Kybernetika 50 no. 3, 436-449, 2014

Sliding subspace design based on linear matrix inequalities

Alán Tapia, Raymundo Márquez, Miguel Bernal and Joaquín CortezDOI: 10.14736/kyb-2014-3-0436

Abstract:

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.

Keywords:

sliding mode control, linear matrix inequalities, variable structure, sliding subspace design

Classification:

93B12, 90C25, 51M16

References:

  1. K. Abidi, J.-X. Xu and Y. Xinghuo: On the discrete-time integral sliding-mode control. IEEE Trans. Automat. Control 52 (2007), 4, 709-715.   CrossRef
  2. J. Ackermann and V. Utkin: Sliding mode control design based on Ackermann's formula. IEEE Trans. Automat. Control 43 (1998), 2, 234-237.   CrossRef
  3. D. Arezelier, M. Angulo and J. Bernussou: Sliding surface design by quadratic stabilization and pole placement. In: Proc. 4th European Control Conference, 1997.   CrossRef
  4. S. Boyd, L. El Ghaoui, E. Féron and V. {Balakrishnan}: Linear matrix inequalities in system and control theory. Stud. Appl. Math. 15 (1994).   CrossRef
  5. F. Castaños and L. Fridman: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Control 51 (2006), 5, 853-858.   CrossRef
  6. J.-L. Chang: Discrete sliding mode control of MIMO linear systems. Asian J. Control 4 (2002), 2, 217-222.   CrossRef
  7. Y.-P. Chen and J.-L. Chang: A new method for constructing sliding surfaces of linear time-invariant systems. Internat. J. System Sci. 31 (2000), 4, 417-420.   CrossRef
  8. H. Choi: On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 37 (1999), 1707-1715.   CrossRef
  9. H. Choi: LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems. IEEE Trans. Automat. Control 52 (2007), 4, 736-742.   CrossRef
  10. E. Cruz-Zavala, J. Moreno and L. Fridman: Uniform sliding mode controllers and uniform sliding surfaces. IMA J. Math. Control Inform. 29 (2012), 4, 491-505.   CrossRef
  11. M. C. De Oliveira and R. E. Skelton: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control. Springer, Berlin 1994.   CrossRef
  12. C. M. Dorling and A. S. I. Zinober: Two approaches to hyperplane desing in multivariable variable structure control systems. Internat. J. Control 44 (1986), 1, 65-82.   CrossRef
  13. C. M. Dorling and A. S. I. Zinober: Robust hyperplane desing in multivariable variable structure control systems. Internat. J. Control 48 (1988), 5, 2043-2054.   CrossRef
  14. B. Draženović, C. Milosavljević, B. Veselić and V. Gligić: Comprehensive approach to sliding subspace design in linear time invariant systems. In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.   CrossRef
  15. C. Edwards: Sliding Mode Control: Theory and Applications. Taylor and Francis, London 1998.   CrossRef
  16. C. Edwards: A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica 40 (2004), 10, 1761-1769.   CrossRef
  17. L. {Fridman}, J. {Moreno} and R. {Iriarte}: Sliding Modes After the First Decade of the 21st Century. Springer, Berlin 2011.   CrossRef
  18. C. Hermann, S. K. Spurgeon and C. Edwards: A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. Internat. J. Control 72 (2001), 1194-1209.   CrossRef
  19. J. Y. Huang and K. S. Yeung: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula. In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.   CrossRef
  20. Y. S. Hung and A. G. J. Macfarlan: Multivariable Feedback: A Quasi-Classical Approach. Volume 40. Springer-Verlag, Berlin 1982.   CrossRef
  21. J. Kautsky, N. K. Nichols and P. Van Dooren: Robust pole assignment in linear state feedbacks. Internat. J. Control 41 (1985), 2, 1129-1155.   CrossRef
  22. M. Kočvara and M. Sting: Penbmi, version 2.1. www.penopt.com, 2008.   CrossRef
  23. A. J. Mehta, B. Bandyopadhyay and A. Inoue: Reduced-order observer design for servo system using duality to discrete-time sliding-surface design. IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800.   CrossRef
  24. Y. Pan, K. D. Kumar and G. Liu: Reduced-order design of high-order sliding mode control system. Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078.   CrossRef
  25. K. Tanaka and H. O. Wang: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.   CrossRef
  26. U. Utkin: Sliding Modes in Control and Optimization. Springer, Berlin 1992.   CrossRef
  27. V. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions. In: Conference on Decision and Control 1996.   CrossRef