Kybernetika 50 no. 4, 530-543, 2014

Optimal control solution for Pennes' equation using strongly continuous semigroup

Alaeddin Malek and Ghasem AbbasiDOI: 10.14736/kyb-2014-4-0530

Abstract:

A distributed optimal control problem on and inside a homogeneous skin tissue is solved subject to Pennes' equation with Dirichlet boundary condition at one end and Rubin condition at the other end. The point heating power induced by conducting heating probe inserted at the tumour site as an unknown control function at specific depth inside biological body is preassigned. Corresponding pseudo-port Hamiltonian system is proposed. Moreover, it is proved that bioheat transfer equation forms a contraction and dissipative system. Mild solution for bioheat transfer equation and its adjoint problem are proposed. Controllability and exponentially stability for the related system is proved. The optimal control problem is solved using strongly continuous semigroup solution and time discretization. Mathematical simulations for a thermal therapy in the presence of point heating power are presented to investigate efficiency of the proposed technique.

Keywords:

optimal control, Pennes' bioheat equation, semigroup theory, thermal therapy, hyperthermia

Classification:

93E12, 62A10

References:

  1. S. A. Aghayan, D. Sardari, S. R. M. Mahdavi and M. H. Zahmatkesh: An inverse problem of temperature optimization in hyperthermia by controlling the overall heat transfer coefficient. Hindawi Publishing Corporation J. Appl. Math. 2013 (2013), 1-9.   CrossRef
  2. R. F. Curtain and H. Zwart: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag 21 of Text in Applied Mathematics, 1995.   CrossRef
  3. K. S. Cheng, V. Stakhursky, O. I. Craciunescu, P. Stauffer, M. Dewhirst and S. K. Das: Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modelling of 'virtual sources'. Physics in Medicine and Biology 53 (2008), 6, 1619-1635.   CrossRef
  4. Z. S. Deng and J. Liu: Analytical Solutions to 3D Bioheat Transfer Problems with or without Phase Change. In: Heat Transfer Phenomena and Applications (S. N. Kazi, ed.), Chapter 8, InTech, 2012.   CrossRef
  5. Z. S. Deng and J. Liu: Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J. Biomech. Eng. 124 (2002), 638-649.   CrossRef
  6. R. Dhar, P. Dhar and R. Dhar: Problem on optimal distribution of induced microwave by heating probe at tumour site in hyperthermia. Adv. Model. Optim. 13 (2011), 1, 39-48.   CrossRef
  7. P. Dhar, R. Dhar and R. Dhar: An optimal control problem on temperature distribution in tissue by induced microwave. Adv. Appl. Math. Biosciences 2 (2011), 1, 27-38.   CrossRef
  8. P. Dhar and R. Dhar: Optimal control for bio-heat equation due to induced microwave. Springer J. Appl. Math. Mech. 31 (2010), 4, 529-534.   CrossRef
  9. A. Gomberoff and S. A. Hojman: Non-standard construction of Hamiltonian structures. J. Phys. A: Math. Gen. 30 (1997), 14, 5077-5084.   CrossRef
  10. H. Heidari and A. Malek: Optimal boundary control for hyperdiffusion equation. Kybernetika 46 (2010), 5, 907-925.   CrossRef
  11. H. Heidari, H. Zwart and A. Malek: Controllability and Stability of {3D} Heat Conduction Equation in a Submicroscale Thin Film. Department of Applied Mathematics, University of Twente, Enschede 2010, pp. 1-21.   CrossRef
  12. S. Karaa, J. Zhang and F. Yang: A numerical study of a 3D bioheat transfer problem with different spatial heating. Math. Comput. Simul. 68 (2005), 4, 375-388.   CrossRef
  13. T. Loulou and E. P. Scott: Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method. Numer. Heat Transfer, Part A 42 (2002), 7, 661-683.   CrossRef
  14. A. Malek, Z. Bojdi and P. Golbarg: Solving fully {3D} microscale dual phase lag problem using mixed-collocation, finite difference discretization. J. Heat Transfer 134 (2012), 9, 094501-094506.   CrossRef
  15. A. Malek, R. Ebrahim Nataj and M. J. Yazdanpanah: Efficient algorithm to solve optimal boundary control problem for Burgers' equation. Kybernetika 48 (2012), 6, 1250-1265.   CrossRef
  16. A. Malek and S. H. Momeni-Masuleh: A mixed collocation-finite difference method for {3D} microscopic heat transport problems. J. Comput. Appl. Math. 217 (2008), 1, 137-147.   CrossRef
  17. S. H. Momeni-Masuleh and A. Malek: Hybrid pseudo spectral-finite difference method for solving a {3D} heat conduction equation in a submicroscale thin film. Numer. Methods Partial Differential Equations 23 (2007), 5, 1139-1148.   CrossRef