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IMPROVED INTERVAL DEA MODELS
WITH COMMON WEIGHT

Jiasen Sun, Yajun Miao, Jie Wu, Lianbiao Cui and Runyang Zhong

The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies
of a set of decision making units (DMUs) with exact values. But it cannot handle imprecise
data. Imprecise data, for example, can be expressed in the form of the interval data or mixtures
of interval data and exact data. In order to solve this problem, this study proposes three new
interval DEA models from different points of view. Two examples are presented to illustrate
and validate these models.
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1. INTRODUCTION

Data envelopment analysis (DEA), as a very useful management and decision tool, is
a methodology for measuring the relative efficiencies of a set of decision making units
(DMUs) with multiple inputs and multiple outputs [3]. It has been widely applied
in various performance evaluation cases, such as the performance evaluation of R&D
[4], evaluating and selecting investments in industrial robots [2], assessing computer
numerical control machines [14], measuring production and marketing efficiency [15],
evaluating the preferential voting system [1], the performance of medical centers [12],
and so on. The original DEA models assume that all the data of inputs and outputs are
known exactly. However, this assumption may not always be true. Due to the existence
of uncertainty, the data may be given in the form of the interval data. Therefore, how
to assess the efficiencies of DMUs with interval data is still worth researching.

The problem of the evaluation of DMUs with interval data has attracted attentions
of some scholars. For example, Cooper et al. [5] may be the first to study the DEA
models with imprecise data, and their model is called imprecise DEA (IDEA). It can be
transformed into a linear programming problem from a nonlinear programming problem
through a series of variable alternations and scale transformations. Kim et al. [11] also
proposed a method through variable alternation and analogous scale transformation.
But they did not consider the situation of interval data. Lee et al. [13] pointed out that
IDEA model was complicated due to great numbers of variable alternations and data
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transformations. In the IDEA model, the numbers of decision variables increase from
(m + s) to (m + s)× n, where m, s and n represent the numbers of inputs, outputs and
DMUs, respectively. This may lead to a rapid increase in computation burden. Aiming
at this problem, Despotis and Smirlis [6] developed two approaches for dealing with
imprecise data. Their approaches were linear and can be used to obtain the lower and
upper bound of the efficiency of each DMU. Based on this idea, Haghighat and Khorram
[7] studied the problem of numbers of efficient DMUs. Jahanshahloo et al. [8, 9, 10]
further extended this idea considering return to scale, sensitivity and stability analysis
and so on. However, Wang et al. [16] pointed out that the efficiencies calculated by the
models of Despotis and Smirlis were lack of the comparability. The reason is that two
different production frontiers have been adopted when efficiency was measured. In order
to deal with such an uncertain situation, they developed a new pair of DEA models to
obtain the interval efficiency of each DMU. Then the interval efficiencies of all DMUs
were ranked by a minimax regret-based approach.

It should be pointed out that the above models on dealing with interval data have a
defect that two sets of weights are used to obtain the interval efficiency of each DMU,
which may be unreasonable. The purpose of this paper is to solve this problem. Three
different new models from different variations are suggested. Each model can obtain
the efficiencies of the interval data with only a set of weights. The rest of the paper is
organized as follows. Section 2 introduces the interval DEA models. Section 3 presents
three new methods from different variations. Two illustrative examples are presented in
Section 4. Conclusions and further remarks are given in Section 5.

2. INTERVAL DEA MODELS

Assume there are n DMUs to be evaluated. Each DMU has s different outputs and m
different inputs, denoted as yrj and xij , respectively. Due to the uncertainty, only their
bounded interval [xl

ij , x
u
ij ] and [yl

rj , y
u
rj ], with xl

ij > 0 and yl
rj > 0, are known. In order

to measure the efficiencies of the DMUs with interval data, Wang et al. [16] proposed
the following two linear formulations to generate the bounded interval [θl

d, θ
u
d ].

max θl
d =

s∑
r=1

µrdy
l
rd

s.t.

m∑
i=1

ωidx
l
id −

s∑
r=1

µrdy
u
rd ≥ 0, j = 1, 2, . . . , n

m∑
i=1

ωidx
u
id = 1

ωid, µrd ≥ ε, ∀id, rd

(1)

and

max θu
d =

s∑
r=1

µrdy
u
rd

s.t.

m∑
i=1

ωidx
l
id −

s∑
r=1

µrdy
u
rd ≥ 0, j = 1, 2, . . . , n

(2)
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m∑
i=1

ωidx
l
id = 1

ωid, µrd ≥ ε, ∀ id, rd.

In the above two models, DMUd is under evaluation, ωid and µrd are the weights
assigned to the inputs and outputs respectively. θl

d is the lower efficiency for DMUd, θu
d

is the upper efficiency. ε is the non-Archimedean infinitesimal.

3. NEW INTERVAL DEA MODELS

The main defect of the above models is that θl
d and θu

d of DMUd are calculated by two
different evaluation criterions. In other words, two sets of weights are used to obtain
the lower and upper efficiencies for each DMU. Thus, the range of interval efficiency of
each DMU will be larger than the reality. In order to overcome this problem, three new
improved interval DEA models are proposed in this section.

3.1. New interval DEA models considering preference

If the decision maker considers that the lower bound of interval efficiency is more im-
portant, it should be calculated firstly by model (1). Then the upper bound of interval
efficiency can be solved by model (3) as follows

max Eu
d =

s∑
r=1

µrdy
u
rd

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

θl
d ∗

s∑
r=1

µrdy
l
rd −

m∑
i=1

ωidx
u
id = 0

m∑
i=1

ωidx
l
id = 1

ωid, µrd ≥ ε, ∀ id, rd.

(3)

Note that in the model (3), θl
d is the lower bound of interval efficiency of model (1).

This model aims to maximize the upper bound of interval efficiency when the efficiency
of lower bound has been determined. Using these models preferring lower bound (model
(1) and model (3)), bounded interval [θl

d, E
u
d ] of DMUd can be generated.

In a similar manner, if the decision maker considers the upper bound of interval
efficiency is more important, the upper bound of interval efficiency of each DMU could
be obtained firstly by model (2). Then the lower bound of interval efficiency can be
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solved by model (4) as follows:

max El
d =

s∑
r=1

µrdy
l
rd

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

θu
d ∗

s∑
r=1

µrdy
u
rd −

m∑
i=1

ωidx
l
id = 0

m∑
i=1

ωidx
u
id = 1

ωid, µrd ≥ ε, ∀ id, rd.

(4)

In model (4), θu
d is the upper bound of interval efficiency of DMUd, which can be

obtained by model (2). This model is to maximize the lower bound of interval efficiency
when upper bound has obtained the maximum efficiency. Using this preference models
(model (2) and model (4)), bounded interval [El

d, θ
u
d ] of DMUd can be generated. With

regard to these models, we have the following theorems.

Theorem 3.1. If θl∗

d and Eu∗

d are optimum objective function values of models (1) and
(3), respectively, then θl∗

d ≤ Eu∗

d .

P r o o f . Comparing models (1) and (3), we know that the optimal weights of these two
models are the same. Assume that ω∗

id and µ∗
rd are optimal solutions of the two models.

For xu
id ≥ xl

id and yu
rd ≥ yl

rd, then
∑m

i=1 ω∗
idx

u
id ≥

∑m
i=1 ω∗

idx
l
id and

∑m
r=1 µ∗

rdy
u
rd ≥∑s

r=1 µ∗
rdy

l
rd. Therefore, we have∑s

r=1 µ∗
rdy

l
rd∑m

i=1 ω∗
idx

u
id

≤
∑s

r=1 µ∗
rdy

u
rd∑m

i=1 ω∗
idx

l
id

,

namely, θl∗

d ≤ Eu∗

d . �

Theorem 3.2. If El∗

d and θl∗

d are optimum objective function values of models (4) and
(1), respectively, then El∗

d ≤ θl∗

d .

P r o o f . Comparing models (1) and (4), it is noted that the feasible regions of model
(1) contains the feasible region of model (4), and two objective functions are the same.
Let ω1∗

id and µ1∗
rd be optimal solutions of model (1), and ω2∗

id and µ2∗
rd be optimal solutions

of model (4). Therefore, we have∑s
r=1 µ2∗

rdy
l
rd∑m

i=1 ω2∗
id xu

id

≤
∑s

r=1 µ1∗
rdy

l
rd∑m

i=1 ω1∗
id xu

id

,

namely, El∗

d ≤ θl∗

d . �
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Theorem 3.3. If θu∗

d and El∗

d are optimum objective function values of models (2) and
(4), respectively, then El∗

d ≤ θu∗

d .

P r o o f . The proof is similar to that in theorem 3.1, and it is omitted here. �

Theorem 3.4. If Eu∗

d and θu∗

d are optimum objective function values of models (3) and
(2), respectively, then Eu∗

d ≤ θu∗

d .

P r o o f . The proof is similar to that in theorem 3.2, and it is omitted here. �

3.2. New interval DEA models without preferences

If the decision maker considers that the lower and upper bound of interval efficiency
are equally important, then the above two models are not adequate. An alternative
approach to measuring the lower and upper bound of interval efficiency is shown as
follows

max Fd =

s∑
r=1

µrdy
u
rd

m∑
i=1

ωidxl
id

∗

s∑
r=1

µrdy
l
rd

m∑
i=1

ωidxu
id

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

ωid, µrd ≥ ε, ∀ id, rd.

(5)

Theorem 3.5. The feasible set S of model (5) is compact and non-empty convex.

P r o o f . Since the feasible set S is bounded and closed in Euclidean space, then S is
compact. Next we will prove that S is also convex.

It is obvious that S is non-empty. Now, assume both (ω′
1d, . . . , ω

′
md, µ

′
1d, . . . , µ

′
md)

and (ω∗
1d, . . . , ω

∗
md, µ

∗
1d, . . . , µ

∗
md) ∈ S. For any β ∈ [0, 1], we have βω′

id + (1− β)ω∗
id ≥ ε

and βµ′
rd + (1− β)µ∗

rd ≥ ε. Then,

m∑
i=1

[βω′
id + (1− β)ω∗

id]x
l
ij = β

m∑
i=1

ω′
idx

l
ij + (1− β)

m∑
i=1

ω∗
idx

l
ij

≥ β

s∑
r=1

µ′
rdy

u
rj + (1− β)

s∑
r=1

µ∗
rdy

u
rj

=
s∑

r=1

[βµ′
rd + (1− β)µ∗

rd]y
l
rj .

(6)

From (6), we know that [βω′
id + (1− β)ω∗

id, βµ′
rd + (1− β)µ∗

rd] ∈ S. Consequently S
is a convex set. �
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Theorem 3.6. For any DMUd, F ∗
d ≤ θl∗

d × θu∗

d , where F ∗
d s the (maximum) optimal

value of model (5), θl∗

d and θu∗

d are the (maximum) optimal values of model (1) and (2),
respectively.

P r o o f . Models (1) and (2) can be changed into the following two regular DEA models
(7) and (8), respectively.

max θl
d =

s∑
r=1

µrdy
l
rd

m∑
i=1

ωidxu
id

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

ωid, µrd ≥ ε, ∀id, rd

(7)

and

max θu
d =

s∑
r=1

µrdy
u
rd

m∑
i=1

ωidxl
id

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

ωid, µrd ≥ ε, ∀id, rd.

(8)

By comparing the constraints in models (5), (7) and (8), we note that the feasible
regions of three models are the same, objective functions are different. The objective
function of model (5) includes the objective functions of model (7) and (8). Therefore,
we have ∑s

r=1 µ∗
rdy

u
rd∑m

i=1 ω∗
idx

l
id

≤ θu
d and

∑s
r=1 µ∗

rdy
l
rd∑m

i=1 ω∗
idx

u
id

≤ θl
d

(ω∗
id and µ∗

rd are optimal solutions of model (5)), and furthermore F ∗
d ≤ θl∗

d × θu∗

d .
Model (5) is a nonlinear programming, now let us describe how to calculate model

(5). We know that

Eu∗

d ≤
∑s

r=1 µrdy
u
rd∑m

i=1 ωidxl
id

≤ θu∗

d

(see the above Theorems), Eu∗

d and θu∗

d are the optimum objective function values of
models (3) and (2), respectively. Thus, model (5) can be turned into following program-
ming:
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max k ×

s∑
r=1

µrdy
l
rd

m∑
i=1

ωidxu
id

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

s∑
r=1

µrdy
u
rd

m∑
i=1

ωidxl
id

= k

Eu∗

d ≤ k ≤ θu∗

d

ωid, µrd ≥ ε, ∀ id, rd.

(9)

We point out that the DEA model (9) is equivalent to the following linear program.

max ek
d = k ×

s∑
r=1

µrdy
l
rd

s.t.

m∑
i=1

ωidx
l
ij −

s∑
r=1

µrdy
u
rj ≥ 0, j = 1, 2, . . . , n

m∑
i=1

ωidx
u
id = 1

k ∗
m∑

i=1

ωidx
l
id −

s∑
r=1

µrdy
u
rd = 0

Eu∗

d ≤ k ≤ θu∗

d

ωid, µrd ≥ ε, ∀ id, rd.

(10)

In the model (10), k is treated as a parameter within [Eu∗

d , θu∗

d ]. As a result, model
(10) can be solved as a parametric linear program according to searching over the possible
k values within [Eu∗

d , θu∗

d ]. First, we set the initial value for k as the lower bound
Eu∗

d , and calculate the corresponding linear program. Then we begin to increase k
by a very small positive number δ = 0.0001 (for example) for each step q (namely,
kq = Eu∗

d + δq, q = 1, 2, . . .) until the upper bound θu∗

d is reached. When solving each
linear program of model (10) corresponding to kq, we will obtain an optimal objective
function value and a set of weights. After solving out all kq, we would get a set of
objective function values. The maximum value and the corresponding weights are the
optimal value and optimal solution of the model (10).

Set that ω∗
id and µ∗

rd are optimal solutions of model (10), which are also the optimal
solutions of model (5). So in the interval DEA models without preferences, the lower
bound of interval efficiency of DMUd is∑s

r=1 µ∗
rdy

l
rd∑m

i=1 ω∗
idx

u
id

,
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and the upper bound of interval efficiency is∑s
r=1 µ∗

rdy
u
rd∑m

i=1 ω∗
idx

l
id

.

�

4. ILLUSTRATIONS

Two numerical examples are presented to illustrate the proposed methods. The data of
the examples are in Tables 1 and 4, respectively.

4.1. A simple numerical example

A simple numerical example is shown in Table 1, which is used to illustrate the proposed
method. There are 10 DMUs and each DMU has 2 inputs (X1 and X2) and 2 outputs
(Y1 and Y2). The data of inputs and outputs are all given in the form of the interval.

DMU X1 X2 Y1 Y2

1 [1,2] [2,3] [23,24] [22,24]
2 [2,3] [3,4] [20,22] [20,21]
3 [3,4] [5,6] [18,21] [19,19]
4 [3,4] [5,7] [16,17] [15,18]
5 [3,5] [5,7] [14,17] [13,15]
6 [4,5] [6,7] [12,15] [10,14]
7 [4,5] [7,8] [10,15] [9,14]
8 [4,6] [8,8] [9,14] [8,13]
9 [5,6] [8,9] [9,14] [8,13]
10 [5,7] [8,9] [8,12] [7,13]

Tab. 1. A simple numerical example.

The interval efficiency results of all DMUs considering preferences can be calculated
by model (3) and (4). Next, we describe how to use model (5) to get interval efficiency
of DMUs without preferences. Take DMU10 for example, through model (2) and model
(3), the k values are from range of 0.125 to 0.135. Then we begin to increase k by a very
small positive number δ = 0.0001 for each step q (namely, kq = 0.125 + 0.0001 ∗ q, q =
1, 2, . . .) until 0.135 is reached. After solving out all kq, we would get a set of objective
function values. The maximum value and the corresponding weights are 0.0093 and
(0,0.1111,0.0093,0), respectively. By this set of weight, the lower and upper bound of
interval efficiency of DMU10 are 0.074 and 0.125, respectively. Similarly, The interval
efficiencies of other DMUs can be calculated. Table 2 reports the interval efficiency
results of all DMUs from three models. From the table, it is found that the lower
efficiencies of model (3) are all not less than ones of model (4). The upper efficiencies
of model (4) are all not less than ones of model (3).

Table 3 shows the final efficiency results of all DMUs from three models. In this
paper, the linear weighting method is used to aggregate the lower and upper efficiencies
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DMU Model 3 Model 4 Model 5
1 [0.639,1.000] [0.639,1.000] [0.639,1.000]
2 [0.417,0.611] [0.417,0.611] [0.417,0.611]
3 [0.264,0.317] [0.250,0.350] [0.250,0.350]
4 [0.191,0.283] [0.179,0.300] [0.191,0.283]
5 [0.167,0.283] [0.167,0.283] [0.167,0.283]
6 [0.143,0.208] [0.143,0.208] [0.143,0.208]
7 [0.104,0.179] [0.104,0.179] [0.104,0.179]
8 [0.094,0.146] [0.094,0.146] [0.094,0.146]
9 [0.083,0.146] [0.083,0.146] [0.083,0.146]
10 [0.074,0.125] [0.065,0.135] [0.074,0.125]

Tab. 2. The interval efficiency results of all DMUs from three models.

for obtaining the final efficiency for each DMU. If the decision maker considers that the
lower/upper bound of interval efficiency is more important, a large weight should be
assigned to it. Because model (3) prefers the lower bound, we give the weight 0.6 for
lower efficiency and 0.4 for upper efficiency. Model (4) prefers the upper bound, and
then the weight 0.6 is given to upper efficiency and 0.4 for lower efficiency. Model (5)
does not have preferences, and then the weights for lower and upper efficiencies are both
0.5. From Table 3, we find that the final efficiency of each DMU obtained by model
(4) is larger than its efficiency obtained by model (3) or model (5). The finall efficiency
of each DMU obtained by the model (3) is smaller than the one obtained by other two
models. These reveal that interval DEA models considering different preferences will
obtain different efficiency results. Another finding is that the efficiency scores decrease
gradually from DMU1 to DMU10. Through analyzing the data of Table 1, it is concluded
that a DMU will get a higher overall efficiency if it produces more outputs with fewer
inputs.

DMU Model 3 Model 4 Model 5
1 0.783 0.856 0.820
2 0.495 0.533 0.514
3 0.285 0.310 0.300
4 0.228 0.251 0.237
5 0.213 0.237 0.225
6 0.169 0.182 0.176
7 0.134 0.149 0.141
8 0.115 0.125 0.120
9 0.108 0.121 0.114
10 0.095 0.107 0.100

Tab. 3. The efficiency results of all DMUs from three models.
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MI input output
Capital (104) Labor (104) Gross Output Value (104)

1 [56.4,62.2] [67.4,74.3] [80.7,86.6]
2 [61.4,67.0] [68.6,74.2] [91.8,98.5]
3 [76.2,79.8] [76.2,80.6] [111.7,119.6]
4 [86.2,93.7] [78.0,84.6] [120.6,126.1]
5 [101.7,108.3] [80.0,87.7] [138.1,146.3]
6 [116.4,126.8] [80.7,88.9] [149.8,165.3]
7 [173.2,181.6] [81.8,89.6] [170.2,181.3]

Tab. 4. The data of seven manufacturing industries.

4.2. Seven manufacturing industries

An example of manufacturing industries (MIs) from Wang et al. [16] is discussed in this
section. The data shown in Table 4 are all not known exactly. There are seven MIs,
and each MI is described by two inputs and one output. After obtaining the interval
efficiency of each DMU through three proposed models, linear weighting method is used
to aggregate the lower and upper efficiencies for obtaining the final efficiency. The
aggregating weights of the lower and upper efficiencies are h1 and h2, and h1 + h2 = 1.

MI 1 2 3 4 5 6 7

Model 3

h1 = 0.9 h2 = 0.1 0.824 0.87 0.901 0.857 0.875 0.847 0.879
rank 7 4 1 5 3 6 2

h1 = 0.8 h2 = 0.2 0.838 0.885 0.912 0.869 0.887 0.864 0.893
rank 7 4 1 5 3 6 2

h1 = 0.7 h2 = 0.3 0.853 0.899 0.9231 0.88 0.899 0.881 0.906
rank 7 3 1 6 4 5 2

h1 = 0.6 h2 = 0.4 0.869 0.913 0.934 0.892 0.911 0.898 0.92
rank 7 3 1 6 4 5 2

Model 5 h1 = 0.5 h2 = 0.5 0.883 0.928 0.945 0.903 0.926 0.915 0.933
rank 7 3 1 6 4 5 2

Model 4

h1 = 0.4 h2 = 0.6 0.898 0.942 0.956 0.915 0.937 0.932 0.946
rank 7 3 1 6 4 5 2

h1 = 0.3 h2 = 0.7 0.913 0.957 0.967 0.926 0.948 0.949 0.96
rank 7 3 1 6 5 4 2

h1 = 0.2 h2 = 0.8 0.927 0.971 0.978 0.938 0.959 0.966 0.973
rank 7 3 1 6 5 4 2

h1 = 0.1 h2 = 0.9 0.942 0.986 0.989 0.949 0.97 0.983 0.987
rank 7 3 1 6 5 4 2

Tab. 5. The final efficiencies and ranking results of all MIs.

Table 5 shows the interval efficiency results of all MIs from three models. Because
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model (3) prefers the lower bound, the larger weight is given to lower bound (from 0.9 to
0.6). As regards the interval results of model (4), the larger weight is assigned to upper
bound. The weight for upper bound is set from 0.6 to 0.9. Model (5) considers that the
lower and upper bounds of interval efficiency are equally important, and then weights
of lower and upper bounds are both 0.5. From the table, we can find that rankings of
all DMUs are the same when the h1 decreases from 0.7 to 0.4 and h2 increases from
0.3 to 0.6. When h1 is 0.8 or 0.9, the orders of DMU2, DMU4, DMU5 and DMU6 have
changed. When h2 is 0.7 or 0.8, or 0.9, the result is also different. The results of this
table reveal that the different preferences are given to the lower or upper bound of the
interval, the final ranking results are not the same. If the decision maker would like
to evaluate efficiencies of MIs with interval data, the first thing is to determine which
bound (lower or upper) is more important.

5. CONCLUSIONS

In many practical examples, the outputs and inputs of DMUs are not known exactly, for
example, given as intervals. The existing classical DEA method is not able to rank these
DMUs. In order to solve this problem, Wang et al. [16] proposed a new pair of DEA
models for obtaining the interval efficiency of each DMU. However, these models have
a disadvantage that two sets of weights are used to obtain the interval efficiency, which
may be unreasonable. In this work we further extend these models. Three new models
are constructed from different points of view. Two numerical examples are presented to
illustrate and validate these models finally.

This paper has made two contributions. On the one hand, this paper explores three
new models in order to obtain a common set of weights for the lower and upper bound.
On the other hand, the results of the example reveal that the different preferences on
the lower or upper bound of interval may have different efficiency and ranking results.
The methods in this paper can also be further expanded. For example, imprecise data
considered in this paper are given in the form of the interval data. In many real examples,
some data are missing. How to construct the method could be studied in the future. In
additional, the imprecise data may be uniformly distributed between lower and upper
bound, which is not considered in this paper. How to extend the proposed models to
deal with this problem is difficult but worth researching.

(Received July 14, 2013)
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