Kybernetika 50 no. 5, 786-803, 2014

Dynamic approach to optimum synthesis of a four-bar mechanism using a swarm intelligence algorithm

Edgar A. Portilla-Flores, Maria B. Calva-Yáñez, Miguel G. Villarreal-Cervantes, Paola A. Niño Suárez and Gabriel Sepúlveda-CervantesDOI: 10.14736/kyb-2014-5-0786


This paper presents a dynamic approach to the synthesis of a crank-rocker four-bar mechanism, that is obtained by an optimization problem and its solution using the swarm intelligence algorithm called Modified-Artificial Bee Colony (M-ABC). The proposed dynamic approach states a mono-objective dynamic optimization problem (MODOP), in order to obtain a set of optimal parameters of the system. In this MODOP, the kinematic and dynamic models of the whole system are consider as well as a set of constraints including a dynamic constraint. The M-ABC algorithm is adapted to solve the optimization problem by adding a suitable constraint-handling mechanism that is able to incorporate the kinematic and dynamic constraints of the system. A set of independent computational runs were carried out in order to validate the dynamic approach. An analysis from the mechanical and computational point of view is presented, based on the obtained results. From the analysis of the simulation and its results, it is shown that the solutions for the proposed algorithm lead to a more suitable design based on the dynamic approach.


synthesis, four-bar mechanism, M-ABC algorithm


93E12, 62A10


  1. S. K. Acharyya and M. Mandal: Performance of EAs for four-bar linkage synthesis. Mechanism and Machine Theory 44 (2009) 1784-1794.   CrossRef
  2. J. Chiasson: Modeling and High Performance Control of Electric Machines Wiley-IEE Press, 2005   CrossRef
  3. K. Deb: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Engrg. 186 (2000), 2/4, 311-338.   CrossRef
  4. M. Dorigo, G. D. Caro and L. M. Gambardella: Ant algorithms for discrete optimization. Artif. Life 3 (1999), 137-172.   CrossRef
  5. F. Gao, F. Fei, Q. Xu, Y. Deng, Y. Qi and I. Balasingham: A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems. Appl. Math. Comput. 219 (2012), 2, 552-568.   CrossRef
  6. J. Hrones and G. Nelson: Analysis of Four Bar Linkage. MIT Press and Wiley 1951.   CrossRef
  7. D. Karaboga and B. Basturk: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 3 (2007), 3, 459-471.   CrossRef
  8. N. Karaboga and F. Latifoglu: Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm. Engrg. Appl. Artif. Intell. 26 (2013), 2, 677-684.   CrossRef
  9. J. Kennedy and R. C. Eberhart: Particle swarm optimization. In: IEEE International Conference on Neural Networks 1995, pp. 1942-1948.   CrossRef
  10. M. Khorshidi, M. Soheilypour, M. Peyro, A. Atai and M. Shariat Panahi: Optimal design of four-bar mechanisms using a hybrid multi-objective GA with adaptive local search. Mech. Mach. Theory 46 (2011), 10, 1453-1465.   CrossRef
  11. S. Krishnamurty and D. A. Turcic: Optimal synthesis of mechanisms using nonlinear goal programming techniques. Mech. Mach. Theory 27 (1992), 5, 599-612.   CrossRef
  12. M. A. Laribi, A. Mlike, L. Romdhane and S. Zeghloul: A combined genetic algorithm-fuzzy logic method (GA-FL) in mechanism synthesis. Mech. Mach. Theory 39 (2004), 717-735.   CrossRef
  13. W. Lin: A GADE hybrid evolutionary algorithm for path synthesis of four-bar linkage. Mech. Mach. Theory 45 (2010), 1096-1107.   CrossRef
  14. J. W. Ma, G. L. Zhang and H. Xie: The optimization of feed-forward neural networks based on artificial fish-swarm algorithm. Comput. Appl. 24 (2004), 21-23.   CrossRef
  15. E. Mezura-Montes and O. Cetina-Domínguez: Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput. 218 (2012), 10943-10973.   CrossRef
  16. E. Mezura-Montes, E. A. Portilla-Flores and B. Hernández Ocaña: Optimum synthesis of a four-bar mechanism using the modified bacterial foraging algorithm. Int. J. Systems Sci. 45 (2014), 5, 1080-1100.   CrossRef
  17. R. Norton: Diseño de Maquinaria, una introducción a la síntesis y al análisis de mecanismos y máquinas (in Spanish). McGraw Hill, México 1997.   CrossRef
  18. K. M. Passino: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. (2002) 52-67.   CrossRef
  19. S. Samanta and S. Chakraborty: Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Engrg. Appl. Artif. Intell. 24 (2011), 6, 946-957.   CrossRef
  20. J. Shigley and J. Uicker: Theory of Machines and Mechanisms. McGraw Hill, México 1995.   CrossRef