
[
Ŵ ; pX1 × pX3

]
), where Ŵ (y, x2|x1, x3) = pX2(x2)W (y|x1, x2, x3)

(see [13], beginning of section 3c). Denote by Ŵ ′ the three senders channel derived
from Ŵ by splitting the first sender. We could split the third sender instead of the
first sender, but we want to leave the third sender unsplit. Using the basic rate split-
ting result of [8] for two senders channels, there exist input distributions pX1a , pX1b

and
non-negative numbers R1a, R1b with R1a + R1b = R1 such that (R1a, R1b, R3) is the
vertex of D(R

[
Ŵ ′; pX1a

× pX1b
× pX3

]
) described by the ordering (1a, 3, 1b). Hence,

(R1a, R1b, R2, R3) is the vertex of D(R [W ′; pX1a
× pX1b

× pX2 × pX3 ]) described by the
ordering (2, 1a, 3, 1b), where W ′ is the 4-senders channel derived from W by splitting
the first sender. This argument shows that for S = {1, 3}, the channel W ′ derived from
W by splitting the first sender, and the ordering (2, 1a, 3, 1b) on the senders of W ′ fulfill
the requirements of this lemma. �

The next lemma shows that each r which is not in C but can be written as the convex
combination of rate triples from C, can be dominated by a convex combination of rate
triples from C which lie on edges of same type.

Lemma 6.5. Given k sets R
[
W ; pXi

1
× pXi

2
× pXi

3

]
, i ∈ [k], if a vector r is not in C,

but can be written as r =
∑k

i=1 αiri, where ri ∈ R
[
W ; pXi

1
× pXi

2
× pXi

3

]
, 0 ≤ αi < 1,

i ∈ [k],
∑k

i=1 αi = 1, then r can be dominated by an r′ which can be written as∑k
i=1 α′ir

′
i, where r′i ∈ D(R

[
W ; pXi

1
× pXi

2
× pXi

3

]
), 0 ≤ α′i < 1, i ∈ [k],

∑k
i=1 α′i = 1

and the vectors r′i, i ∈ [k] , lie on edges of same type.

P r o o f . It can be assumed that αi > 0 for all i. If ri is not on D(R
[
W ; pXi

1
× pXi

2
× pXi

3

]
)

then we can take a dominating r̃i from the dominant face, for all i. Then r̃ =
∑k

i=1 αir̃i

dominates r. So it can be assumed that the rate triple ri is on D(R
[
W ; pXi

1
× pXi

2
× pXi

3

]
)

for all i.
The dominant face of a set R

[
W ; pXi

1
× pXi

2
× pXi

3

]
is a hexagon5 on a plane with

normal vector (1, 1, 1). We say that the height of the plane with normal vector (1, 1, 1)
is a if its equation is x + y + z = a. The height of a dominant face is the height of
its plane. As in Lemma 6.3 let us consider the set R(α1, α2, . . . , αk). This is the set of
convex combinations with weights αi, 1 ≤ i ≤ k of the sets R

[
W ; pXi

1
× pXi

2
× pXi

3

]
, 1 ≤

i ≤ k. The dominant face D(α1, α2, . . . , αk) of R(α1, α2, . . . , αk) consists of those points
(R1, R2, R3) for which R1 + R2 + R3 =

∑k
i=1 αiI(Xi

1, X
i
2, X

i
3 ∧ Y i). Note that r ∈

D(α1, α2, . . . , αk) because the points ri are on the dominant face of R
[
W ; pXi

1
× pXi

2
×

pXi
3

]
respectively. Any edge of D(α1, α2, . . . , αk) consists of those points for which one

of the inequalities (65) is fulfilled with equality. Hence the edges of D(α1, α2, . . . , αk)
consist of points which are convex combinations with weights α1, α2, . . . , αk of points
lying on edges of same type. If r is on an edge of D(α1, α2, . . . , αk) then we proved the

5The hexagon can be degenerated since some vertices can be identical
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Fig. 5. The set of convex combination of two dominant faces. One of

them is degenerate (triangle).

assertion. Hence it can be assumed that r is an inner point of D(α1, α2, . . . , αk). Suppose
first that there exists m, l such that I(Xm

1 , Xm
2 , Xm

3 ∧Y m) > I(X l
1, X

l
2, X

l
3∧Y l). Let us

define new weights: If i 6= m, i 6= l then let α
′

i = αi, and let α
′

m = αm + ε, α
′

l = αl − ε.
Then the height of D(α

′

1, α
′

2, . . . , α
′

k) is larger than the height of D(α1, α2, . . . , αk). If
ε is small then one of the points of D(α

′

1, α
′

2, . . . , α
′

k) will dominate r. We increase ε

until this property holds or until α
′

l becomes 0. Then, using continuity, an edge point
of D(α

′

1, α
′

2, . . . , α
′

k) will dominate r or α
′

l = 0 holds. This argument shows that it is
enough to restrict attention to the case when I(Xm

1 , Xm
2 , Xm

3 ∧Y m) = I(X l
1, X

l
2, X

l
3∧Y l)

for all m, l. This means that the dominant faces of sets R
[
W ; pXi

1
× pXi

2
× pXi

3

]
are in

the same plane. Using again the continuous change of D(α1, α2, . . . , αk): if αi → 1,
and αj → 0 if j 6= i, then D(α1, α2, . . . , αk) tends to D(R

[
W ; pXi

1
× pXi

2
× pXi

3

]
). As r

is not in C, it is not in D(R
[
W ; pXi

1
× pXi

2
× pXi

3

]
) for either i ∈ [k], hence there are

weights α∗1, α
∗
2, . . . , α

∗
k for which r is on an edge of D(α∗1, α

∗
2, . . . , α

∗
k). So it is a convex

combination of points lying on edges of same type. �

P r o o f . [Achievability of Theorem 6.1]
In order to prove the direct part it is enough to restrict attention to uninformed

L-block decoder and to maximal error.
Theorem 4.10 shows that the rate triples of C can be achieved in the totally asyn-

chronous case considering uninformed L = 5-block decoder with maximal error. It
follows that in the party asynchronous three senders case, C is also achievable consider-
ing uninformed L = 5-block decoder with maximal error with the same coding/decoding
method6.

6Actually L = 3-block decoder suffices in this partly asynchronous case because if a sender is split,
then the delays of the two virtual senders are equal to the delay of the original sender and the third
sender can remain unsplit.
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Hence, using Remark 6.2, it is enough to consider points which are not in C but
can be written as the convex combination of two or three rate triples from C whose
corresponding sets R [W ; pX1 × pX2 × pX3 ] have the same third distribution. Note that
the following part of this proof shows that L = 3-block decoder suffices. For the sake of
clarity we deal only with points which can be written as the convex combination of two
rate triples whose corresponding sets R [W ; pX1 × pX2 × pX3 ] have the same third dis-
tribution. The case of convex combination of three rate triples can be derived similarly.

Let (R1, R2, R3) be inR [W ; pX1 × pX2 × pX3 ] and (R̃1, R̃2, R̃3) inR
[
W ; pX̃1

× pX̃2
×

pX3 ]. Note that the third input distribution is the same in case of both convex poly-
topes. We want to show that α(R1, R2, R3) + (1 − α)(R̃1, R̃2, R̃3) can be achieved in
the partly asynchronous three senders case, α ∈ (0, 1). Using Lemma 6.5 it can be
assumed that (R1, R2, R3) and (R̃1, R̃2, R̃3) lie on edges of same type of dominant faces
D(R [W ; pX1 × pX2 × pX3 ]) and D(R

[
W ; pX̃1

× pX̃2
× pX3

]
) respectively. Without loss

of generality it can be assumed that this common type is S = {1, 3}.
Let W ′ and π be the 4-senders channel and the ordering in Lemma 6.4 for S = {1, 3}.

From the proof of Lemma 6.4 it can be seen that W ′ is the first sender split ver-
sion of W and π = (2, 1a, 3, 1b). As a consequence of Lemma 6.4 there exist R1a, R2a

with R1a + R2a = R1 and R̃1a, R̃2a with R̃1a + R̃2a = R̃1 and input distributions
pX1a , pX1b

, pX̃1a
, pX̃1b

such that (R1a, R1b, R2, R3) and (R̃1a, R̃1b, R̃2, R̃3) are those ver-
tices of D(R [W ′; pX1a

× pX1b
× pX2 × pX3 ]) and D(R

[
W ′; pX̃1a

× pX̃1b
× pX̃2

× pX3

]
)

respectively, which can be described by ordering π.
If a sender is split, then the delays of the two virtual senders are equal to the de-

lay of the original sender. Hence it is enough to prove that α(R1a, R1b, R2, R3) + (1 −
α)(R̃1a, R̃1b, R̃2, R̃3) can be achieved for channel W ′ when the delay system is the follow-
ing: D1a(n) = D1b(n) = D2(n) and D3(n) are independent and uniformly distributed
on the set {0, 1, . . . , n− 1}.

Note that the coordinates of the 4-tuple (R1a, R1b, R2, R3) can be described as follows:
R2 = I(X2 ∧ Y ), R1a = I(X1a ∧ Y |X2), R3 = I(X3 ∧ Y |X1a, X2) and R1b = I(X1b ∧
Y |X1a, X2, X3), where the joint distribution of (X1a, X1b, X2, X3, Y ) is determined
by the product input distribution pX1a × pX1b

× pX2 × pX3 and the channel transition
W ′. Similarly the coordinates of the 4-tuple (R̃1a, R̃1b, R̃2, R̃3) can be described by
the equations: R̃2 = I(X̃2 ∧ Ỹ ), R̃1a = I(X̃1a ∧ Ỹ |X̃2), R̃3 = I(X3 ∧ Ỹ |X̃1a, X̃2) and
R̃1b = I(X̃1b ∧ Ỹ |X̃1a, X̃2, X3), where the joint distribution of (X̃1a, X̃1b, X̃2, X3, Ỹ ) is
determined by the product input distribution pX̃1a

× pX̃1b
× pX̃2

× pX3 and the channel
transition W ′.

Random coding argument is used, assuming without any loss of generality that αn
and (1 − α)n are integers. The symbols of the random codebooks are independent but
not identically distributed random variables. The codewords of the virtual senders 1a,
1b, and sender 2 consist of two parts. The first αn symbols have distributions pX1a

,
pX1b

and pX2 respectively, while the last (1−α)n symbols have distributions pX̃1a
, pX̃1b

and pX̃2
respectively. The symbols of codewords of sender 3 are identically distributed

according to the distribution pX3 . We show that with this codebook structure it is
possible to achieve the rate tuple α(R1a, R1b, R2, R3) + (1 − α)(R̃1a, R̃1b, R̃2, R̃3), by
successive decoding with ordering (2, 1a, 3, 1b) for channel W ′ if senders 1a, 1b, 2 are
synchronized but sender 3 is not synchronized with them.
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Note that we do not assume that the receiver knows the delays.
First the receiver decodes the codewords of sender 2. The situation is now more

complicated than in case of identically distributed symbols. From the receiver’s point
of view the codewords of the second sender go through two different channels according
to the different symbols of the codewords of the other senders. From the fact that
the senders 1a, 1b, 2 are synchronized the receiver knows that the first αn consecutive
symbols of codewords go through the channel

W 2(y|x2) =
∑

x1a∈X1

∑
x1b∈X1

∑
x3∈X3

pX1a(x1a)pX1b
(x1b)pX3(x3)W ′(y|x1a, x1b, x2, x3), (67)

and the last (1− α)n consecutive symbols of codewords go through the channel

W̃ 2(y|x2) =
∑

x1a∈X1

∑
x1b∈X1

∑
x3∈X3

pX̃1a
(x1a)pX̃1b

(x1b)pX3(x3)W ′(y|x1a, x1b, x2, x3). (68)

The decoder does the following. As in Theorem 4.1 the n tuples (Y−n+1, . . . Y0), . . . ,
(Y0, . . . Yn−1) are examined. The receiver decodes the sth codeword as the 0th message
of sender 2 if there exists an n tuple of examined output (Y−n+i, . . . Yi−1) such that the
first αn symbols of the sth codewords are jointly typical with the first αn symbols of
(Y−n+i, . . . Yi−1) and the same is true for the last (1−α)n symbols according to channels
W 2 and W̃ 2 respectively, and there are no other codewords with this property. With the
shifted versions of this decoding technique the receiver also decodes the −2,−1, 1, 2th
messages of sender 2 to ensure the decoding of the 0’th message of sender 1b in the last
successive step. Note also that implicitly the receiver learns the delay of sender 2 (See
Remark 4.2).

In the following successive step the receiver decodes the −2,−1, 0, 1, 2th codewords
of sender 1a considering typicality according to the channels

W 1a(y, x2|x1a) =
∑

x1b∈X1

∑
x3∈X3

pX1b
(x1b)pX2(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3) (69)

and

W̃ 1a(y, x2|x1a) =
∑

x1b∈X1

∑
x3∈X3

pX̃1b
(x1b)pX̃2

(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3). (70)

In the third successive step the decoder deals with sender 3. Note that sender 3 is
not synchronized with senders 1a, 1b, 2, hence using the -2,-1,0,1,2’th codewords of the
senders 2 and 1a the receiver can decode (surely) just the −1, 0, 1th codewords of sender
3. It is also true in this case that the symbols of the codewords of sender 3 go through
two different channels:

W 3(y, x1a, x2|x3) =
∑

x1b∈X1

pX1a(x1a)pX1b
(x1b)pX2(x2)W ′(y|x1a, x1b, x2, x3) (71)

and

W̃ 3(y, x1a, x2|x3) =
∑

x1b∈X1

pX̃1a
(x1a)pX̃1b

(x1b)pX̃2
(x2)W ′(y|x1a, x1b, x2, x3). (72)
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But there is an essential difference: due to the assumption on the delays it is not always
true that the first part of the codewords goes through the channel W 3, it can be any
αn consecutive symbols of the codewords. Here the word consecutive is understood
modulo n. When the receiver is looking for typicality, n2 joint typicality examinations
are performed7 according to the n possible positions of the separating line of the two
possible channels and the possible codeword positions.

In the final successive step the receiver decodes the 0th codeword of sender 1b con-
sidering typicality according to the channels

W 1b(y, x1a, x2, x3|x1b) = pX1a(x1a)pX2(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3) (73)

and

W̃ 1b(y, x1a, x2, x3|x1b) = pX̃1a
(x1a)pX̃2

(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3). (74)

Following the calculation method of Theorem 4.1 and [8, Appendix C], it can be seen
that the rate tuple α(R1a, R1b, R2, R3)+(1−α)(R̃1a, R̃1b, R̃2, R̃3) is achievable with this
method. One part of the complete calculation can be found in Appendix C below. A full
formal proof would be rather long, but for readers familiar with [8] it does not appear
necessary. In particular, a genie added version of the model and the analysis of a larger
error event are necessary. �

7. SUMMARY

This paper provides a general framework for asynchronous multiple access channels,
in which the delays are random variables. Several model versions are treated, in the
considered cases they yield the same capacity region; moreover, this region depends on
the distribution of the delays only through its support (see Remark 2.14). A general
(not single-letter) converse is established, which leads to single-letter converses in the
considered special cases. This, together with achievability proofs relying on a combina-
tion of rate splitting and successive decoding with time sharing, leads to new capacity
regions between the familiar ones for the synchronous and totally asynchronous cases.
In particular, as the main result, a single letter characterization of the capacity region
is obtained for channels with two synchronous senders and a not synchronous one. For
further results we refer to [6].

8. APPENDIX A

The coding theorem for totally asynchronous MAC (with two senders) was first stated in
[15], for the case when receiver knows the delays. The theorem was stated for maximal
error but the converse actually proved even for average error. While the paper [15] is
hard to read, with the help of reviewers of a previous version of this paper we have
checked that the converse proof is correct, up to a minor gap pointed out after eq. (18)
which is first filled here. The achievability proof in [15] is not addressed here since
more accessible proofs have been published since then. In [11] the same capacity region

7Actually in the considered case (S = {1, 3}) n examinations are enough, but n2 are needed in case
of S = {1, 2}.
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was claimed to be achievable also when the receiver was uninformed. However, in the
delay-detection part of the proof in Appendix 1 of [11] there is a gap, in eq. (12b)
an independence is assumed that need not hold when the examined n-block of channel
input symbols consists of two parts, a codeword part and a sync sequence part. The
other part of the proof addresses decoding when the delay is already known. This part
is correct, giving rise to a valid achievability proof in the case of informed receiver.
Another such proof was given in [8] via rate splitting and successive decoding, for any
number of senders. Achievability in the uninformed receiver case has not been revisited
until recently. The mentioned error in [11] was corrected in [7]. Our approach to delay
detection differs from that of [11] and [7] not so much in not using a sync sequence but
rather in our relying on a technique from [9] to bound the probability of delay detection
error.

9. APPENDIX B – PROOF OF THEOREM 3.1.

Let S ⊂ [K]. We will derive a bound for R(S). As in Section 3, take a window of the
receiver consisting of N + 1 n-length blocks YN+1 = {Y0, Y1, . . . , Yn(N+1)−1} and the
codewords having index between 1 and N from all senders (they are fully covered by
this window). Recall that D denotes the delay vector and XB,i+DB

denotes the random
vector with components Xl,i+Dl

, l ∈ B where B ⊂ [K]. Denote by Xsw the 2K input
codewords which overlap with the beginning and end of YN+1. Then

NnR(S) (75)

=H(MN
S ) (76)

= I(MN
S ∧ M̂N

S ) + H(MN
S |M̂N

S ) (77)

≤ I(MN
S ∧ M̂N

S ) + Nnεn (78)

≤ I(XN
S ∧YN+1,Xsw,D) + Nnεn (79)

=H(XN
S |D)−H(XN

S |YN+1,D) + H(XN
S |YN+1,D)−H(XN

S |Xsw,YN+1,D) + Nnεn

(80)

≤H(XN
S |XN

Sc ,D)−H(XN
S |YN+1,XN

Sc ,D) + I(Xsw ∧XN
S |YN+1,D) + Nnεn (81)

= I(XN
S ∧YN+1|XN

Sc ,D) + Kn log |X |+ Nnεn (82)

=H(YN+1|XN
Sc ,D)−H(YN+1|XN

S ,XN
Sc ,D) + Kn log |X |+ Nnεn (83)

=H(YN+1|XN
Sc ,D) + Kn log |X |+ Nnεn −

N∑
j=0

n−1∑
i=0

H(Ynj+i|Ynj+i−1
1 ,XN

S ,XN
Sc ,D)

(84)

≤H(YN+1|XN
Sc ,D)−

N−1∑
j=1

n−1∑
i=0

H(Ynj+i|X[K],nj+i+D[K]
,D) + Kn log |X |+ Nnεn. (85)

Now introduce the a random variable Ỹi linked to the random variables X1,i⊕D1 ,X2,i⊕D2 ,
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. . . , XK,i⊕DK
by the channel W for all i ∈ {0, 1, . . . , n− 1}. Then (85) is continued as

≤
n−1∑
i=0

[
(N − 1) H(Ỹi|XSc,i⊕DSc ,D) +

n−1∑
i=0

H(Yi)

+
Nn+n−1∑

i=Nn

H(Yi)− (N − 1) H(Ỹi|X[K],i⊕D[K]
,D)

]
+ Kn log |X |+ Nnεn (86)

≤(N − 1)
n−1∑
i=0

I(XS,i⊕DS
∧ ỸQ|XSc,i⊕DSc |D) + 2n log |Y|+ Kn log |X |+ Nnεn. (87)

Dividing by Nn and going with N to infinity give

R(S) ≤ I(XS,Q⊕DS
∧ ỸQ|XSc,Q⊕DSc , Q,D) + εn.

This proves Theorem 3.1.

10. APPENDIX C – SOME CALCULATIONS TO THEOREM 6.1.

Let us address the coding/decoding task of sender 3. The random codebook of the
third sender consists of i.i.d symbols with distribution pX3 . This codebook contains
2(nαI(X3∧Y |X1a,X2)+(1−α)I(X3∧Ỹ |X̃1a,X̃2)−2δ) codewords. αn consecutive symbols of an
input codeword go through channel W 3, while (1 − α)n consecutive symbols of the
codeword go through channel W̃ 3. Here ’consecutive’ is understood modulo n. Let
T ⊂ {0, . . . , n − 1} denote the set of indices when W 3 was used. T will be called
separating pattern. Note that |T | = αn and T contains consecutive numbers. The
separating pattern depends on the relative delay D between the synchronized senders
1a, 1b, 2 and the unsynchronized sender 3. The decoder sees an output flow (note that
the symbols of senders 1a, 2 are also the part of the output). The decoder checks the
same output n tuples as the decoder of Section 2 when looking for joint typicality, but
when it examines an output n tuple Y n the decoder checks every possible separating
pattern. We say that the s’th codeword is typical in window Y n relative to separating
pattern T if parts of the codewords consisting of the coordinates in T of Xn(s) and Y n

are jointly typical according to channel W 3, and the same holds for the coordinates in
T c = {0, . . . , n − 1} \ T according to channel W̃ 3. If s is the only codeword which is
typical in all the examined output windows relative to all possible separation patterns,
then the decoder’s estimation is s for the 0’th message. It is crucial that the number of
joint typicality examinations is n2 (polynomial in n).

The error analysis can be done similarly as in Section 4a. Let us consider first the case
when the examined output window corresponds to a full codeword of sender 3, say of
the r’th one. Then in this window the r’th codeword will be typical relative to the true
separating pattern T with probability exponentially close to 1 by classical arguments.
First we show that no other codewords will be typical in this window. Let T

′
be any

separation pattern (T
′
= T is not excluded). We will estimate the probability that the

s 6= r’th codeword will be typical in this window relative to T
′
.

Let PT
′

X3
(xn, yn) be the joint distribution on X |T

′
|×Y |T

′
| induced by the |T ′ |th power

of pX3 and by the memoryless channel W 3. Let qT
′

X3
be the marginal of PT

′

X3
on Y |T

′
|.
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Similarly let P̃T
′

X3
(xn, yn) be the joint distribution on X |T

′
|×Y |T

′
| induced by the |T ′ |th

power of pX3 and by the memoryless channel W̃ 3. Let q̃T
′

X3
be the marginal of P̃T

′

X3
on

Y |T
′
|. Furthermore, if x is an n-length sequence, then xT

′

will denote the vector of
length |T ′ | consisting of those coordinates of x which are in |T ′ |. We have

Prcond

{
(X0(s), . . . , Xn−1(s), Y n) ∈ Sδ

n(T
′
)
}

(88)

=
∑

(xn(s),yn)∈Sδ
n(T ′ )

pn
X3

(xn(s))Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} (89)

=
∑

(xn(s),yn)∈Sδ
n(T ′ )

pn
X3

(xn(s))
qT

′

X3
(yT

′

)q̃T
′c

X3
(yT

′c
)

qT ′

X3
(yT ′

)q̃T ′c
X3

(yT ′c)

· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} (90)

≤
∑

(xn(s),yn)∈Sδ
n(T ′ )

2−nα(I(X3∧Y |X1a,X2)−δ)2−n(1−α)(I(X3∧Ỹ |X̃1a,X̃2)−δ)

·
PT

′

X3
(xT

′

(s),yT
′

)P̃T
′c

X3
(xT

′c
(s),yT

′c
)

qT ′

X3
(yT ′

)q̃T ′c
X3

(yT ′c)
· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)}

(91)

≤ 2−nα(I(X3∧Y |X1a,X2)−δ)2−n(1−α)(I(X3∧Ỹ |X̃1a,X̃2)−δ)

·
∑

(xn(s),yn)∈Sδ
n(T ′ )

PT
′

X3
(xT

′

(s)|yT
′

)P̃T
′c

X3
(xT

′c
(s)|yT

′c
)

· Prcond {Y n = yn|(X0(s), . . . , Xn−1(s)) = xn(s)} . (92)

As (X0(s), . . . , Xn−1(s)) is independent of Y n (since s 6= r),the sum in (92) is bounded
above by 1.

If the examined output window does not correspond to a full codeword but rather to
parts of two codewords, say of the r’th and l’th codewords. We may assume that r 6= l
as in the proof of Theorem 4.1. Then the argument works if s 6= l and s 6= r. If one of
r and l is equal to s then Gray’s summing technique works (as in (41), (42)).
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ysis, 1111 Egry József street 1, Budapest. Hungary.

e-mail: lfarkas@math.bme.hu
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