Kybernetika 50 no. 4, 563-579, 2014

On the global dynamics of the cancer AIDS-related mathematical model

Konstantin E. Starkov and Corina Plata-AnteDOI: 10.14736/kyb-2014-4-0563

Abstract:

In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive orthant. Finally, we derive the main result of this work: sufficient conditions of ultimate cancer free behavior.

Keywords:

cancer growth model, AIDS, compact invariant set, omega-limit set, localization, ultimate cancer free dynamics

Classification:

34C11, 34D23, 92D25, 93D20

References:

  1. R. J. De Boer and A. S. Perelson: Target cell limited and immune control models of HIV infection: a comparison. J. Theoret. Biol. 190 (1998), 3, 201-214.   CrossRef
  2. T. Hraba, J. Doležal and S. Čelikovský: Model-based analysis of CD4+ lymphocyte dynamics in HIV infected individuals. Immunobiology 181 (1990), 108-118.   CrossRef
  3. A. P. Krishchenko: Estimation of domains with cycles. Comput. Math. Appl. 34 (1997), 325-332.   CrossRef
  4. A. P. Krishchenko: Localization of invariant compact sets of dynamical systems. Differ. Equ. 41 (2005), 1669-1676.   CrossRef
  5. A. P. Krishchenko and K. E. Starkov: Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 353 (2006), 5, 383-388.   CrossRef
  6. J. A. Levy: HIV and the Pathogenesis of AIDS. Springer-Verlag, New York 1999.   CrossRef
  7. J. Lou, Z. Ma, Y. Shao and L. Han: Modelling the interaction of T-cells, antigen presenting cells, and HIV-1 in vivo. Comput. Math. Appl. 48 (2004), 9-33.   CrossRef
  8. J. Lou, T. Ruggeri and C. Tebaldi: Modelling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior. Math. Biosci. Eng. 3 (2006), 2, 313-324.   CrossRef
  9. J. Lou, T. Ruggeri and Z. Ma: Cycles and chaotic behavior in an AIDS-related cancer dynamic model in vivo. J. Biol. Systems 15 (2007), 02, 149-168.   CrossRef
  10. A. S. Perelson, D. E. Kirschner and R. DeBoer: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114 (1993), 1, 81-125.   CrossRef
  11. L. Perko: Differential Equations an Dynamical Systems. Second edition. Springer-Verlag, New York, Berlin, Heidelberg 1996.   CrossRef
  12. K. E. Starkov: Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems. Phys. Lett. A 375 (2011), 3184-3187.   CrossRef
  13. K. E. Starkov and L. N. Coria: Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy. Nonlinear Anal. Real World Appl. 14 (2013), 1425-1433.   CrossRef
  14. K. E. Starkov and A. Y. Pogromsky: On the global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions. Int. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013).   CrossRef
  15. K. E. Starkov and D. Gamboa: Localization of compact invariant sets and global stability in analysis of one tumor growth model. Math. Methods Appl. Sci. (2013).   CrossRef
  16. K. E. Starkov and A. P. Krishchenko: On the global dynamics of one cancer tumour growth model. Commun. Nonlin. Sci. Numer. Simul. 19 (2014), 1486-1495.   CrossRef
  17. K. E. Starkov and A. Villegas: On some dynamical properties of one seven- dimensional cancer model with immunotherapy. Int. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014).   CrossRef
  18. P. A. Valle, L. N. Coria and K. E. Starkov: Estudio de la dinamica global para un modelo de evasion-inmune de un tumor cancerigeno. Comp. y Sistemas, accepted.   CrossRef
  19. L. Wang and M. Y. Li: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 200 (2006), 44-57.   CrossRef
  20. Q. Wen and J. Lou: The global dynamics of a model about HIV-1 infection in vivo. Ric. Mat. 58 (2009), 1, 77-90.   CrossRef