Kybernetika 50 no. 5, 838-847, 2014

A modified version of explicit Runge-Kutta methods for energy-preserving

Guang-Da HuDOI: 10.14736/kyb-2014-5-0838


In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments are provided to illustrate the effectiveness of the modified Runge-Kutta method.


energy-preserving, explicit Runge-Kutta methods, gradient


65L05, 65L07


  1. L. Brugnano, M. Calvo, J. I. Montijano and L. R\^{a}ndez: Energy-preserving methods for Poisson systems. J. Comput. Appl. Math. 236 (2012), 3890-3904.   CrossRef
  2. L. Brugnano, F. Iavernaro and D. Trigiante: Hamiltonian boundary value methods (energy-preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5 (2010), 1-2, 17-37.   CrossRef
  3. M. Calvo, M. P. Laburta, J. I. Montijano and L. R\^{a}ndez: Error growth in numerical integration of periodic orbits. Math. Comput. Simul. 81 (2011), 2646-2661.   CrossRef
  4. M. Calvo, A. Iserles and A. Zanna: Numerical solution of isospectral flows. Math. Comput. 66 (1997), 1461-1486.   CrossRef
  5. G. J. Cooper: Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987), 1-13.   CrossRef
  6. N. Del Buono and C. Mastroserio: Explicit methods based on a class of four stage Runge-Kutta methods for preserving quadratic laws. J. Comput. Appl. Math. 140 (2002), 231-243.   CrossRef
  7. D. F. Griffiths and D. J. Higham: Numerical Methods for Ordinary Differential Equations. Springer-Verlag, London 2010.   CrossRef
  8. E. Hairer, C. Lubich and G. Wanner: Geometric Numerical Integration. Springer-Verlag, Berlin 2002.   CrossRef
  9. H. K. Khalil: Nonlinear Systems. Third Edition. Prentice Hall, Upper Saddle River, NJ 2002.   CrossRef
  10. T. Lee, M. Leok and N. H. McClamroch: Lie variational integrators for the full body problem in orbital methanics. Celest. Meth. Dyn. Astr. 98 (2007), 121-144.   CrossRef
  11. S. Li: Introduction to Classical Mechanics. (In Chinese.) University of Science and Technology of China, Hefei 2007.   CrossRef
  12. L. F. Shampine: Conservation laws and numerical solution of ODEs. Comput. Math. Appl. 12B (1986), 1287-1296.   CrossRef