
KYB ERNET IK A — VO LUME 5 0 (2 0 1 4) , NUMBER 5 , PAGES 6 9 6 – 7 0 5

ON HIERARCHY OF THE POSITIONED ECO-GRAMMAR
SYSTEMS

Miroslav Langer

Positioned eco-grammar systems (PEG systems, for short) were introduced in our previous
papers. In this paper we engage in a new field of research, the hierarchy of PEG systems,
namely in the hierarchy of the PEG systems according to the number of agents presented in
the environment and according to the number of types of agents in the system.

Keywords: positioned eco-grammar systems, hierarchy, eco-grammar systems

Classification: 22E46, 53C35, 57S20

1. INTRODUCTION

In the last decade of the 20th century a systematic research of the collective behaviour
of formal grammars began. In [1] basic models of the grammar system were introduced.
One of the models based on this paper are the eco-grammar systems (see [2]).

Based on the eco-grammar systems, we have introduced positioned eco-grammar
systems; the PEG systems for short (see [7]). Similarly as in eco-grammar systems,
the motivation is to describe the interplay between an evolving environment and the
community of agents living in this environment, whereas we focus on agent’s position in
the environment. We combine the approaches from the PM-colonies (see [11]) the and
eco-grammar systems (see [2, 3]). The environment of the PEG system is represented
by a 0L scheme (see [4]) and the position of each agent in the environment is given by
its identifier.

In this paper we describe the hierarchy of the positioned eco-grammar systems based
on the number of agents present in the environment and the number of types of agents in
the system. The results obtained for the hierarchy of the original eco-grammars systems
and it’s variants can be found e. g. in [6, 13].

The paper is structured as follows: in the section 2 we give the basic notations and
definitions of the positioned eco-grammar systems. In the section 3 we show that the
generative power of the positioned eco-grammar systems depends on the number of types
of agents in the system, and on the number of agents present in the environment as well.

DOI: 10.14736/kyb-2014-5-0696

http://doi.org/10.14736/kyb-2014-5-0696

On hierarchy of the positioned eco - grammar systems 697

2. POSITIONED ECO-GRAMMAR SYSTEMS

In this section we present basic definitions of the positioned eco-grammar systems. The
positioned eco-grammar systems combine the approach of the eco-grammar systems
(for more information see e. g. [2, 3]) and the PM colonies (see [11]). Similarly as
eco-grammar systems, each positioned eco-grammar system consists of a developing
environment and collection of agents (organisms). Moreover position of each agent in
the environment is fixed in accordance with PM colonies. An agent can affect the
environment only in its neighbouring left or right position and other symbols in the
environment are rewritten in totally parallel manner like in L systems [12].

We will follow the definitions with very simple example to explain it.

Definition 2.1. A positioned eco-grammar system (PEG system, for short) of degree
m, m ≥ 1, is an (m + 3)-tuple Σ = (VE , NB , E, B1, . . . , Bm), where

• VE is a finite nonempty alphabet of the environment,

• NB = {[j] : 1 ≤ j ≤ m} is a set of identifiers of the agents, [j] defines position of
the jth type agent in the environment,

• E = (VE , PE) is a 0L scheme – the environment,

• Bj = ([j], Qj), is the jth type agent for 1 ≤ j ≤ m and Qj is a set of rules of the
form:

– a[j] → u or [j]b → v where a, b ∈ VE is symbol marking vicinity with agent,
u, v ∈ (VE ∪NB)∗.
In what follows we will use for rules description also a[j]b → u, where ab ∈ VE .
So in every rule either b = ε or a = ε but not both.

Note that a PEG system requires at least one agent by the definition.

Example 2.2. PEG system Σ = (VE , NB , E, B1), where:

• VE = ({a, b, c},

• NB = {[1]},

• E = (VE , {a → a, b → b, c → c}),

• B1 = ([1], {[1]c → ε, [1]c → a[1]ca, [1]c → b[1]cb}).

We consider PEG system with one type of the agent B1 and non-evolving environment.
The growth of environment (generating the language) ensures the agent.

A configuration of the PEG system determines the actual state of a PEG system, it
means the actual string of the environment together with collection of agents with fixed
positions in the environment and it is introduced as follows:

Definition 2.3. A configuration of the positioned eco-grammar system
Σ = (VE , NB , E, B1, . . . , Bm) is a string v, where v ∈ (VE ∪NB)∗. The starting config-
uration is called an axiom.

698 M. LANGER

Example 2.4. Let the axiom of the system Σ be w = [1]c.

We describe the derivation step in the PEG system as follows:

Definition 2.5. A derivation step of the positioned eco-grammar system
Σ = (VE , NB , E, B1, . . . , Bm) is a binary relation =⇒Σ on (VE ∪ NB)∗, such that
w =⇒Σ w

′
iff

• w = α0a1[j1]b1α1 . . . αn−1an[jn]bnαn, where

αk ∈ V ∗
E for 0 ≤ k ≤ n and akbk ∈ VE , [jk] ∈ NB , 1 ≤ k ≤ n,

• w
′
= α

′

0β1α
′

1 . . . α
′

n−1βnα
′

n, where

ak[jk]bk → βk ∈ Qk for 1 ≤ k ≤ n and αk ⇒E α
′

k for 0 ≤ k ≤ n.

By =⇒∗ we denote the reflexive and transitive closure of the relation =⇒.

Example 2.6. Let us show first few derivation steps of the PEG system Σ:
[1]c ⇒ a[1]ca ⇒ aa[1]caa ⇒ aab[1]cbaa ⇒ aaba[1]cabaa . . .

Agents in the PEG system work parallel. Each agent rewrites one symbol on its right
or left hand side together with its own identifier, in each derivation step. The rest of the
symbols (i. e. those not touched by agents) are rewritten by the rules of the environment
in totally parallel manner like in Lindenmayer system. Each agent has to rewrite its
own symbol otherwise the derivation is blocked. This is in the cases when there is no
rule for the agent with its actual right or left context, or when agent has no free context
to rewrite.

The language defined by the positioned eco-grammar system is given by all words
produced by the system from the axiom, ignoring agents identifiers.

Definition 2.7. The language defined by the positioned eco-grammar system
Σ = (VE , NB , E, B1, . . . , Bm) and the axiom w,w ∈ (VE ∪NB)+ is a set of strings:

L(Σ, w) = {γ(u) : w ⇒∗
Σ u, u ∈ (VE ∪NB)∗},

where γ is the morphism such that γ(a) = a for a ∈ VE and γ(b) = ε
for b ∈ NB .

Example 2.8. As the reader can easily verify, the language defined by PEG system Σ
is L(Σ, w) = {wcwR : w ∈ {a, b}∗}.

The class of languages defined by the positioned eco-grammar systems (PEG lan-
guages) is denoted as L(PEG).

Following example shows how the environment can exert influence up the agents and
vice versa. We will consider female agent BF , male agent BM and child BC . Male agent
builds the nest (n) where female agent lays an egg (e) which is inseminate by the male
agent. The female agent broods from the inseminated egg (i) child agent. Before the
male can agent build the nest he must wait for the grass to grow from small to grown
(in the environment is used rule s → g). This is how the environment can influence the
behaviour of the agents. The environment cannot grow (increase number of the symbol
b) before the child agent changes symbols a to the b. In this way the agents can affect
behaviour of the environment.

On hierarchy of the positioned eco - grammar systems 699

Example 2.9. PEG system Σ = (VE , NB , E, BF , BM , BC), where:

• VE = {a, b, s, g, e, i},

• NB = {[F], [M], [C]},

• E = (VE , {a → a, b → b, b → bb, s → s, s → g, g → g, n → n, e → e, i → i}),

• BF = ([F], {a[F] → a[F], [F]n → [F]e, [F]i → [C]}),

• BM = ([M], {[M]a → [M]a, g[M] → n[M], e[M] → i}),

• BC = ([C], {a[C] → b[C], [C]a → [C]b, b[C] → [C]b, [C]b → b[C]}).

Let the axiom of the system be w = a[F]s[M]a.
One of the possible derivations in the PEG system Σ with axiom w is as follows:

a[F]s[M]a ⇒ a[F]s[M]a ⇒ a[F]g[M]a ⇒ a[F]n[M]a ⇒ a[F]e[M]a ⇒ a[F]e[M]a
⇒ a[F]ia ⇒ a[C]a ⇒ b[C]a ⇒ bb[C]b ⇒ b[C]bbb ⇒ [C]bbbbbb

3. HIERARCHY OF THE POSITIONED ECO-GRAMMAR SYSTEMS

We described the generative power of the positioned eco-grammar systems in the context
of the well-established grammars and grammar systems in our previous papers (see
[5, 8, 9]). In this paper we focus on the question whether it is possible to structure PEG
languages based on the structural properties of the system.

In the positioned eco-grammar systems the positions of the agents are given by special
symbols. These components in the parallel environment cause local changes in the
configurations of the system. Location of the agent in the environment and the context
of the agent directly affects the generative power of the PEG system. In this section
we classify the PEG languages with respect to the number of (types of) agents in the
definition of underlying PEG system and with respect to the maximal number of the
agents present in the environment. We show that such classifications determine the
infinite hierarchy on the PEG languages in both cases.

Known results concerning the hierarchy of the various types of the eco-grammar
systems can be found e. g. in [6, 13].

3.1. Hierarchy based on the number of agents in the environment

This subsection covers the division of the PEG systems according to the number of
agents present in the environment. We will consider PEG systems with at most n
agents present in the environment in every derivation step, no matter what type the
agents are. It means that we count all the identifiers of the agents regardless of type of
the agent.

Definition 3.1. A PEG system Σ = (VE , NB , E, B1, . . . , Bm) with axiom w,w ∈ (VE ∪
NB)+ is a PEG system with index n, we write (Σ, w) ∈ PEGn for short, if |u|NB

≤ n
for all u ∈ (VE ∪NB)∗ such that w ⇒∗

Σ u.
A language L is a PEG language with index n, L ∈ L(PEGn) if there is a PEGn

system Σ with axiom w such that L = L(Σ, w) and for no PEGm system Σ′ and w′

m < n it holds L = L(Σ′, w′).

700 M. LANGER

Example 3.2. Let us consider the language L1 = {aibici : i ≥ 1} and PEG system
Σ1 = ({a, b, c}, {[1]}, E, B1), where:

• E = ({a, b, c}, {a → a, b → b, c → c}),

• B1 = ([1], {a[1] → aa[1]b, [1]c → [1]cc}).

Let the axiom of the system be w1 = a[1]b[1]c. Then
a[1]b[1]c ⇒ aa[1]bb[1]cc ⇒n−2 an[1]bn[1]cn ⇒ ana[1]bbn[1]ccn ⇒ . . .
Therefore L(Σ1, w1) = L1 and (Σ1, w1) is of index 2, i. e. (Σ1, w1) ∈ PEG2. So

L1 ∈ L(PEGt) for t ≥ 2.
To prove L1 ∈ L(PEG2) we will verify that L1 does not belong to L(PEG1), i. e.

there is no PEG system Σ and axiom w with index 1 such that L(Σ, w) = L1.
Assume contrary that L1 belongs to L(PEG1) and PEG1 system Σ0 = ({a, b, c},

{[1]}, E, B1, . . . , Bm) with axiom w0 = u0[1]v0 generates L1. Reader can verify that
E = ({a, b, c}, P) in Σ0 is deterministic and P = {a → a, b → b, c → c}. So, all changes
in the environment due to the activity of agents.

Let u[j]v, 1 ≤ j ≤ m be the word derived from the axiom in Σ0 and uv = atbtct

for some t ≥ 1. We assume that in the next derivation step rule x[j]y → z is used,
where x, y ∈ {a, b, c, ε}, x = suf(u), y = pref(v) and one of the symbols x, y is empty
and z contains one position of some agent [i]. For the position of [j] exactly one of the
following cases holds:

• y = a. Then rule of type a[j] → ar[i] or [j]a → ar[i] for some r 6= 1 has to be used
in next derivation step. (Position and type of the agent [i] on the right hand side
of the used rule can be arbitrary.) Therefore for u[j]v ⇒ w it holds |w|a 6= |w|b
and γ(w) does not belong to L1.

• y = b. Then u[j]v ⇒ w gives |w|c < |w|a and |w|c < |w|b. So γ(w) does not belong
to L1.

• y = c. Then u[j]v ⇒ w where |w|a < |w|b or |w|a < |w|c. So γ(w) does not deter-
mine the word from L1. In all cases we got the contradiction so the assumption
that L1 belongs to L(PEG1) does not hold and L1 ∈ L(PEG2).

These considerations allow us state the following theorem.

Theorem 3.3. The class of PEG languages with respect to the measure index forms
an infinite hierarchy: L(PEGn) ⊂ L(PEGn+1) for n ≥ 1 (i. e. proper subsets).

P r o o f . Obviously L(PEGn) ⊆ L(PEGn+1) for n ≥ 1.
Consider language

Ln+1 = {ai
1a

i
2 . . . ai

2nai
2n+1 : i ≥ 1}.

We will show that Ln+1 ∈ L(PEGn+1)− L(PEGn).
First we give a PEG system Σn+1 which generates the language Ln+1 from axiom

and it needs n+1 occurrences of agent [1] in the environment to generate words in Ln+1:
Σn+1 = (VE , {[1]}, E, B), where

On hierarchy of the positioned eco - grammar systems 701

• VE = {a1, a2, . . . , a2n+1},

• E = (VE , {a1 → a1, a2 → a2, . . . , a2n+1 → a2n+1}),

• B = ({[1]}, {a2k−1[1] → a2
2k−1[1]a2k : 1 ≤ k ≤ n} ∪ {[1]a2n+1 → [1]a2

2n+1}).

The axiom of the PEGn+1 is w = a1[1]a2a3[1]a4 . . . a2n−1[1]a2n[1]a2n+1.
Derivations proceed as follows:

a1[1]a2 . . . a2n−1[1]a2n[1]a2n+1 ⇒ a2
1[1]a2

2 . . . a2
2n−1[1]a2

2n[1]a2
2n+1 ⇒

a3
1[1]a3

3 . . . a3
2n−1[1]a3

2n[1]a3
2n+1 ⇒ a4

1[1]a4
4 . . . a4

2n−1[1]a4
2n[1]a4

2n+1 ⇒

Hence the L(Σn+1, w) = {ai
1a

i
2 . . . ai

2nai
2n+1 : i ≥ 1}.

Therefore L(Σn+1, w) = Ln+1 and (Σn+1, w) is of index n + 1, i. e. (Σn+1, w) ∈
PEGn+1. So Ln+1 ∈ L(PEGt) for some t, t ≤ n + 1.

To prove that Ln+1 ∈ L(PEGn+1) we will verify that Ln+1 /∈ L(PEGn), i. e. there is
no PEG system Σ and axiom w with index n such that L(Σ, w) = Ln+1.

Assume contrary that Ln+1 belongs to L(PEGn) and PEGn system Σn = (VE ,
NB , E, B1, . . . , Bm) with axiom wn generates Ln+1. We verify that E = (VE , P) in
Σn is deterministic and P = {ai → ai : 1 ≤ i ≤ 2n + 1}.

It follows from the structure of Ln+1 that for ai → α ∈ P we have α = as
i for some s.

Assume that P is not deterministic and ai → aj
i , ai → ak

i ∈ P for j < k. Let derivation
of u = ar

1a
r
2 . . . ar

2nar
2n+1 ∈ Ln+1 for some r uses the rule ai → aj

i . Then also the word
v = ar

1a
r
2 . . . ar+k−j

i . . . ar
2nar

2n+1 ∈ L(Σ, w) but v /∈ Ln+1.
Evidently for rules ai → aj

i , 1 ≤ i ≤ 2n + 1 in deterministic P it holds j = 1.
Otherwise all words from Ln+1 are not in L(Σn, wn)

So, all the changes in the environment are done by the activity of the agents. Let
u[j]v → w is in Bj . Then from the structure of Ln+1 it holds that |alph(w) ∩ VE | ≤ 2.
This gives that for x ⇒ y, where x contains at most n occurrences of symbols from NB

it holds |x|ai
= |y|ai

for at least one i. Therefore either γ(x) or γ(y) is not in Ln+1 and
L(Σn, wn) 6= Ln+1. �

3.2. Hierarchy based on the number of the types of agents

This subsection illuminates the division of the PEG systems according to the number
of types of agents in the definition of the system. We will show that the number of the
types of agents in the definition of the PEG system (thus the cardinality of the set NB)
affects the generative power of the PEG system. To prove that such a hierarchy exists,
we need to find language L which is not 0L language and for which holds that L cannot
be generated by the PEG system with n types of the agents and L can be generated
by the PEG system with n + 1 types of agent. Not surprisingly, the structure of the
language is similar to the language from the previous subsection.

Definition 3.4. A PEG system with at most n types of the agents is such a PEG
system Σ = (VE , NB , E, B1, . . . , Bm), where n ≤ |NB | and is denoted as PEGn.

The class of languages defined by the PEGn system is denoted as L(PEGn).
Let us show simple example first.

702 M. LANGER

Example 3.5. Consider the language L2 = {aibiajbjak : i ≥ 1, j = 2i, k = 3i} and
PEG system Σ2 = ({a, b}, {[1], [2]}, E, B1, B2), where:

• E = ({a, b}, {a → a, b → b}),

• B1 = ([1], {[1]a → a[1]ab, [1]b → aa[1]bbb}),

• B2 = ([2], {a[2] → aaaa[2]}).

Let the axiom of the system be w2 = [1]abaaa[1]bbbaaa[2], then
[1]abaaa[1]bbbaaa[2] ⇒ a[1]abbaaaa[1]bbbbaaaaaa[2] ⇒ aa[1]ab3a6[1]b6a9[2] ⇒
⇒ a3[1]ab4a8[1]b8a12[2] ⇒ a4[1]ab5a10[1]b10a15[2] . . . ,
thus L(Σ2, w2) = L2, Σ has two types of the agents and therefore L2 ∈ L(PEGt) for
t ≥ 2.

To prove L2 ∈ L(PEG2) we will verify that L2 does not belong to L(PEG1), i. e.
there is no PEG system Σ with |NB | = 1 and axiom w such that L(Σ, w) = L2.
Assume contrary that L2 belongs to L(PEG1) and PEG1 system Σ0 = ({a, b}, {[1]},
E,B1) with axiom w0 = u0[1]v0[1]x0[1]y0 generates L2. Reader can verify that E =
({a, b}, P) in Σ0 is deterministic and P = {a → a, b → b}. So, all changes in the
environment due to the activity of agent.

Let u[1]v[1]x[1]y be the word derived from the axiom in Σ0 and
uvxy = atbta2tb2ta3t for some t ≥ 1. According to definition of the PEG system each
agent can react with its right or left hand-side symbol, but not with both at once. This
restriction allows us consider following cases:

• Let u = at−1, v = abta2t, x = b2ta3t, y = ε, then Q1 must contain rules [1]a →
a[1]ab, [1]b → aa[1]bbb, a[1] → aaaa[1]. Such set of rules allows to derive in the
next derivation step word w such that γ(w) = at+3bt+1at+2bt+2at+3, which is not
from the L2.

• Let u = at−1, v = abta2t, x = b2t, y = a3t, then Q1 must contain rules [1]a →
a[1]ab, [1]b → aa[1]bbb, [1]a → [1]aaaa. Such set of rules allows to derive in the
next derivation step word w such that γ(w) = at+3bt+1a2t+2b2t+2a3t+3, which is
not from the L2.

• Let u = at−1, v = abta2t, x = b2t, y = a3t, then Q1 must contain rules [1]a →
a[1]ab, [1]b → aa[1]bbb, b[1] → b[1]aaa. Such set of rules allows to derive in the
next derivation step word w such that γ(w) = at+1bt+1a2t+2b2t+2aba3t, which is
not from the L2.

In all cases we got the contradiction so the assumption that L2 belongs to L(PEG1)
does not hold and L2 ∈ L(PEG2).

Generally speaking, the fact that agent can consider only one-sided context allows us
to increment two same substrings of type aibi by only two different number.

Theorem 3.6. The class of PEG languages with respect to the number of types of the
agents forms an infinite hierarchy: L(PEGn) ⊂ L(PEGn+1) for n ≥ 1 (i. e. proper
subsets).

On hierarchy of the positioned eco - grammar systems 703

P r o o f . Obviously L(PEGn) ⊆ L(PEGn+1) for n ≥ 1.
Consider language

Ln+1 = {aibia2ib2i . . . a(2n−1)ib(2n−1)ia2nib2nia(2n+1)i : i ≥ 1}.

We will show that Ln+1 ∈ L(PEGn+1)− L(PEGn).
Hence we will show that we need at least n+1 types of agents to generate the language

Ln+1, n types of agents are not sufficient.
At first we will construct the PEG system Σn+1 with n + 1 types of agents which

generate the language Ln+1: Σn+1 = (VE , {[1]}, E, B1, B2, . . . , Bn, Bn+1), where

• VE = {a, b},

• E = (VE , {a → a, b → b}),

• B1 = ([1], {[1]a → a[1]ab, [1]b → aa[1]bbb}),

• B2 = ([2], {[2]a → aaa[2]abbb, [2]b → aaaa[2]bbbbb}),
...

• Bn = ([n], {[n]a → a2n−1[n]ab2n−1, [n]b → a2n[n]bb2n}),

• Bn+1 = ([n + 1], {a[n + 1] → aa2n+1[n + 1]}).

The axiom of the PEGn+1 is

w = [1]abaa[1]bbaa[2]abbbaaaa[2]bbbb . . . a2n−2[n]ab2n−1a2n[n]b2na2n+1[n + 1].

The first several derivation steps are:

[1]abaa[1]bbaa[2]abbbaaaa[2]bbbb . . . a2n−2[n]ab2n−1a2n[n]b2na2n+1[n + 1]

⇒ a[1]abba4[1]b4a5[2]ab6a8[2]b8 . . . a4n−3[n]ab4n−2a4n[n]b4na4n+2[n + 1]

⇒ aa[1]abbba6[1]b6a8[2]ab9a12[2]b12 . . . a6n−4[n]ab6n−3a6n[n]b6na6n+3[n + 1] ⇒

Hence the L(Σn+1, w) = {aibia2ib2i . . . a(2n−1)ib(2n−1)ia2nib2nia(2n+1)i : i ≥ 1}.
To prove that Ln+1 ∈ L(PEGn+1) we will verify that Ln+1 /∈ L(PEGn), i. e. there is

no PEG system Σ and axiom w with |NB | = n such that L(Σ, w) = Ln+1.
Assume contrary that Ln+1 belongs to L(PEGn) and PEGn system Σn = (VE ,

NB , E, B1, . . . , Bn) with axiom wn generates Ln+1. We verify that E = (VE , P) in
Σn is deterministic and P = {z → z : z ∈ {a, b}}.

It follows from the structure of Ln+1 that for z → α ∈ P we have α = zs for some
s. Assume that P is not deterministic and z → zj ∈ P for j ≥ 0. Let derivation of
u = arbra2rb2r . . . a(2n−1)rb(2n−1)ra2nrb2nra(2n+1)r ∈ Ln+1 for some r uses the rule z →
zj . Then also the word v = aj(r−2)+1bra2(r)b2(r) . . . ar(2n−1)br(2n−1) a2nrb2nrar(2n+1) ∈
L(Σ, w) but v /∈ Ln+1. Evidently for rules z → zj in deterministic P it holds j = 1.
Otherwise all words from Ln+1 are not in L(Σn, wn).

704 M. LANGER

So, all the changes in the environment are done by the activity of the agents. �

Let u0[1]u1[1]u2[2]u3[2] . . . u2n−1[n]u2n[n]u2n+2[o]u2n+3, where u0 = at−1,
u1 = abta2t, u2 = b2ta3t−1, u3 = ab3ta4t, . . . , 1 ≤ o ≤ n, be the word derived from the
axiom in Σn and u0 . . . u2n+3 = atbta2tb2t . . . a(2n−1)tb(2n−1)ta2ntb2nta(2n+1)t for some
t ≥ 1. Without loss of generality we may consider o = 1. According to definition of
the PEG system each agent can react with its right or left hand-side symbol, but not
with both at once. This restriction allows us consider only substring u2n+2[o]u2n+3 in
following cases:

• Let u2n+2 = b2nt−1, u2n+3 = bat(2n+1), then Q1 must contain rules [1]a → a[1]ab,
[1]b → aa[1]bbb, [1]b → [1]ba2n+1. Such set of rules allows to derive in the next
derivation step word w such that γ(w) = at+1bt+1atba2n+1bt . . . a2n(t+1)b2n(t+1)

a(2n+1)(t+1), which is not from the Ln+1.

• Let u2n+2 = b2nt, u2n+3 = at(2n+l), then Q1 must contain rules [1]a → a[1]ab,
[1]b → aa[1]bbb, b[1] → b[1]a2n+1. Such set of rules allows to derive in the next
derivation step word w such that γ(w) = at+1bt+1at+2bt+2 . . . a2n(t+1)b2n(t+1)

aabat(2n+1)−1, which is not from the Ln+1.

• Let u2n+2 = b2nt, u2n+3 = at(2n+l), then Q1 must contain rules [1]a → a[1]ab,
[1]b → aa[1]bbb, [1]a → [1]aa2n+1. Such set of rules allows to derive in the next
derivation step word w such that γ(w) = at+2n+1btat+2bt+2 . . . a2n(t+1)b2n(t+1)

a(2n+1)(t+1), which is not from the Ln+1.

• Let u2n+2 = b2ntak, u2n+3 = al, where k+l = t(2n+1), then Q1 must contain rules
[1]a → a[1]ab, [1]b → aa[1]bbb, [1]a → [1]aa2n+1. Such set of rules allows to derive
in the next derivation step word w such that γ(w) = at+2n+1btat+2bt+2 . . . a2n(t+1)

b2n(t+1)a(2n+1)(t+1), which is not from the Ln+1.

• Let u2n+2 = b2ntak, u2n+3 = al, where k+l = t(2n+1), then Q1 must contain rules
[1]a → a[1]ab, [1]b → aa[1]bbb, a[1] → a2n+1a[1]. Such set of rules allows to derive
in the next derivation step word w such that γ(w) = at+2n+1btat+2bt+2 . . . a2n(t+1)

b2n(t+1)a(2n+1)(t+1), which is not from the Ln+1.

• Let u2n+2 = b2nt, u2n+3 = at(2n+1), then Q1 must contain rules [1]a → a[1]ab,
[1]b → aa[1]bbb, a[1] → a2n+1a[1]. Such set of rules allows to derive in the
next derivation step word w such that γ(w) = at+2n+1bt+1atba2n+1bt . . . a2n(t+1)

b2n(t+1) a(2n+1)(t+1), which is not from the Ln+1.

In all cases we got the contradiction so the assumption that Ln+1 belongs to
L(PEGn) does not hold and Ln+1 ∈ L(PEGn+1). Hence L(PEGn) (L(PEGn+1).

4. CONCLUSION

In this paper we have shown that the generative power of the PEG systems depends
on the number of types of agents in the definition of the system and on the number of
agents present in the environment as well. We have shown the hierarchy of the PEG
systems based on both mentioned properties.

On hierarchy of the positioned eco - grammar systems 705

ACKNOWLEDGEMENT

Article has been made in connection with project IT4Innovations Centre of Excellence, reg. no.
CZ.1.05/1.1.00/02.0070.

Research was also supported by the SGS/24/2013 Project of the Silesian university in Opava.

(Received July 31, 2013)

R E FER E NCE S

[1] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and Gh. Păun: Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London, 1994.

[2] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, and Gh. Păun: Eco-grammar systems. A
grammatical framework for studying lifelike interactions. Artif. Life 3 (1997), 1–28.

[3] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, and Gh. Păun: Eco(grammar) systems – A
preview. In: Cybernetics a Systems ’94. (R. Trappl, ed.) World Scientific, Singapore 1994,
pp. 941–948.

[4] L. Kari, G. Rozenberg, and A. Salomaa: L-systems. In: Handbook of Formal Languages,
Vol. 1, (G. Rozenberg and A. Salomaa, eds.) Springer-Verlag, Berlin 1997, pp. 253–324.

[5] A. Kelemenová and M. Langer: Positioned agents in eco-grammar systems. Internat. J.
Found. Comput. Sci. 22 (2011), 237–246.

[6] A. Kelemenová and M. Tupý: Monocultures and homogeneous environment in eco-
grammar systems. Fund. Inform. 76 (2007), 3, 349–365.

[7] M. Langer: Agents placed in the environment of eco-grammar systems – Positioned eco-
grammar systems. In: Pre-Procs. 1st Doctoral Workshop on Mathematical a Engineering
Methods in Computer Science (M. Češka et al., eds.) FI MU, Brno 2005, pp. 31–37.

[8] M. Langer and A. Kelemenová: Positioned agents in eco-grammar systems with border
markers and pure regulated grammars. Kybernetika 48 (2012), 502–517.

[9] M. Langer and A. Kelemenová: On Positioned eco-grammar systems and pure grammars
of Type 0. Neural Network World 2 (2013), 13, 2013, 81–91.

[10] C. Martin-Vide and Gh. Păun: New topics in colonies theory. Grammars 1 (1999), 209–
323.

[11] C. Martin-Vide, Gh. Păun: PM-Colonies. Comput. Artificial Intell. 17 (1998), 553–582.

[12] Gh. Păun and A. Salomaa: Families generated by grammars and L systems. In: Handbook
of Formal Languages, Vol. 1, (G. Rozenberg and A. Salomaa, eds.) Springer, Berlin, 1997,
pp. 811–859.

[13] P. Sośık: On the Hierarchy of Extended Conditional Tabled Eco-Grammar Systems.
Grammars 1 (1999), 3, 225–238.

Miroslav Langer, Institute of Computer Science and Research Institute of the IT4 In-
ovations Centre of Excelence, Silesian University, Bezručovo nám. 13, 746 01 Opava.
Czech Republic.

e-mail: miroslav.langer@fpf.slu.cz

	Introduction
	Positioned eco-grammar systems
	Hierarchy of the positioned eco-grammar systems
	Hierarchy based on the number of agents in the environment
	Hierarchy based on the number of the types of agents

	Conclusion

