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HYPOTHESES TESTING WITH THE TWO-PARAMETER
PARETO DISTRIBUTION ON THE BASIS OF RECORDS
IN FUZZY ENVIRONMENT

Ali Reza Saeidi, Mohammad Ghasem Akbari and Mahdi Doostparast

In problems of testing statistical hypotheses, we may be confronted with fuzzy concepts.
There are also situations in which the available data are record statistics such as weather and
sports. In this paper, we consider the problem of testing fuzzy hypotheses on the basis of
records. Pareto distribution is investigated in more details since it is used in applications
including economic and life testing analysis. For illustrative proposes, a real data set on annual
wage is analyzed using the results obtained.
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1. INTRODUCTION

Statistical analysis, in the traditional form, is based on some concepts such as data,
random variable, point estimation, hypotheses and parameter. There are many different
situations in which the mentioned concepts are imprecise, and the theory of fuzzy sets
is a tool for formulation and analysis of imprecise concepts. Therefore, the hypotheses
testing with fuzzy data can be important. For more details, see Akbari and Rezaei [2]
and Taheri and Behboodian [26].

The problem of statistical inference in fuzzy environments has been developed in
different approaches. For example, Delgado et al. [12] considered the problem of fuzzy
hypotheses testing with crisp data. Arnold [8] and Arnold [9] presented an approach to
test fuzzily formulated hypotheses, in which he considered the fuzzy constraints on Types
I and II errors. Holena [19] considered a fuzzy generalization of a sophisticated approach
to exploratory data analysis. Holena [20] presented a different approach motivated by the
observational logic and its success in automated knowledge discovery. Neyman–Pearson
lemma for fuzzy hypotheses testing and Neyman–Pearson lemma for fuzzy hypotheses
testing with vague data (and crisp density function) were given by Torabi et al. [27]
and Taheri and Behboodian [26]. Filzmoser and Viertl [16] present an approach for
statistical testing on the basis of fuzzy values by introducing the fuzzy p−value. Some
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methods for statistical inference with fuzzy data were reviewed by Viertl [28]. Buckley
[10] and Buckley [11] studied the problem of statistical inference in fuzzy environments.
Taheri and Arefi [25] exhibited an approach for testing fuzzy hypotheses based on fuzzy
test statistics. Parchami et al. [23] considered the problem of testing hypotheses, when
the hypotheses are fuzzy based on crisp data. The bootstrap, using fuzzy data, is
developed in different approaches. Montenegro et al. [22] have presented an asymptotic
one-sample procedure. Körner’s asymptotic development [21] concerned general fuzzy
random variables. Gonzalez et al. [17] showed that the one-sample method for testing
the mean of a fuzzy random variable can be extended to general ones. Akbari and
Rezaei [3] described a bootstrap method for computing the variance designed directly
for hypothesis testing with fuzzy data based on Yao-Wu signed distance [29]. Akbari et
al. [4] studied statistical inference about the variance of fuzzy random variables based
on L2-metric. Akbari and Rezaei [5] investigated bootstrap testing fuzzy hypotheses
based on fuzzy statistics. For a nonparametric approach for testing fuzzy hypotheses,
see Akbari and Arefi [1].

In this paper, we consider the problem of fuzzy testing hypotheses when the parent
population follows the two-parameter Pareto distribution. Therefore the rest of this
paper is organized as follows. In Section 2, some preliminaries are given. In Section 3,
a new definition for fuzzy probability density function (FPDF) is proposed. Also, some
results on the basis of the new FPDF are also proposed in Section 3. A review on record-
based Pareto analysis is presented in Section 4. For illustrative purposes, in Section 5,
a real data set on annual wage, due to Dyer [15], is analyzed using the results obtained.

2. FUZZY HYPOTHESES

Testing statistical hypotheses is on of the most important topics in statistical inference.
A statistical hypothesis is an assertion about the probability distribution of one or more
random variable(s). It is usually assumed that the hypotheses for which we plan to
test are well-defined. Sometimes, the statisticians use to make decision procedure in
an unrealistic manner. For example, suppose that θ is the proportion of a population
which have a disease. We take a random sample of the elements and study the sample
for having some idea about θ. In crisp hypothesis testing, one may use the hypotheses of
the form: H0 : θ = 0.2 versus H1 : θ 6= 0.2 or H0 : θ ≤ 0.2 versus H0 : θ > 0.2. However,
it is sometimes of interest to test more realistic hypotheses. For example, here, more
realistic expressions about θ may be as: “small”, “very small”, “large”, “approximately
0.2”, “essentially larger” and so on. Therefore, more realistic formulations of the hy-
potheses are H0: “θ is small” versus H1: “θ is not small”. We call such expressions
fuzzy hypotheses. For more details, see Taheri and Behboodian [26].

Following Taheri and Behboodian [26], we consider some models, as fuzzy sets of
real numbers, for modeling the extended versions of the simple, the one-sided, and the
two-sided crisp hypotheses to the fuzzy ones.

Definition 2.1. Let θ0 ∈ Θ be a real and known constant where Θ is the parameter
space.

• The hypothesis “θ is approximately equal to θ0” is called fuzzy simple hypothesis
and denoted by H0(θ0). Thus, the hypothesis “θ is not approximately equal to θ0”
is a two-sided hypothesis.
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• The hypothesis “θ is essentially larger (smaller) than θ0” is a fuzzy right (left)
one-sided hypothesis.

Some fuzzy hypotheses are illustrated in Figure 1. The solid and dotted lines stand
for the membership functions of the null and the alternative hypotheses, respectively.
In Figure 1 (left), the fuzzy (null) simple hypothesis “θ is approximately equal to θ0”
against the alternative hypothesis “θ is not approximately equal to θ0” are presented.
We also provide membership functions for the composite fuzzy hypotheses. Notice that,
the membership function of the hypotheses are determined based on the one’s beliefs.

Fig. 1. Various forms of fuzzy hypotheses.

3. A NEW FUZZY DENSITY FUNCTION

Comparing crisp data is well-defined and clear. But comparison of fuzzy data is vague
and therefore various methods have been proposed in literature. In the following def-
inition, we provide a non-fuzzy function on the basis of a fuzzy parameter, say θ̃, in
which be a probability density function. To do this, let X be a given random variable
and SX = {x ∈ R : f(x|θ) > 0, θ ∈ Θ} denote the “support” of the random variable X
where Θ is the parameter space and f(x|θ) is the corresponding (non-fuzzy) probability
density function. For every θ ∈ Θ, we consider a weighted function, say H(θ), for the
probability density function f(x|θ) and define the desired FPDF, denoted by f(x|θ̃). As
one can see, large values of α makes more concentrate for the proposed FPDF f(x|θ̃).



Record-based hypotheses testing in fuzzy environments 747

In the proposed FPDF, there exists a parameter a which falls in the interval [0, 1). It is
easy to verify that f(x|θ̃) tends to f(x|θ) as a goes to unity. Now, we give formally the
definition.

Definition 3.1. The FPDF of the random variable X is defined by

f(x|θ̃) =

∫ 1

a

∫
θ∈eθα

H(θ)f(x|θ) dθdα∫ 1

a

∫
θ∈eθα

H(θ) dθdα
, a ∈ [0, 1), (1)

where H(θ) is the membership function of the fuzzy hypothesis and θ̃α is the corre-
sponding α-cut.

Notice that f(x|θ̃) ≥ 0 and∫
x∈SX

f(x|θ̃) dx =
∫
x∈SX

∫ 1

a

∫
θ∈eθα

H(θ)f(x|θ) dθdα∫ 1

a

∫
θ∈eθα

H(θ) dθdα
dx

=

∫ 1

a

∫
θ∈eθα

H(θ)
∫
x∈SX

f(x|θ) dxdθdα∫ 1

a

∫
θ∈eθα

H(θ) dθdα
= 1.

The FPDF f(x|θ̃) in (1) is sensitive with respect to the parameter a. If the spread
of fuzzy parameter of interest is large, then we can improve the probability (density)
function based on a. The parameter a is called credit (control) index.

Let g(x) : R→ R be an arbitrary (crisp) function and the random variable X follows
the FPDF (1). Then, the expectation of X is

Eeθ(g(X)) =
∫
x∈SX

g(x)f(x|θ̃) dx

=

∫
x∈SX

∫ 1

a

∫
θ∈eθα

g(x)H(θ)f(x|θ) dθdαdx∫ 1

a

∫
θ∈eθα

H(θ) dθdα

=

∫ 1

a

∫
θ∈eθα

H(θ)
∫
x∈SX

g(x)f(x|θ) dxdθdα∫ 1

a

∫
θ∈eθα

H(θ) dθdα

=

∫ 1

a

∫
θ∈eθα

H(θ)Eθ(g(X)) dθdα∫ 1

a

∫
θ∈eθα

H(θ) dθdα
. (2)

In the sequel, we use (2) for definitions of Fuzzy errors.

3.1. Fuzzy errors

Let X = (X1, . . . , Xn) be a random sample coming from the FPDF f(x|θ̃), defined
by (1).

Definition 3.2. Let ψ(X) be a test function for testing H0(θ0) against the alterna-
tive H1(θ1). The probability of types I and II errors of ψ(X) are, respectively, αψ =
Eeθ0 [ψ(X)], and βψ = Eeθ1 [1− ψ(X)].
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Definition 3.3. A test ψ is said to be a test of level α if αψ ≤ α, where α ∈ [0, 1] and
αψ is called the size of ψ.

Definition 3.4. A test ψ of level α is said to be a best test of level α, if βψ ≤ βψ∗ for
all test ψ∗ of the level α.

In the sequel, we use a version of the well-known Neyman–Pearson Lemma for testing
fuzzy hypotheses based on the FPDF (1). The given procedure in this paper differs from
the procedure of Taheri and Behboodian [26]. As we show, the new proposed procedure
provides better results. First, we need the following lemma:

Lemma 3.5. Let X be a random sample arising from the FPDF (1), with the observed
value x = (x1, . . . , xn), and the parameter θ ∈ Θ is unknown. Consider the problem
of testing the simple fuzzy hypotheses H0 : θ is approximately equal to θ0 against the
alternative H1 : θ is approximately equal to θ1. Then

(i) any test function with the following form, for some k ≥ 0 and 0 ≤ δ(x) ≤ 1, is the
best test function of its size, say αψ,

ψ(x) =



1 f(x|eθ1)
f(x|eθ0) > k,

δ(x) f(x|eθ1)
f(x|eθ0) = k,

0 f(x|eθ1)
f(x|eθ0) < k.

(3)

If k = ∞, then the best test function is defined as

ψ(x) =

 1 f(x|θ̃0) = 0,

0 f(x|θ̃0) > 0.

(ii) for 0 ≤ α ≤ 1, there exist a test function of form (i) with δ(x) = δ (a constant), for
which αψ = α.

P r o o f . (i) Let αψ = α and ψ∗(x) be another test function of level α. We prove that
βψ ≤ βψ∗ . To do this, suppose that

A1 = {x : f(x|θ̃1)− kf(x|θ̃0) > 0},
A2 = {x : f(x|θ̃1)− kf(x|θ̃0) = 0},
A3 = {x : f(x|θ̃1)− kf(x|θ̃0) < 0}.

Now we have∫
[ψ(x)− ψ∗(x)](f(x|θ̃1)− kf(x|θ̃0)) dx =

∫
A1

+
∫
A2

+
∫
A3

≥ 0 + 0 + 0 = 0.
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Therefore, ∫
[ψ(x)− ψ∗(x)](f(x|θ̃1)) dx ≥ k

∫
[ψ(x)− ψ∗(x)]f(x|θ̃0)) dx

≥ α− α = 0.

Thus, the left side of the above inequality is positive i. e.,

Eeθ1(ψ(X)) ≥ Eeθ1(ψ∗(X))

or βψ ≤ βψ∗ . For the case k = ∞, we first prove that the size of test function is zero.
Let

A4 = {x : f(x|θ̃0) = 0},
A5 = {x : f(x|θ̃0) > 0}.

Now, we have

αψ = Eeθ0(ψ(X)) =
∫
ψ(x)(f(x|θ̃0)) dx

=
∫
A4

ψ(x)(f(x|θ̃0)) dx +
∫
A5

ψ(x)(f(x|θ̃0)) dx

= 0 + 0 = 0.

It is trivial that, if ψ∗ is another test of size zero, it must be zero on A5. It remains to
show βψ ≤ βψ∗ . For this purpose, we write∫

[ψ(x)− ψ∗(x)]f(x|θ̃1) dx =
∫
A4

[ψ(x)− ψ∗(x)]f(x|θ̃1) dx

+
∫
A5

[ψ(x)− ψ∗(x)]f(x|θ̃1) dx

=
∫
A4

[ψ(x)− ψ∗(x)]f(x|θ̃1) dx + 0

≥ 0.

Therefore, we have Eeθ1(ψ(X)) ≥ Eeθ1(ψ∗(X)) or βψ ≤ βψ∗ and the desired result follows.

(ii) We restrict ourselves to the case 0 < α ≤ 1, since the best test of size zero is given
by (i). The size of a test of the form (3) is α, we have Eeθ0(ψ(X)) = α or

P

(
f(X|θ̃1)
f(X|θ̃0)

> k

)
+ δP

(
f(X|θ̃1)
f(X|θ̃0)

= k

)
= α.

Hence,

P

(
f(X|θ̃1)
f(X|θ̃0)

≤ k

)
− δP

(
f(X|θ̃1)
f(X|θ̃0)

= k

)
= 1− α.



750 A.R. SAEIDI, M. G. AKBARI AND M. DOOSTPARAST

It is clear that P
(
f(X|eθ1)
f(X|eθ0) ≤ k

)
is nondecreasing and right continuous in k since it is a

cumulative distribution function. Now, if there exists a k0 such that P
(
f(X|eθ1)
f(X|eθ0) ≤ k0

)
=

1− α, then we take δ(x) = 0 and k = k0. Otherwise, there exists a k0 such that

P

(
f(X|θ̃1)
f(X|θ̃0)

< k0

)
≤ 1− α < P

(
f(X|θ̃1)
f(X|θ̃0)

≤ k0

)
.

Now, we take k = k0 and

δ(x) =
P
(
f(X|eθ1)
f(X|eθ0) ≤ k0

)
− (1− α)

P
(
f(X|eθ1)
f(X|eθ0) = k0

) ,

which satisfies Eeθ0(ψ(X)) = α, and δ(x) ∈ [0, 1]. Hence, the Proof is complete. The
proof for the discrete case of FPDF is similar. �

Lemma 3.6. If H0 and H1 are composite crisp hypotheses, i. e. their membership
functions are exactly the indicator functions of sets Θ0 and Θ1 i. e.,

H0(θ) =

 1 θ ∈ Θ0

0 θ ∈ Θ1,
H1(θ) =

 0 θ ∈ Θ0

1 θ ∈ Θ1.

Now using Lemma 3.5 we reject H0 if f(x|θ̃1)/f(x|θ̃0) > k or equivalently∫
θ∈Θ1

f(x|θ) dθ > k

∫
θ∈Θ0

f(x|θ) dθ.

This is the same as rejection of H0 in a Bayes test with a 0− 1 loss function and an
improper prior density function for θ, such as π(θ) = Constant.

4. FUZZY RECORD-BASED PARETO ANALYSIS

In this section, we apply the results obtained in the preceding sections for fuzzy hy-
potheses testing on the basis of records arising from the Pareto distribution.

4.1. Form of data

Let X1, X2, . . . be a sequence of continuous random variables. Xi is defined to be a
lower record value if its value is smaller than all preceding values X1, . . . , Xi−1. By
definition, X1 is a lower record value. An analogous definition can be provided for
upper record values. As pointed out by Gulati and Padgett [18], often, in industrial
testing, meteorological data, and some other situations, measurements may be made
sequentially and only values smaller (or larger) than all previous ones are recorded.
Such data may be represented by (r,∆) := (r1,∆1, . . . , rm,∆m), where ri is the ith
record value, meaning new minimum (or maximum), and ∆i is the number of trials
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following the observation of ri that are needed to obtain a new record value ri+1. There
are two sampling schemes for generating such a record-breaking data. Under the inverse
sampling scheme, units are taken sequentially and sampling is terminated when the mth
minimum is observed. In this case, the total number of units sampled is a random
number, and ∆m is defined to be 1 for convenience, while under the random sampling
scheme, a random sample X1, . . . , Xn is examined sequentially and successive minimum
values are recorded. In this setting, we have N(n), the number of records obtained, to
be random and, given a value of m for it, we have in this case

∑m
i=1 ∆i = n. Interested

readers may refer to Arnold et al. [7].

4.2. The family of Pareto distributions

A random variable X is said to have a two-parameter Pareto distribution, denoted by
Par(γ, β), if its cumulative distribution function (cdf) is

F (x; γ, β) = 1−
(
β

x

)γ
, x ≥ β > 0, γ > 0, (4)

with the corresponding probability density function (pdf) as

f(x; γ, β) =
γβγ

xγ+1
, x ≥ β > 0, γ > 0. (5)

The family of Pareto distributions has been used commonly to model naturally occurring
phenomena in which the distribution of random variables of interest have long tails. For
more details, see Arnold [6].

4.3. Point estimation

Let X1, X2, . . . be i.i.d. random variables, each drawn from a population with the cdf
and the pdf F (·) and f(·) , respectively. Then, the likelihood function associated with
the record data (r,∆) reads

L(r,∆) =
m∏
i=1

f(ri)[1− F (ri)](∆i−1)I(−∞,ri−1)(ri), (6)

where r0 ≡ ∞, ∆m ≡ 1 for inverse sampling and ∆m = n −
∑m−1
i=1 ∆i for random

sampling schemes, and IA(x) is the indicator function of the set A; for details, one may
refer to Samaniego and Whitaker [24]. Substituting (4) and (5) into (6), we have

L(γ, β; r,∆) =
∏m
i=1

γ

ri

(
β

ri

)γ∆i

=
γm∏m
i=1 ri

(
βTm∏m
i=1 ri

∆i

)γ
= γmβγ

Pm
i=1 ∆i

∏m
i=1 r

−(γ∆i+1)
i , r1 > · · · > rm > β > 0, γ > 0.

(7)
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From Equation (6), it is apparent that a minimal sufficient statistic for the parameter
(γ, β) is (

∑m
i=1 ∆i logRi, Tm, Rm) where Tm =

∑m
i=1 ∆i . Hence, the log-likelihood

function is reduced to

l(γ, β; r,∆) = logL(γ, β; r,∆) = m log γ + γ

m∑
i=1

∆i log(
β

ri
)−

m∑
i=1

log ri, (8)

where (and throughout this article) “log” denotes the natural logarithm. Then, the
maximum likelihood estimates (MLEs) of the unknown parameters γ and β under both
sampling schemes are

γ̂ML =
m

log
∏m
i=1(Ri/Rm)∆i

, (9)

and
β̂ML = Rm, (10)

respectively. Under the inverse random sampling scheme, it can be shown that the
expression of denominator of γ̂ML in (9) is distributed as Gamma with shape and scale
parameters m− 1 and γ−1, respectively; see Doostparast et al. [13]. Under the inverse
sampling scheme, it can be shown that

fRm
(x) =

f(x)[− logF (x)]m−1

Γ(m)
, 0 < x <∞, (11)

and
m∑
i=1

∆i log(Ri/Rm) ∼ Γ(m− 1, γ−1). (12)

5. ANNUAL WAGE DATA SET

In this section, we illustrate the proposed approach in the preceding sections for records
from the Pareto distribution. Dyer [15] reported an annual wage data set (in multiplies
of 100 US dollars) of a random sample of 30 production-line workers in a large industrial
firm, as presented in Table 1. He argued that the Pareto distribution provided an
adequate fit for these data. The records extracted from the data set are presented in
Table 2. The MLEs of γ and β were obtained by Doostparast and Balakrishnan [14]
as γ̂ML = 4.197 and β̂ML = 101. Now, consider the problem of testing the fuzzy simple
hypothesis H0 : γ ' 5 against the alternative H1 : γ ' 7 with the following membership
functions

H0(γ) =
{
γ − 4 4 < γ < 5
(7−γ)

2 5 < γ < 7

and

H1(γ) =
{
γ − 6 6 < γ < 7
(9−γ)

2 7 < γ < 9.
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112 154 119 108 112 156 123 103 115 107
125 119 128 132 107 151 103 104 116 140
108 105 158 104 119 111 101 157 112 115

Tab. 1. Annual wage data (in multiplies of 100 U.S. dollars).

i 1 2 3 4
Ri 112 108 103 101
∆i 3 4 19 4

Tab. 2. Record data coming from annual wage data.

k αψ(a = 0) αψ(a = 0.1) αψ(a = 0.3) βψ(a = 0) αψT−B
βψT−B

αexact βexact

0 ∗ ∗ ∗ ∗ ∗ ∗ 0.000 1.000
0.10 0.017 0.016 0.016 0.962 0.017 0.961 0.014 0.966
0.15 0.046 0.046 0.045 0.902 0.048 0.890 0.041 0.910
0.20 0.090 0.090 0.088 0.821 0.094 0.816 0.080 0.933
0.25 0.147 0.146 0.143 0.727 0.152 0.721 0.131 0.744
0.30 0.211 0.210 0.207 0.630 0.218 0.623 0.191 0.650
0.35 0.279 0.278 0.274 0.535 0.288 0.528 0.256 0.557
0.40 0.350 0.349 0.345 0.447 0.359 0.441 0.323 0.469
0.45 0.419 0.418 0.414 0.369 0.429 0.363 0.391 0.390
0.50 0.486 0.484 0.480 0.301 0.429 0.363 0.456 0.321
0.55 0.549 0.547 0.543 0.242 0.557 0.237 0.519 0.261
0.60 0.606 0.605 0.601 0.194 0.615 0.190 0.577 0.210
0.65 0.659 0.657 0.654 0.154 0.667 0.150 0.630 0.168
0.70 0.706 0.705 0.701 0.121 0.713 0.118 0.679 0.133
0.75 0.748 0.747 0.743 0.095 0.754 0.093 0.723 0.105
0.80 0.785 0.784 0.781 0.074 0.790 0.072 0.762 0.082
0.85 0.817 0.816 0.814 0.057 0.822 0.056 0.796 0.064
0.90 0.845 0.844 0.842 0.044 0.849 0.043 0.826 0.050
0.95 0.869 0.868 0.867 0.034 0.872 0.033 0.853 0.038
1.00 0.889 0.889 0.888 0.026 0.893 0.025 0.875 0.030

Tab. 3. The probabilities of errors of types I and II.
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By Lemma 3.6 and the FPDF (1), the most powerful (MP) test of H0 versus H1, in
the sense of Definition 3.2, is

ψ?1(r,∆) =
{

1 T ≤ k
0 T > k

(13)

where T =
∑m
i=1 ∆i log (Ri/Rm). Since T has the gamma distribution with shape and

scale parameters m− 1 = 3 and γ−1, respectively, (Doostparast and Balakrishnan [14]),
the power function of the test ψ?1 in (13) is

βψ?
1
(γ) = Pα(T < k) = 1−

[
e−kγ

(
k2γ2

2
+ kγ + 1

)]
,

which is decreasing in γ. For some selected values of k and a = 0, 0.1, 0.3, the probabil-
ities of types I and II are obtained and displayed in Table 3.

Similarly, consider H0 : β ' 90 versus H1 : β ' 100 with membership functions

H0(β) =

{
(β−85)

5 for 85 < β < 90
(108−β)

18 for 90 < β < 108

and

H1(β) =

{
(β−95)

5 for 95 < β < 100
(105−β)

5 for 100 < β < 105.

By Lemma 3.6 and the FPDF (1), we reject H0, if Rm > k. Hence, the best test function
of H0 against H1 is derived as

ψ?2(r,∆) =
{

1 Rm > k,
0 Rm ≤ k.

(14)

From Doostparast and Balakrishnan [14], the pdf of R4 is

fR4(x) =
γβγ [− log(1− (βx )γ)]3

Γ(4)xγ+1
. (15)

So, the power function of the test (14) is obtained from (15) as

βψ?
2
(β) =

∫ β
k

0

γ [− log(1− uγ)]3 uγ−1

6
du. (16)

For γ = 4 in (16), and the identity − log(1 − a) =
∑∞
k=0 a

k+1/(k + 1), for |a| < 1, we
conclude that

βψ(β) =
∫ δ

k

0

2
3

[
u3 +

u6

2
+
u9

3
+
u12

4
+
u15

5
+ · · ·

]3
u3 du.

For some selected values of k and a = 0, the probabilities of types I and II errors are
given in Tables 4 and 5, respectively. From Tables 3 – 5, one can see that αψnew and
βψnew are closer to αψexact and βψexact , respectively, with respect to the method of Taheri
and Behboodian [26], denoted by αψT−B

and βψT−B
.
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k αψnew
(a = 0) αψT−B

αψexact

95 0.603 0.613 0.592
97 0.426 0.335 0.306
99 0.182 0.189 0.173
100 0.139 0.141 0.134
102 0.092 0.117 0.081
105 0.000 0.000 0.000

Tab. 4. The probability of type I error for the annual wage data set.

k βψnew(a = 0) βψT−B
βψexact

105 0.268 0.253 0.287
107 0.583 0.571 0.619
109 0.763 0.759 0.778
110 0.811 0.803 0.827
112 0.873 0.866 0.891
115 0.933 0.928 0.941

Tab. 5. The probability of type II error for the annual wage data set.

6. CONCLUSIONS

In the real world, some parameters of interest may be imprecise. A method to formulate
these parameters is provided by fuzzy environments. In this paper, we considered the
problem of testing hypotheses with fuzzy parameters on the basis of record data coming
from the two-parameter Pareto distribution. For introducing a test function, we defined
a new FPDF based on the parameters and then the Neyman–Pearson Lemma was applied
based on such a density. Since, the proposed approach in this paper is different from
Taheri and Behboodian’s approach, we compare these two methods with the type I and
type II errors of crisp (precise) case for a real data set. Based on the results as shown
in Table 3, the type I error (type II error) of the new method is smaller (larger) than
method of Taheri and Behboodian [26] and is near to crisp one. Notice that one sample
does not tell us so much and more investigations must be carried out.
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