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REALIZABILITY OF PRECOMPENSATORS
IN LINEAR MULTIVARIABLE SYSTEMS:
A STRUCTURAL APPROACH

Javier Ruiz-León and Eduardo Castañeda

In this work, given a linear multivariable system, the problem of static state feedback re-
alization of dynamic compensators is considered. Necessary and sufficient conditions for the
existence of a static state feedback that realizes the dynamic compensator (square or full col-
umn rank compensator) are stated in structural terms, i. e., in terms of the zero-pole structure
of the compensator, and the eigenvalues and the row image of the controllability matrix of
the compensated system. Based on these conditions a formula is presented to find the state
feedback matrices realizing a given compensator. It is also shown that the static state feedback
realizing the compensator is unique if and only if the closed-loop system is controllable.
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1. INTRODUCTION

The design of a state feedback control law having the same effect from the input-output
point of view than a certain dynamic precompensator is a problem often encountered in
linear control theory. Indeed, in some problems where state feedback is used, a possible
approach is to relate the solution of the problem to the issue of feedback realizability
of compensators. This approach has been used in problems related to desirable input-
output characteristics of the controlled system, such as decoupling [12], model matching
[8], etc. Roughly speaking, a suitable dynamic compensator is found such that the
compensated system has the required properties, and then the solution to the problem
(the state feedback) is obtained by finding the conditions for the feedback realizability
of the given compensator.

The key problem of this approach consists in finding conditions under which the
desired compensator is feedback realizable. The problem of realizability of dynamic
compensators has already been solved, in the sense that there exist necessary and suf-
ficient conditions under which the compensator is realizable ([3, 4, 6, 9, 10]). The first
solution to this problem was presented by Hautus and Heymann in [3] for nonsingular
compensators, where the realizability conditions are stated in terms of a polynomial
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matrix description of the system. The general case of non-square full column rank com-
pensators was considered by Kučera and Herrera [11], Herrera [4], and Castañeda and
Ruiz-León [1], where different realizability conditions are presented. In fact, the con-
ditions given in [10] are based on a polynomial matrix description of the system, the
conditions in [4] are expressed in terms of a constant basis for the left kernel of a rational
matrix, and in [1] the authors presented necessary structural conditions for the realiz-
ability of full column rank compensators. A necessary condition for the realizability of
full column rank compensators in terms of Morse’s list I2 is presented in [5].

Although the problem of realizability of dynamic compensators has already been
solved, there do not exist conditions in the general case relating the realizability of
compensators to the structural properties of the system or the closed-loop system as
such. The structural conditions are an important issue, since the analysis of several
problems in linear control theory has as a starting point the structural information
of the system, therefore a structural interpretation of the realizability conditions of a
given precompensator would provide a deeper understanding of the solution to these
problems, and it would help to find the solution to unsolved problem, for instance,
non-regular decoupling and model matching problems.

In this paper, we present necessary and sufficient structural conditions under which a
dynamic compensator can be realized via a static state feedback control law. In the case
of non singular compensators, necessary and sufficient conditions are stated in terms
of the zeros of the compensator and the row image of the controllability matrix of the
system. Based on these conditions, a simple formula is derived to find the static state
feedback matrices realizing a given compensator.

In the case of full column rank compensators, a non singular static state feedback is
required to realize it. The difficulty of this problem arises from the fact that a non-regular
state feedback control law can modify the structural properties of the system. Necessary
and sufficient conditions for the realizability of full column rank compensators are stated
in terms of the poles of the compensator, and the eigenvalues and the row image of the
controllability matrix of the compensated system. A formula to find the required state
feedback matrices realizing a given compensator is presented. It is also shown that the
state feedback is unique if and only if the closed-loop system is controllable. If the
compensated closed-loop system is non controllable, the set of static state feedbacks
realizing the full column rank compensator is parameterized.

This paper is organized as follows. Preliminaries and relevant previous results are
summarized in Section 2. The structural conditions of realizability for non-singular dy-
namic compensators are presented in Section 3. Realizability conditions for full column
rank compensators in structural terms are given in Section 4 along with an illustrative
example, and finally some conclusions are presented in Section 5.

2. PRELIMINARIES

Throughout the paper, R denotes the field of real numbers. Accordingly, Rn stands for
the n−dimensional vector space over R and Rm×r stands for the set of m× r matrices
with entries in R; Rp(s) denotes the set of proper rational functions over R and Rm×rp (s)
denotes the set of m× r matrices with entries in Rp(s).
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Let Σ(A,B,C) represent a linear multivariable system described by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the state, input and output vectors
of the system, and

T (s) = C(sI −A)−1B (2)

is the transfer matrix of the system.
Considering the static state feedback (F,G)

u(t) = Fx(t) +Gv(t), (3)

where F ∈ Rm×n and G ∈ Rm×r are constant matrices, with rank G = r, then the
closed-loop transfer matrix of the system is given by

TF,G(s) = C(sI −A−BF )−1BG. (4)

If r = m (matrix G is square and nonsingular), then (3) is said to be a regular state
feedback, and if r < m then it is said to be a nonregular state feedback.

After some algebraic manipulations, (4) can be expressed as

TF,G(s) = T (s)W (s), (5)

where
W (s) = [I − F (sI −A)−1B]−1G (6)

is a proper rational matrix. In the case of regular state feedback, (6) is a biproper
matrix, i. e. a proper rational matrix whose inverse is also proper rational. In the case
of non-regular state feedback, (6) is column biproper, i. e.

rank lim
s→∞

W (s) = r.

Thus, the action of a state feedback (F,G) on the system Σ(A,B,C) can be repre-
sented in transfer function matrix form as the post-multiplication of the system transfer
function matrix T (s) by a proper rational matrix W (s).

The converse problem, i. e. under which conditions a proper rational matrix that
post-multiplies T (s) can be realized using a state feedback law applied to the system,
is known as feedback realizability of compensators. Then, a given proper matrix C(s)
(usually called compensator or precompensator) is said to be feedback realizable if there
exists a static state feedback control law (F,G) such that

C(s) = [I − F (sI −A)−1B]−1G.

The realizability of compensators is used in some problems where desired character-
istics can be given in terms of the transfer matrix of the closed-loop system. Indeed, the
compensator realizability is a possible way to obtain necessary and sufficient conditions
for some control problems where the state feedback is used, for example in decoupling
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where the closed-loop transfer function matrix is required to be diagonal, or in model
matching where it is considered to match a desired transfer function matrix, etc. Then,
given a compensator C(s) such that the transfer matrix T (s)C(s) is the solution to some
of these problems, the next step is to determine under which conditions there exists a
state feedback realizing the compensator C(s).

Conditions for the static state feedback realizability of dynamic compensators have
already been reported in the literature. The following results state the conditions for
a proper compensator to be realizable, Lemma 2.1 for the case of square nonsingular
compensators, and Lemma 2.2 for the case of full column rank compensators.

Lemma 2.1. (Hautus and Heymann [3]) Let the matrices N1(s) and D(s) be a right
coprime matrix fraction description of the system Σ(A,B, In), and let C(s) ∈ Rm×mp (s)
be a nonsingular compensator. Then C(s) is feedback realizable if and only if

i) C(s) is biproper, and

ii) C−1(s)D(s) is a polynomial matrix.

Lemma 2.2. (Herrera [4]) The full column rank compensator C(s) ∈ Rm×rp (s) is static
state feedback realizable if and only if the left Kronecker indexes {µi} of the matrix

H(s) :=

[
(sI −A)−1BC(s)

C̄(s)

]
, (7)

where C̄(s) is the strictly proper part of C(s), satisfy the following two conditions:

a) For some integer q,

µ1 = · · · = µm = · · · = µm+q = 0

0 < µm+q+1 ≤ · · · ≤ µn+m−ϕ

ϕ := rank H(s).

b) Among the rows corresponding to µ1, . . ., µm+q in a minimal basis for the left
kernel of H(s), there exist m rows which have the form [X Em], where Em is a
m×m nonsingular constant matrix.

A way to obtain the required non regular static state feedback (F,G) realizing the
full column rank compensator C(s) is given by

F = −E−1
m X, G = lim

s→∞
C(s).

Note that the previous results stating necessary and sufficient conditions for the real-
izability of dynamic compensators are not related in any way to the structural properties
of the system, the compensator or the compensated system. As we stated before, this is
an important issue, since we believe such an interpretation would provide a deeper un-
derstanding of the existing solution to the problems in linear control theory approached
by realization of compensators.
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3. NON SINGULAR COMPENSATORS

In this section necessary and sufficient conditions in structural terms for the realizability
of non singular compensators are presented.

Observe that for the realizability of a nonsingular compensator C(s) ∈ Rm×mp (s)
a regular static state feedback (F,G) is used. Then, the basic problem is to find the
conditions for the existence of a state feedback (F,G) such that

C(s) = [I − F (sI −A)−1B]−1G.

Note that if C(s) is biproper, then G = C0 = lims→∞ C(s) is the constant part of C(s),
and C̄(s) is a strictly proper rational matrix, such that

C(s) = C0 + C̄(s).

Then, the problem remains to find the necessary and sufficient conditions (in our
case, in structural terms) for the existence of the state feedback matrix F .

After some algebraic manipulations on (6), it is obtained that

F (sI −A)−1B = C̄(s)C−1(s). (8)

Observe that the feedback realization of C(s) is equivalent to the existence of a
constant solution F to (8).

Now, we have that [2]

(sI −A)−1 =
1

det(sI −A)
Adj(sI −A) (9)

where

Adj(sI −A) = [Isn−1 + (A + a1I)sn−2 + · · ·+ (An−1 + a1A
n−2 + · · ·+ an−1I)] (10)

and
a(s) = det(sI −A) = sn + a1s

n−1 + · · ·+ an−1s+ an (11)

is the characteristic polynomial of the system, and its roots are the eigenvalues of the
system. Then, from (8) we have that

FAdj(sI −A)B = a(s)C̄(s)C−1(s). (12)

A first necessary condition for the realizability of the compensator C(s) on the system
Σ(A,B,C) in structural terms is the following.

Theorem 3.1. Let C(s) be a non singular compensator realizable on the system Σ(A,B,C).
Then all zeros of C(s), given by the roots of the numerator polynomials in the Smith–
McMillan form of C(s), are eigenvalues of the system.



Realizability of precompensators 517

P r o o f . Assuming that there exists a constant matrix F satisfying (12), this implies
that a(s)C(s)C−1(s) is a polynomial matrix. Using the Smith–McMillan form of C(s),
we have that there exist unimodular matrices U1(s) and U2(s), such that

C(s) = U1(s) diag
{
εi(s)
ψi(s)

}m

i=1

U2(s),

where the finite zeros of C(s) are the roots of the polynomials εi(s).
Then,

a(s)C(s)C−1(s) = a(s)[I −GC−1(s)] = a(s)I − a(s)GU−1
2 (s) diag

{
ψi(s)
εi(s)

}m

i=1

U−1
1 (s).

Since the above equation is polynomial, then a(s) is divided by εi(s), which implies that
all finite zeros of the compensator C(s) are eigenvalues of the system. �

The previous condition relating the zeros of C(s) to the eigenvalues of the system
is a necessary condition for C(s) to be realizable, but it can be shown that it is not a
sufficient condition, i. e. all zeros of C(s) being eigenvalues of the system does not imply
that C(s) is realizable.

It is considered next the problem of obtaining necessary and sufficient conditions for
the realizability of the biproper compensator C(s) in structural terms.

Denote
P (s) = a(s)C̄(s)C−1(s), (13)

then, using (9), (13), and (8), we have that

FAdj(sI −A)B = P (s). (14)

It can be seen that P (s) is a polynomial matrix of degree less than or equal to n (which
is a necessary condition for (8) to have a constant solution F ).

Considering that this is the case, P (s) can be written as

P (s) = P0s
n−1 + P1s

n−2 + · · ·+ Pn−1. (15)

Substituting (15) in (14), it is obtained that

FAdj(sI −A)B = P0s
n−1 + P1s

n−2 + · · ·+ Pn−1, (16)

and substituting (10) in (14), we have that

FAdj(sI −A)B = F [Isn−1 + (A + a1I)sn−2 + · · ·+ (An−1 + a1A
n−2 + · · ·+ an−1I)]. (17)

From (16) and (17), the following relationships are obtained for each power of s

sn−1 → P0 = FB

sn−2 → P1 = FAB + a1FB

sn−3 → P2 = FA2B + a1FAB + a2FB

... →
...

s0 → Pn−1 = FAn−1B + · · ·+ an−1FB.
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From the above relations the equation (14) can be expressed using matrices with real
elements as follows

FΩΓ = P, (18)

where
Ω =

[
B AB · · · An−1B

]
(19)

is the controllability matrix of the system Σ(A,B,C),

P = [P0 P1 · · · Pn−1], (20)

and

Γ =



Im a1Im a2Im · · · an−1Im

0 Im a1Im · · · an−2Im

0 0 Im · · · an−3Im

...
...

. . .
...

0 0 0 0 Im


. (21)

Now, from the equation (18), it is obtained that

FΩ = PΓ−1. (22)

Then, it can be seen that there exists a constant solution F to (8) if and only if PΓ−1

belongs to the row image of the controllability matrix Ω. Thus, the following result is
obtained.

Theorem 3.2. Let Σ(A,B,C) be a linear multivariable system and let C(s) be a
biproper compensator. Then C(s) is static state feedback realizable if and only if

i) the zeros of C(s) are eigenvalues of the open-loop system, i. e. P (s) given by (13)
is a polynomial matrix with column degrees less than or equal to n;

ii) the matrix PΓ−1 belongs to the row image of the controllability matrix Ω of the
system, where P and Γ are respectively given by (20) and (21).

The previous result states structural conditions for the feedback realizability of biproper
dynamic compensators. These conditions are structural in the sense that they relate the
realizability of C(s) to structural properties of the system, namely zeros of C(s), system
eigenvalues, and the row image of the controllability matrix of the system.

Structural conditions for the realizability of dynamic compensators in the case of
single-input-single-output (SISO) systems are straightforward.

Remark 3.3. In the particular case of SISO systems, notice that condition ii) of Theo-
rem 3.2 is always satisfied if the system is controllable. Then, a given biproper rational
function c(s) is state feedback realizable for a SISO system if and only if all zeros of c(s)
are eigenvalues of the system.
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With respect to the static state feedback realizing C(s), it is noted that if the system
Σ(A,B,C) is controllable, then its controllability matrix Ω has full row rank n, and
it follows that ΩΩ′ is nonsingular, where Ω′ is the transpose of Ω. Therefore, if the
conditions of Theorem 3.2 are satisfied, the required static state feedback realizing C(s)
is derived from (18), and is given by

F = PΓ−1Ω′(ΩΩ′)−1, G = C0. (23)

If the controllability matrix of the system Σ(A,B,C) has rank ρ < n, then the static
state feedback realizing C(s) is not unique. The matrix F can be parameterized as

F = F0 + LK, (24)

where F0 is a particular solution to (8), K ∈ R(n−ρ)×n is a basis for the left kernel of Ω,
and L is any m× (n− ρ) constant matrix.

4. FULL COLUMN RANK COMPENSATORS

Obtaining structural necessary and sufficient conditions for the feedback realizability of
full column rank compensators is more complicated than the previous considered case of
nonsingular compensators. The main reason for this is that a non-regular state feedback
needs to be applied to realize a full column rank compensator, and as it is well known,
such a feedback can modify the structural information of the system Σ(A,B,C), for
instance, the controllability, infinite structure, etc.

Since the structural information of the system Σ(A,B,C) is not invariant under
non-regular state feedback, then the relevant structural information for the realizability
of a full column rank compensator should be obtained from the compensated system,
i. e. the system considering the application of a given compensator. Then, in finding a
structural interpretation of the conditions for the static state feedback realizability of
full column rank compensators, it will be used a controllable state space representation
of the matrix (sI − A)−1BC(s). Certainly, if C(s) is realizable via a non regular static
state feedback (F,G) then, there exists a direct connection between the structure of the
obtained controllable state space representation of the matrix (sI−A)−1BC(s) and the
structure of the compensated closed-loop system Σ(A+BF,BG,C).

Let C(s) ∈ Rm×rp (s) be a full column rank compensator and let T (s) be the transfer
matrix of the system Σ(A,B,C). Then, the transfer matrix TC(s) of the compensated
system is considered in this work as the one obtained when applying the compensator
on the system, i. e.,

TC(s) = T (s)C(s) = C(sI −A)−1BC(s).

Let us first consider that there exists (F,G) such that

TC(s) = TF,G(s) = C(sI −A−BF )−1BG,

this implies that the compensator C(s) is feedback realizable, i. e.,

C(s) = [I − F (sI −A)−1B]−1G,
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with
G = lim

s→∞
C(s) (25)

a full column rank matrix.
After some algebraic manipulations, it is obtained that

C(s)−G = F (sI −A)−1BC(s), (26)

which can also be written as

C(s)−G = F (sI −A−BF )−1BG. (27)

Observe that a non regular static state feedback is used to realize this kind of com-
pensator, since matrix G is non-square but of full column rank.

On the other hand, it can be seen that the static state feedback realization of the full
column rank compensator C(s) is equivalent to the existence of a constant solution F
to (26).

Without loss of generality, let Σ(A,B, C) be a controllable state space representation
of order q ≤ n of the matrix (sI − A)−1BC(s). Then, matrices A, B and C are,
respectively, of dimensions (q × q), (q × r) and (n× q).

Further, Σ(A,B, C) is a controllable state space representation of (sI − A)−1BC(s),
and since

T (s)C(s) = C(sI −A)−1BC(s),

then a controllable state space representation for the transfer matrix of the compensated
system T (s)C(s) is given by Σ(A,B, C∆), where C∆ = CC.

In order to provide the main results in this section, it is first introduced a result about
the controllable state space representation Σ(A,B, C) of the matrix (sIn − A)−1BC(s)
and some characteristics of matrix C. The following result will be needed afterwards.

Theorem 4.1. Let C(s) be a full column rank compensator realizable by static state
feedback (F,G) on the system Σ(A,B,C). Let Σ(A,B, C) be a controllable state space
representation of order q ≤ n of the matrix (sIn − A)−1BC(s). Then the following
conditions hold:

i) C is a n× q matrix of full column rank.

ii) The columns of C form a basis for the range of the controllability matrix CF,G of
the compensated closed-loop system Σ(A+BF,BG,C).

P r o o f . Suppose that a particular state feedback (F,G) is applied to realize the ac-
tion of the compensator C(s) on the system Σ(A,B,C). Suppose that the compensated
closed-loop system Σ(A+BF0, BG,C) is not controllable and denote CF,G its control-
lability matrix. Let {v1, v2, . . . , vq} be a basis for the range of CF,G and define the n×n
similarity transformation matrix

T =
[
v1 v2 · · · vq Tn−q

]
,
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where the n × (n − q) matrix Tn−q contains n − q linear independent vectors chosen
so that T is nonsingular. It is noted that a state space representation for the matrix
(sI −A)−1BC(s) is given by Σ(A+BF,BG, In), then T decomposes the system Σ(A+
BF,BG, I) into controllable-uncontrollable parts.

We have that
(sI −A)−1BC(s) = (sI −A−BF )−1BG.

When the similarity transformation T is applied to the system Σ(A + BF,BG, In),
it is obtained that

T−1(A+BF )T =
[
Ac ∆12

0 ∆nc

]
, T−1BG =

[
Bc
0

]
, InT =

[
V Tn−q

]
,

where
V =

[
v1 v2 · · · vq

]
. (28)

Therefore, Σ(Ac, Bc,V) is a controllable state space representation of (sI−A)−1BC(s).
Moreover

(sI −A)−1BC(s) = C(sI −A)−1B,

then it holds that

(sI −A)−1BC(s) = V(sI −Ac)−1Bc = C(sI −A)−1B.

Now, there exists a nonsingular transformation matrix E, such that

E−1AcE = A, E−1Bc = B, VE = C.

Since E is a non singular matrix, then C = VE is a full column rank matrix, this
proves i). Now, it can be seen that the span of VE and C is the same, therefore C is a
basis for the range of CF,G, which is ii). �

When it is used the state space representation Σ(A,B, C) of (sI−A)−1BC(s) in (26),
it is obtained that

FC(sI −A)−1B = C(s)−G. (29)

We have that
(sI −A)−1 =

1
det(sI −A)

Adj(sI −A) (30)

where

Adj(sI −A) = [Isq−1 + (A+ α1I)sq−2 + · · ·+ (Aq−1 + α1Aq−2 + · · ·+ αq−1I)] (31)

and
α(s) = det(sI −A) = sq + α1s

q−1 + · · ·+ αq−1s+ αq. (32)

When (30) is replaced in (29), it is obtained

FC
[
Adj(sI −A)B

α(s)

]
= C(s)−G,
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and then
FCAdj(sI −A)B = α(s)[C(s)−G]. (33)

Based on the above equations, it is first presented a necessary structural condition
for the realizability of a given full column rank compensator.

Theorem 4.2. Let C(s) ∈ Rm×rp (s) be a full column rank compensator realizable on
the system Σ(A,B,C). Then the poles of C(s) obtained from its Smith–McMillan form
are eigenvalues of the system Σ(A,B, C).

P r o o f . It is supposed that there exists (F,G), such that

C(s) = [I − F (sI −A)−1B]−1G.

After some algebraic manipulations, it is obtained that

F (sI −A)−1BC(s) = C(s)−G,

which also can be written as

FC(sI −A)−1B = C(s)−G.

Now, the finite structure of C(s) can be obtained from its Smith–McMillan form.
Then, the poles of C(s) are given by the roots of the denominator polynomials in the
Smith–McMillan form [7] of C(s), i. e.

C(s) = U1(s)

[
diag

{
εi(s)
ψi(s)

}
0

]
U2(s)

where U1(s) and U2(s) are unimodular matrices. Then

FC(sI −A)−1B = U1(s)

[
diag

{
εi(s)
ψi(s)

}
0

]
U2(s)−G.

From this equation, it is finally obtained

FCAdj(sI −A)B = U1(s)α(s)

[
diag

{
εi(s)
ψi(s)

}
0

]
U2(s)− α(s)G,

where the eigenvalues of the system Σ(A,B, C) are the roots of its characteristic polyno-
mial α(s) = det(sI−A). Since the left hand side of the previous equation is a polynomial
matrix, so it should be the right hand side, which implies that ψi(s) | α(s), i. e. the
poles of C(s) are eigenvalues of the system Σ(A,B, C). �

The previous condition relating the poles of C(s) to the eigenvalues of the system
Σ(A,B, C) is a necessary condition for C(s) to be realizable, but it can be shown that
such condition is not sufficient.
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It is considered next the problem of obtaining necessary and sufficient conditions for
the realizability of full column rank compensators in structural terms.

Define
Q(s) = α(s)[C(s)−G], (34)

then, from (33), it is obtained that

FCAdj(sI −A)B = Q(s). (35)

It is easily seen that Q(s) is a polynomial matrix if and only if the poles of C(s) are
eigenvalues of the system Σ(A,B, C) (see the proof of Theorem 4.2).

On the other hand, if the compensator C(s) is static state feedback realizable, it
can be seen that the column degrees of the left hand side of (35) are less than q, since
Adj(sI − A) has column degrees less than q, denoted as degci Adj(sI − A) < q and F ,
C, and B are real matrices. This implies that the right hand side of (35) has column
degrees less than q, i. e. degciQ(s) < q.

Certainly, a necessary condition for the static sate feedback realizability of the com-
pensator C(s) is that Q(s), given in (34), is a polynomial matrix whose column degrees
are less than q.

Suppose that Q(s) is a polynomial matrix with degciQ(s) < q. Then Q(s) can be
written as

Q(s) = α(s)[C(s)−G] = Q0s
q−1 +Q1s

q−2 + · · ·+Qq−1. (36)

Moreover, following a procedure similar to the one presented in Section 3, (35) can be
expressed using matrices with real elements as follows

FCRT =Q, (37)

where
R =

[
B AB · · · Aq−1B

]
(38)

is the controllability matrix of the pair (A, B),

Q = [Q0 Q1 · · · Qq−1], (39)

and

T =



Ir α1Ir α2Ir · · · αq−1Ir

0 Ir α1Ir · · · αq−2Ir

0 0 Ir · · · αq−3Ir

...
...

. . .
...

0 0 0 0 Ir


. (40)

Now, from the equation (37), it is obtained that

FCR = QT −1. (41)

Note that the row span of CR and C is the same. The reason for this is because C,
which is a full column rank matrix, only produces a linear combination of the rows of
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R. Therefore, it can be seen that there exists a constant solution F to (41) if and only
if QT −1 belongs to the row image of the controllability matrix R. Thus, the following
result is obtained.

Theorem 4.3. Let Σ(A,B,C) be a linear multivariable system. Let Σ(A,B, C) be a
controllable state space representation of order q of the matrix (sI −A)−1BC(s), where
C(s) is a full column rank compensator. Then, there exists a non regular static state
feedback realizing C(s) ∈ Rm×rp (s) if and only if

i) Q(s), given in (36), is a polynomial matrix with degci Q(s) < q,

ii) the matrix QT −1 belongs to the row image of the controllability matrix R of the
pair (A,B), where Q and T are respectively given by (39) and (40).

Note that any controllable state space representation of order q ≤ n of the matrix
(sI−A)−1BC(s) can be used to verify the static state feedback realizability conditions for
C(s) given in Theorem 4.3. Indeed, let Σ(A1,B1, C1) and Σ(A2,B2, C2) be two different
controllable state space representations of order q ≤ n of the matrix (sI − A)−1BC(s).
Then, they are related by a non singular transformation P, such that

P−1A1P = A2, P−1B1 = B2, C1P = C2.

Moreover, the controllability matrices

R1 =
[
B1 A1B1 · · · Aq−1

1 B1

]
and

R2 =
[
B2 A2B2 · · · Aq−1

2 B2

]
are also related by P. That is

R1 = PR2

which implies that the row image of R1 and R2 is the same.

4.1. A method to find a realizing static state feedback

In this subsection, for a given full column rank compensator C(s) satisfying the condi-
tions of Theorem 4.3, it is shown that the static state feedback realizing the action of
C(s) on the system is unique if and only if the rank of the controllability matrix R is n.
Then, if (F,G) is unique, a formula to obtain the required static state feedback (F,G)
is provided. Moreover, if such non regular static state feedback is not unique then, it is
presented a result characterizing all the set of matrices (F,G) realizing the compensator
C(s).

According to Theorem 4.1, in the case that q = n the state space representation
Σ(A,B, C) is observable and controllable, i. e. C is a non singular matrix. Thus, a
formula to find the required static state feedback is given by

F = QT −1R′(RR′)−1C−1. (42)

In the following, a result relating the uniqueness of (F,G) to the rank of the control-
lability matrix R is presented.
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Theorem 4.4. Let C(s) ∈ Rm×r(s) be a full column rank compensator realizable on
the system Σ(A,B,C), then the static state feedback (F,G) realizing C(s) is unique if
and only if the rank of the controllability matrix R of the system Σ(A,B, C) is n.

P r o o f . (Only if) If the controllability matrix R in the equation

FCR = QT −1

is supposed of rank n, then C is a n×n nonsingular matrix. This implies that the matrix
CR does not have linearly dependent rows, therefore F is unique.

(If) If the state feedback F is supposed unique, this implies that the matrix CR in
the equation

FCR = QT −1

does not have linearly dependent rows, therefore C is a n×n nonsingular matrix and R
has full row rank n, i. e. the compensated closed-loop system is controllable. �

Consequently, if the controllability matrix R has rank q < n, then there exists an
infinity of nonregular static state feedbacks equivalent to the action of the realizable full
column rank compensator. The non-unique matrix F can be parametrized as

F = F0 + LK,

where F0 is a particular solution to (37), with K ∈ R(n−q)×n a basis for the left kernel
of C, and L ∈ Rm×(n−q) is an arbitrary real matrix.

It has been proved in Theorem 4.1 that the columns of C form a basis for the
range of the controllability matrix CF,G of the compensated closed-loop system Σ(A +
BF,BG,C). This implies that a basis for the left kernel of C is also a basis for the left
kernel of CF,G. Then, it is arrived to the following result.

Theorem 4.5. Let C(s) be a full column rank compensator that is feedback realizable
on the system Σ(A,B,C) via a static state feedback (F,G) control law. Suppose that
the compensated closed-loop system Σ(A+BF,BG,C) is not controllable and let q < n
be the rank of its controllability matrix. Then there exists an infinity of non-regular
static state feedback control laws (F,G) that realize C(s) that are parameterized as

F = F0 + LK,

where (F0, G) is a particular static state feedback realizing C(s), with K ∈ R(n−q)×n

a basis for the left kernel of the compensated closed-loop system controllability matrix,
and L ∈ Rm×(n−q) is an arbitrary matrix.

The next example illustrates the main results of this section.
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Example 4.6. Let the controllable system Σ(A,B,C) be given by

A =



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B =



1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


,

C =

 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0

 ,
with transfer matrix

T (s) =

 1
s 0 0 0 0
0 0 0 1

s 0
1
s2

1
s2

1
s3 0 0

 .
Consider the following full column rank compensator

C(s) =


s
s+1 0 0
− s
s+1 0 s2

(s+1)(s+3)

0 0 0
0 s

s+2 0
0 0 0

 ,
which produces

T (s)C(s) =

 1
s+1 0 0
0 1

s+2 0
0 0 1

(s+3)(s+1)

 ,
resulting in a decoupled compensated system, i. e. the proposed compensator is such
that in the compensated system the outputs are controlled independently [12].

Can the compensator C(s) be realized by non regular static state feedback? To
answer this, let us apply Theorem 4.3.

It follows that

(sI −A)−1BC(s) =



1
s+1 0 0

− 1
s(s+1) 0 1

(s+1)(s+3)

− 1
s+1 0 s

(s+1)(s+3)

1
s(s+1) 0 0

0 0 0
0 0 0
0 1

s+2 0
0 0 0


.
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A controllable state space representation Σ(A,B, C) of the rational matrix (sI−A)−1BC(s)
is given by

A =

266664
0 0 0 0 0
0 −2 0 0 0
0 0 3

4
0 35

4

1 0 0 −1 0
0 0 − 3

4
0 − 19

4

377775 , B =

266664
1 0 0
0 1 0
0 0 − 1

4

0 0 0
0 0 1

4

377775 , C =

266666666664

1 0 0 −1 0
0 0 1 −1 1
−1 0 0 1 4
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

377777777775
.

Observe that q = 5 < n is the order of the state space representation Σ(A,B, C) whose
characteristic polynomial is given by

α(s) = s (s+ 3) (s+ 2) (s+ 1)2 .

The controllability matrix R associated to Σ(A,B, C) is

R =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −2 0 0 4 0 0 −8 0 0 16 0
0 0 − 1

4 0 0 2 0 0 − 29
4 0 0 23 0 0 − 281

4
0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0
0 0 1

4 0 0 −1 0 0 13
4 0 0 −10 0 0 121

4

 .
It is obtained that

Q(s) = a(s)[C(s)−G]

=

266664
−s4 − 6s3 − 11s2 − 6s 0 0
s4 + 6s3 + 11s2 + 6s 0 −4s4 − 15s3 − 17s2 − 6s

0 0 0
0 −2s4 − 10s3 − 14s2 − 6s 0
0 0 0

377775 ,

where

G = lim
s→∞

C(s) =


1 0 0
−1 0 1
0 0 0
0 1 0
0 0 0

 .
Note that degciQ(s) < q, therefore the condition i) of Theorem 4.3 is satisfied.

Now, the matrix QT −1 is given by

QT −1 =

266664
−1 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0
1 0 −4 −1 0 13 1 0 −40 −1 0 121 1 0 −364
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 4 0 0 −8 0 0 16 0 0 −32 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

377775 ,
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and it can be verified that it belongs to the row image of the controllability matrix R.
Then the full column rank compensator C(s) is static state feedback realizable.

From (41), it is obtained that a particular static state feedback (F0, G) realizing the
compensator C(s) is given by

F0 =


−1 0 0 0 0 0 0 0
−3 −3 −4 −3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0

 , G =


1 0 0
−1 0 1
0 0 0
0 1 0
0 0 0

 .
Since the controllability matrix R has rank q < n, then there exists an infinity of

non-regular static state feedbacks equivalent to the action of the realizable full column
rank compensator that are parameterized as

F = F0 + LK,

where L ∈ R5×3 is an arbitrary matrix, and

K =

 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 .
In [4], the method to obtain the required static state feedback (F,G) is based on a

minimal basis for the left kernel of a rational matrix (see Lemma 2.2). Obtaining a static
minimal basis for the kernel of a rational matrix is generally complicated. However, there
exist computational programs, for instance Matlab, that quickly provides a minimal basis
for a given rational matrix. When a computational tool is used to obtain it, generally the
obtained basis has numerical errors, and this leads to an incorrect static state feedback.

In this section, it has been presented a new method to obtain a static state feedback
(F,G) having the same effects that the realizable compensator C(s) produces on the sys-
tem Σ(A,B,C). As conclusion, it can be said that an advantage of the method proposed
in this work, with respect to the solution presented in [4], is the use of only real matrices
to obtain the required matrices F and G, these real matrices are directly obtained from
the controllability matrix and the characteristic polynomial of the compensated system.
Thus, the numerical error problem is avoided, and it leads to the correct required static
state feedback (F,G).

5. CONCLUSIONS

In this paper, we have presented a new solution for the realizability of dynamic compen-
sators in structural terms. It has been shown that the problem has a solution if and only
if a constant matrix belongs to the row image of the controllability matrix of the closed-
loop system along with a method to find such realizing state feedback. The static state
feedback is unique if and only if the closed-loop system is controllable. The row span
of the controllability matrix of both, closed-loop system and open-loop system, is the
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same when a realizable biproper compensator is considered. The proposed realizability
conditions are structural in the sense that the solution is related to the structural prop-
erties of the compensated system and compensator, such as the controllability matrix of
the compensated system, poles of the compensator and eigenvalues of the compensated
system.

As future work, we consider to tackle problems where non regular feedback is used,
and relating the obtained conditions to the solution of some of these problems.
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[8] V. Kučera: Exact model matching, polynomial equation approach. Int. J. Syst. Sci. 12
(1981), 1477–1484.
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