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BIVARIATE COPULAS: TRANSFORMATIONS,
ASYMMETRY AND MEASURES OF CONCORDANCE

Sebastian Fuchs and Klaus D. Schmidt

The present paper introduces a group of transformations on the collection of all bivariate
copulas. This group contains an involution which is particularly useful since it provides (1) a
criterion under which a given symmetric copula can be transformed into an asymmetric one
and (2) a condition under which for a given copula the value of every measure of concordance is
equal to zero. The group also contains a subgroup which is of particular interest since its four
elements preserve symmetry, the order between two copulas and the value of every measure of
concordance.
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1. INTRODUCTION

The present paper introduces a group of transformations on the collection of all bivariate
copulas. This group has eight elements and is generated by two of its involutions. One
of these involutions turns out to be particularly useful since it provides

– a criterion under which a given symmetric copula can be transformed into an asym-
metric one and

– a condition under which for a given copula the value of every measure of concordance
is equal to zero.

The group also contains a subgroup which is of particular interest since its four elements
preserve symmetry, the order between two copulas and the value of every measure of
concordance, whereas the other four elements of the group reverse the order and change
the sign of the value of a measure of concordance. Besides, using the transformations
of this group provides a very straight method for establishing the properties of survival
copulas and the Fréchet–Hoeffding bounds and may even be helpful for proving that a
function on the unit square is indeed a copula.

The group of transformations of copulas considered here is a realization of the dihedral
group with eight elements. It is thus isomorphic to the well–known group of symmetries
on the unit square considered by Edwards et al. [4] and by Taylor [11] in connection
with measures of concordance; see also Klement et al. [6] and Nelsen [8] (Exercise 2.6),
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who used the group of symmetries on the unit square to define certain transformations
of copulas, including the transformation of a copula into its survival copula. Using the
group of transformations of copulas is slightly more abstract than using the group of
symmetries on the unit square, but it is also much simpler since it avoids the use of the
volume measure related to a copula.

As noted before, the present paper contains a contribution to the construction of
asymmetric (or nonexchangeable) copulas from a given copula and it will be shown
that even certain symmetric copulas can be used to produce asymmetric ones. While
most copulas considered in the literature are symmetric, several authors recognized the
need for asymmetric copulas and studied the construction of asymmetric copulas and
the measurement of asymmetry; see e. g. Nelsen [9], De Baets et al. [1], Liebscher [7]
and Durante and Papini [2], to mention only some of the early papers on this topic.
According to Durante and Sempi [3], asymmetry should be a principal challenge in the
future development of copula theory.

This paper is organized as follows: In Section 2 we introduce and study a group of
transformations which, for the sake of convenience, are defined not only for copulas but
for real functions on the unit square. In Section 3 we give a detailed discussion of the
number of new functions generated by the transformations of the group, with particular
attention to symmetry or asymmetry of these new functions. In Section 4 we consider
applications of these transformations and their general properties to copulas, and in
Section 5 we study the relation between the group of transformations and measures of
concordance.

2. A GROUP OF TRANSFORMATIONS OF BIVARIATE REAL FUNCTIONS

Let M denote the collection of all functions [0, 1]2 → R. Then M is an ordered vector
space under the coordinatewise defined linear operations and order relation. A function
C ∈M is said to be

– symmetric if it satisfies C(u, v) = C(v, u) for all u, v ∈ [0, 1] and it is said to be
– asymmetric if it is not symmetric.

A map ϕ : M→M is said to be a transformation on M.
Let Φ denote the collection of all transformations on M and define the composition

◦ : Φ × Φ → Φ by letting (ϕ ◦ ψ)(C) := ϕ(ψ(C)). The composition is associative and
the transformation ι ∈ Φ given by ι(C) := C is called the identity on M and satisfies
ι ◦ ϕ = ϕ = ϕ ◦ ι for every ϕ ∈ Φ. We thus obtain the following result:

Lemma 2.1. (Φ, ◦) is a semigroup with neutral element ι.

Define now π, ν1 : M→M by letting

(π(C))(u, v) := C(v, u)
(ν1(C))(u, v) := v − C(1−u, v)
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and define ν2, ν, σ1, σ2, σ : M→M by letting

ν2 := π ◦ ν1 ◦ π
ν := ν1 ◦ ν2
σ1 := π ◦ ν1
σ2 := π ◦ ν2
σ := π ◦ ν.

We are interested in the properties of the subset

Γ := {ι, ν1, ν2, ν, π, σ1, σ2, σ}

of Φ. The following result provides representations of the functions γ(C) with C ∈ M
and γ ∈ Γ (including the trivial cases for the sake of completeness):

Lemma 2.2. The following identities hold for every function C ∈M :

(ι(C))(u, v) = C(u, v)
(ν1(C))(u, v) = v − C(1−u, v)
(ν2(C))(u, v) = u− C(u, 1−v)
(ν(C))(u, v) = u+ v − 1 + C(1−u, 1−v)
(π(C))(u, v) = C(v, u)

(σ1(C))(u, v) = u− C(1−v, u)
(σ2(C))(u, v) = v − C(v, 1−u)
(σ(C))(u, v) = u+ v − 1 + C(1−v, 1−u).

In particular, C is symmetric if and only if C = π(C), and in this case ν(C) and σ(C)
are symmetric as well.

P r o o f . The identities for ι, π, ν1 are immediate from the definitions. Furthermore, we
have

(ν2(C))(u, v) = ((π ◦ ν1 ◦ π)(C))(u, v)
= (π((ν1 ◦ π)(C)))(u, v)
= ((ν1 ◦ π)(C))(v, u)
= (ν1(π(C)))(v, u)
= u− (π(C))(1−v, u)
= u− C(u, 1−v).

The proofs of the remaining identities are similar and hence omitted. �

A transformation ϕ ∈ Φ is said to be an involution if ϕ ◦ ϕ = ι.

Lemma 2.3. Each of the transformations ι, ν1, ν2, ν, π, σ is an involution.
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P r o o f . It is obvious from the definitions that ι and π are involutions. Moreover, we
have

((ν1 ◦ ν1)(C))(u, v) = (ν1(ν1(C)))(u, v)
= v − (ν1(C))(1−u, v)
= v − (v − C(u, v))
= C(u, v)

which shows that ν1 is an involution as well. This implies that also ν2 = π ◦ ν1 ◦ π
is an involution. Furthermore, Lemma 2.2 yields ν1 ◦ ν2 = ν = ν2 ◦ ν1 and hence
ν ◦ ν = ν1 ◦ ν2 ◦ ν2 ◦ ν1 = ν1 ◦ ν1 = ι, which shows that ν is an involution. Finally, we
have σ = π ◦ ν = π ◦ ν1 ◦ ν2 = π ◦ ν1 ◦ π ◦ ν1 ◦ π, which implies that σ is an involution
as well. �

The following result provides representations of the transformations in Γ in terms of
alternating compositions of π and ν1 starting with π (including the trivial case for the
sake of completeness):

Lemma 2.4. The following identities hold:

π = π

ν1 ◦ π = σ2

π ◦ ν1 ◦ π = ν2

ν1 ◦ π ◦ ν1 ◦ π = ν

π ◦ ν1 ◦ π ◦ ν1 ◦ π = σ

ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = σ1

π ◦ ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = ν1

ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = ι.

P r o o f . The identities for π, ν2, ν, σ are evident from the definitions. Furthermore, we
have

ν1 ◦ π = π ◦ ν2
ν1 ◦ ν2 = ν2 ◦ ν1.

This yields
ν1 ◦ π = π ◦ ν2 = σ2

and
ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = π ◦ ν2 ◦ ν1 ◦ ν2 = π ◦ ν1 ◦ ν2 ◦ ν2 = π ◦ ν1 = σ1

and hence
π ◦ ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = π ◦ σ1 = π ◦ π ◦ ν1 = ν1

and
ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π ◦ ν1 ◦ π = ν1 ◦ ν1 = ι

which completes the proof. �
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Composing the alternating compositions of Lemma 2.4 with π yields representations
of the transformations in Γ in terms of alternating compositions of π and ν1 starting
with ν1 instead of π. The following result is immediate from Lemma 2.4:

Theorem 2.5. (Γ, ◦) is a group with neutral element ι and the composition ◦ satisfies

◦ ι ν1 ν2 ν π σ1 σ2 σ

ι ι ν1 ν2 ν π σ1 σ2 σ
ν1 ν1 ι ν ν2 σ2 σ π σ1

ν2 ν2 ν ι ν1 σ1 π σ σ2

ν ν ν2 ν1 ι σ σ2 σ1 π
π π σ1 σ2 σ ι ν1 ν2 ν
σ1 σ1 π σ σ2 ν2 ν ι ν1
σ2 σ2 σ π σ1 ν1 ι ν ν2
σ σ σ2 σ1 π ν ν2 ν1 ι

(such that, for example, σ1 ◦ ν2 = σ). In particular,
– the group (Γ, ◦) is non–commutative and the transformations ι and ν are the only

elements which commute with every other transformation in the group,
– the group (Γ, ◦) has the non–trivial subgroups

{ι, ν1, ν2, ν}, {ι, σ1, σ2, ν}, {ι, π, σ, ν}

and
{ι, ν1}, {ι, ν2}, {ι, ν}, {ι, π}, {ι, σ}

which are all commutative, and
– the group (Γ, ◦) is generated by each of the sets {π, ν1}, {π, ν2}, {π, σ1}, {π, σ2},

{ν1, σ1}, {ν1, σ2}, {ν2, σ1}, {ν2, σ2}.

In the sequel, we denote by γ−1 the inverse of γ ∈ Γ with respect to the composition.
The table shows that the group Γ is a representation of the dihedral group D4 con-

taining eight elements. The group D4 may also be represented in a different way which
is more popular: Define the transformations e, h, r : [0, 1]2 → [0, 1]2 by letting

e(u, v) := (u, v)
h(u, v) := (1−u, v)
r(u, v) := (1−v, u).

Then h is the reflection at the line {
(

1
2 , v

)
| v ∈ [0, 1]} and r is the counterclockwise

rotation by 90◦. With regard to the composition � of transformations on [0, 1]2, e is the
identity and the smallest group (G, �) containing h and r is another representation of
the dihedral group D4.

Corollary 2.6. The groups (G, �) and (Γ, ◦) are isomorphic under the isomorphism
g : G→ Γ satisfying g(h) = ν1 and g(r) = σ1.
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The group (G, �) has been used by Edwards et al. [4] and by Taylor [11] in connection
with measures of concordance; see Section 5 below. Also, Klement et al. [6] and subse-
quently Nelsen [8] (Exercise 2.6) used transformations of copulas which can be identified
with those of the isomorphic and commutative subgroups {e, h, h � r � r, r � r} of (G, �)
resp. {ι, ν1, ν2, ν} of (Γ, ◦).

To complete the discussion of the properties of Γ, let us consider the properties of
the transformations in Γ with regard to convexity and the order relation in the ordered
vector space M.

Lemma 2.7. Consider C,D ∈M and a ∈ (0, 1). Then the identity

γ(aC + (1−a)D) = aγ(C) + (1−a)γ(D)

holds for every γ ∈ Γ.

P r o o f . Because of Lemma 2.4 it is sufficient to prove the identity for γ ∈ {π, ν1}. The
identity is obvious for γ = π, and its proof for γ = ν1 is straightforward. �

With regard to the order relation on M, a transformation γ ∈ Γ is said to be

– order preserving if, for any C,D ∈M, C ≤ D implies γ(C) ≤ γ(D);
– order reversing if, for any C,D ∈M, C ≤ D implies γ(C) ≥ γ(D).

The following result is evident from Lemma 2.2:

Lemma 2.8. (1) Each of the transformations ι, π, σ, ν is order preserving.

(2) Each of the transformations ν1, ν2, σ1, σ2 is order reversing.

Summarizing Lemmas 2.2, 2.3 and 2.8, we see that the transformations in the sub-
group {ι, π, σ, ν} of Γ are symmetry and order preserving involutions; for another such
property of the subgroup {ι, π, σ, ν}, see Theorem 5.1 below.

3. ORBITS AND ASYMMETRIC FUNCTIONS

In the present section, we study the group Γ with regard to the construction of asym-
metric functions from a symmetric one.

By Lemma 2.2, the application of the transformations in Γ to a function C ∈ M
produces eight functions in M which, however, need not be distinct, as will be seen later.
To determine the number of distinct functions which are generated by the application
of the transformations in Γ to a function C ∈ M, we have to determine the possible
values of the cardinality |Γ(C)| of the set

Γ(C) := {D ∈M | D = γ(C) for some γ ∈ Γ}

which is called the orbit of C. More generally, for a subgroup Ψ of Γ, we define

Ψ(C) := {D ∈M | D = ψ(C) for some ψ ∈ Ψ}.

The following result is evident:
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Lemma 3.1. Consider C,D ∈ M and a subgroup Ψ of Γ. Then the following are
equivalent:

(a) D ∈ Ψ(C)
(b) C ∈ Ψ(D).

To study the cardinality of the orbit of a function C ∈M, we define the relation ∼C

on Γ by letting
γ ∼C δ

for γ, δ ∈ Γ satisfying γ(C) = δ(C). Then ∼C is an equivalence relation on Γ. For γ ∈ Γ,
we denote by

C(γ)

the equivalence class containing γ ∈ Γ.

Lemma 3.2. For every C ∈M, the equivalence class C(ι) is a subgroup of Γ and every
γ ∈ Γ satisfies |C(γ)| = |C(ι)|.

P r o o f . It is evident that C(ι) is a subgroup of Γ. Moreover, for every δ ∈ Γ, the
fact that Γ is a group implies that δ(C) = γ(C) if and only if (γ−1 ◦ δ)(C) = ι(C).
Therefore, the map Tγ : C(γ) → C(ι) given by Tγ(δ) := γ−1 ◦ δ is a bijection with
inverse (Tγ)−1 = Tγ−1 and this yields |C(γ)| = |C(ι)|. �

We thus obtain the following result on the cardinality of the orbit of a function
C ∈M:

Theorem 3.3. For every C ∈ M, the cardinality of the orbit of C is equal to the
number of equivalence classes of the equivalence relation ∼C and satisfies

|Γ(C)| ∈ {1, 2, 4, 8}.

P r o o f . It is obvious that the cardinality of the orbit of C is equal to the number
of equivalence classes of the equivalence relation ∼C . By Lemma 3.2, all equivalence
classes have the same cardinality, and this implies that the number of equivalence classes
is |Γ|/|C(ι)|. We have |Γ| = 8 and Theorem 2.5 yields |C(ι)| ∈ {1, 2, 4, 8}. Therefore,
we obtain |Γ|/|C(ι)| ∈ {1, 2, 4, 8}. �

The following result provides some more precise information on the orbit of a function
C ∈M in the cases where one or both of the generators π and ν1 of the group Γ satisfy
π(C) = C resp. ν1(C) = C:

Lemma 3.4. Consider C ∈M.

(1) If π(C) = C, then Γ(C) = {ι, ν1, ν2, ν}(C) and |Γ(C)| ∈ {1, 2, 4}.
(2) If ν1(C) = C, then Γ(C) = {ι, π, σ, ν}(C) and |Γ(C)| ∈ {1, 2, 4}.
(3) π(C) = C and ν1(C) = C if and only if |Γ(C)| = 1.
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P r o o f . Assertions (1) and (2) follow from Theorem 2.5 and assertion (3) is evident
from Lemma 2.4. �

We thus obtain the following result on the orbit of a symmetric or asymmetric function
C ∈M:

Theorem 3.5. Consider C ∈M.

(1) If C is symmetric, then ν(C) is symmetric as well and |Γ(C)| ∈ {1, 2, 4}. Moreover,

– |Γ(C)| = 4 if and only if ν1(C) and ν2(C) are asymmetric;
– |Γ(C)| = 2 if and only if ν1(C) is symmetric and distinct from C.

(2) If C is asymmetric, then π(C) is asymmetric as well and distinct from C and
|Γ(C)| ∈ {2, 4, 8}.

P r o o f . Assume first that C is symmetric. Then we have π(C) = C. Therefore, we
have (π ◦ ν)(C) = (ν ◦ π)(C) = ν(C), which means that ν(C) is symmetric, and Lemma
3.4(1) yields |Γ(C)| ≤ 4.

– In the case |Γ(C)| = 4 Lemma 3.4(1) yields ν1(C) 6= ν2(C). Therefore, it then
follows from (π ◦ ν1)(C) = (ν2 ◦ π)(C) = ν2(C) and (π ◦ ν2)(C) = (ν1 ◦ π)(C) =
ν1(C) that ν1(C) and ν2(C) are asymmetric. Conversely, if ν1(C) and ν2(C) are
asymmetric, then ν1(C) and ν2(C) are both distinct from C, and we also have
ν2(C) = (π ◦ ν1 ◦ π)(C) = (π ◦ ν1)(C) 6= ν1(C). This yields 3 ≤ |Γ(C)| ≤ 4 and
hence, by Theorem 3.3, |Γ(C)| = 4.

– In the case |Γ(C)| = 2, Lemma 3.4(3) yields ν1(C) 6= C. Therefore, we have
Γ(C) = {C, ν1(C)}. We also have ν2(C) = ν1(C), since ν2(C) = C implies ν1(C) =
(ν1◦π)(C) = (π◦ν2)(C) = π(C) = C, which is impossible. This yields (π◦ν1)(C) =
(ν2 ◦ π)(C) = ν2(C) = ν1(C), which means that ν1(C) is symmetric. Conversely,
if ν1(C) is symmetric and distinct from C, then we have ν2(C) = (ν2 ◦ π)(C) =
(π ◦ν1)(C) = ν1(C) and hence ν(C) = (ν2 ◦ν1)(C) = (ν2 ◦ν2)(C) = C, and Lemma
3.4(1) yields |Γ(C)| = 2.

Assume now that C is asymmetric. Then we have (π ◦ π)(C) = C 6= π(C). Therefore,
π(C) is asymmetric and |Γ(C)| ≥ 2. �

Theorem 3.5 implies that for a symmetric function C ∈ M it is sufficient to check
ν1(C) for symmetry in order to decide whether the orbit of C contains an asymmetric
function or not:

Corollary 3.6. For every symmetric function C ∈M, the following are equivalent:

(a) The orbit of C contains an asymmetric function.
(b) The function ν1(C) is asymmetric.

Theorem 3.5 also provides some information on the number of asymmetric functions
in the orbit of an arbitrary function C ∈M:
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Corollary 3.7. Consider C ∈M.

(1) If |Γ(C)| = 8, then every function in the orbit of C is asymmetric.
(2) If |Γ(C)| = 4, then either two or all of the functions in the orbit of C are asymmetric.
(3) If |Γ(C)| = 2, then either none or all of the functions in the orbit of C are asym-

metric.
(4) If |Γ(C)| = 1, then C is symmetric.

P r o o f . Assertion (1) follows from Lemma 3.4. Assume now that |Γ(C)| = 4.
– If C is symmetric, then, by Theorem 3.5, ν(C) is symmetric as well and the functions

ν1(C) and ν2(C) are asymmetric. This means that the orbit of C contains exactly
two asymmetric functions.

– If C is asymmetric, then, by Theorem 3.5, π(C) is asymmetric as well and this
implies that the orbit of C contains at least two asymmetric functions. If the orbit
of C contains a symmetric function D, then Lemma 3.1 yields Γ(D) = Γ(C) and
it follows from the preceding argument that Γ(D) and hence Γ(C) contains exactly
two asymmetric functions.

Assertion (3) follows from Theorem 3.5 and assertion (4) is evident. �

The assertions of Corollary 3.7 will be illustrated by the examples given in the fol-
lowing section. As can be seen from these examples, there exists
– an asymmetric function C ∈M with |Γ(C)| = 8 (Example 4.3(1)),
– an asymmetric function C ∈ M with |Γ(C)| = 4 and the property that every

function in the orbit of C is asymmetric as well (Example 4.3(2)),
– an asymmetric function C ∈M with |Γ(C)| = 4 and the property that the orbit of

C contains a symmetric function (Example 4.3(3)),
– a symmetric function C ∈M with |Γ(C)| = 4 and the property that the orbit of C

contains an asymmetric function (Example 4.3(4)),
– an asymmetric function C ∈M with |Γ(C)| = 2 (Example 4.4),
– a symmetric function C ∈M with |Γ(C)| = 2 (Example 4.2(2)), and
– a (symmetric) function C ∈ M with |Γ(C)| = 1 (Example 4.2(3); see also Lemma

3.8 below).
The analysis of the orbit of a function C ∈M with respect to the cardinality of the orbit
and the existence of symmetric or asymmetric functions in the orbit is thus complete.

A function C ∈ M is said to be invariant under Γ if it satisfies |Γ(C)| = 1. The
following characterization of invariant functions is evident from Lemmas 3.4(3) and 2.7
but deserves an explicit statement:

Lemma 3.8. For every C ∈M, the following are equivalent:

(a) C is invariant.
(b) C satisfies C = π(C) and C = ν1(C).
(c) There exists some D ∈M such that

C =
1
8

∑
γ∈Γ

γ(D).
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In particular, every invariant function is symmetric.

Invariant functions are of particular interest with regard to measures of concordance;
see Section 5 below.

4. COPULAS

In this section, we study the group Γ with respect to copulas.

A (bivariate) copula is a function C : [0, 1]2 → [0, 1] satisfying the following condi-
tions:
(i) The inequality 0 ≤ C(x, y)−C(x, v)−C(u, y) +C(u, v) holds for all (u, v), (x, y) ∈

[0, 1]2 such that (u, v) ≤ (x, y).
(ii) The identity C(u, 0) = 0 = C(0, v) holds for all u, v ∈ [0, 1].
(iii) The identities C(u, 1) = u and C(1, v) = v hold for all u, v ∈ [0, 1].

We denote by C the collection of all copulas. Then C is a convex subset of M and the
following result shows that C is invariant under Γ:

Theorem 4.1. Γ(C) = C.

P r o o f . Since ι ∈ Γ, we have C ⊆ Γ(C). To prove the converse inclusion, it is sufficient
to prove that, for every copula C ∈ C, the functions π(C) and ν1(C) are copulas as well
since, by Lemma 2.4, every element of Γ is an alternating composition of π and ν1. For
a copula C ∈ C, it is evident that π(C) is a copula as well, and it is thus sufficient to
prove that also ν1(C) is a copula.
To this end, consider first (u, v), (x, y) ∈ [0, 1]2 such that (u, v) ≤ (x, y). Then we have
(1−x, v) ≤ (1−u, y) and hence

(ν1(C))(x, y)− (ν1(C))(x, v)− (ν1(C))(u, y) + (ν1(C))(u, v)
= (y − C(1−x, y))− (v − C(1−x, v))− (y − C(1−u, y)) + (v − C(1−u, v))
= C(1−u, y)− C(1−u, v)− C(1−x, y) + C(1−x, v)
≥ 0

which proves (i). Also, for u, v ∈ [0, 1] we have (ν1(C))(u, 0) = 0 − C(1−u, 0) = 0
and (ν1(C))(0, v) = v as well as (ν1(C))(u, 1) = 1 − C(1−u, 1) = 1 − (1−u) = u and
(ν1(C))(1, v) = v, which proves (ii) and (iii). �

Theorem 4.1 provides an efficient tool for establishing the basic properties of the
standard copulas:

Example 4.2. (Standard copulas)
(1) Survival copulas: For a copula C, the function Ĉ : [0, 1]2 → R given by

Ĉ(u, v) := u+ v − 1 + C(1−u, 1−v)

is called the survival copula of C. By Lemma 2.2 we have Ĉ = ν(C), and it now
follows from Theorem 4.1 that the survival copula of C is a copula.
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(2) Fréchet–Hoeffding bounds: Each of the functions W,M : [0, 1]2 → R given by

W (u, v) := max{u+v−1, 0}
M(u, v) := min{u, v}

is a symmetric copula with Γ(W ) = {W,M} = Γ(M), and every copula C ∈ C
satisfies

W ≤ C ≤M.

Indeed, the functions W and M are symmetric, and it is easy to see that M is a
copula and that every copula C satisfies C ≤ M . Moreover, we have W (u, v) =
max{u+ v− 1, 0} = v−min{1−u, v} = v−M(1−u, v) = (ν1(M))(u, v) and hence

W = ν1(M).

It now follows from Theorem 4.1 that W is a copula. Moreover, since W and M
are symmetric, it follows that ν2(W ) = (π ◦ ν1 ◦ π)(W ) = M and hence ν(W ) =
(ν1 ◦ ν2)(W ) = W . This yields Γ(W ) = {W,M} = Γ(M).
Furthermore, for every copula C, Theorem 4.1 asserts that ν1(C) is a copula as well
and hence satisfies ν1(C) ≤M , and it now follows from Lemma 2.8 and the identity
established before that C = (ν1 ◦ ν1)(C) = ν1(ν1(C)) ≥ ν1(M) = W .

(3) Product copula: The function Π ∈M given by

Π(u, v) := uv

is a symmetric copula with |Γ(C)| = 1; in particular, Π is invariant.

Theorem 3.3 asserts that the orbit of a copula C satisfies |Γ(C)| ∈ {1, 2, 4, 8}. The
product copula satisfies |Γ(Π)| = 1, and the following examples show that also the other
possible values of the cardinality of the orbit of a copula can be attained:

Example 4.3. (Distortions of the product copula)

(1) The function C ∈ M given by C(u, v) := uv − u2v(1−u)(1−v) is a copula and
satisfies

(ι(C))(u, v) = uv − u2v(1−u)(1−v)
(ν1(C))(u, v) = uv + uv(1−u)2(1−v)
(ν2(C))(u, v) = uv + u2v(1−u)(1−v)
(ν(C))(u, v) = uv − uv(1−u)2(1−v)
(π(C))(u, v) = uv − uv2(1−u)(1−v)

(σ1(C))(u, v) = uv + uv(1−u)(1−v)2

(σ2(C))(u, v) = uv + uv2(1−u)(1−v)
(σ(C))(u, v) = uv − uv(1−u)(1−v)2

and hence |Γ(C)| = 8.
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(2) The function C ∈M given by C(u, v) := uv + uv(1−u)(1−v)(1−2u)/2 is a copula
and satisfies

(ι(C))(u, v) = uv + uv(1−u)(1−v)(1−2u)/2 = (ν1(C))(u, v)
(ν(C))(u, v) = uv − uv(1−u)(1−v)(1−2u)/2 = (ν2(C))(u, v)
(π(C))(u, v) = uv + uv(1−u)(1−v)(1−2v)/2 = (σ1(C))(u, v)
(σ(C))(u, v) = uv − uv(1−u)(1−v)(1−2v)/2 = (σ2(C))(u, v)

and hence |Γ(C)| = 4.

(3) The function C ∈ M given by C(u, v) := uv − u2v(1−u)(1−v)2 is a copula and
satisfies

(ι(C))(u, v) = uv − u2v(1−u)(1−v)2 = (σ(C))(u, v)
(ν1(C))(u, v) = uv + uv(1−u)2(1−v)2 = (σ1(C))(u, v)
(ν2(C))(u, v) = uv + u2v2(1−u)(1−v) = (σ2(C))(u, v)
(ν(C))(u, v) = uv − uv2(1−u)2(1−v) = (π(C))(u, v)

and hence |Γ(C)| = 4.

(4) The function C ∈ M given by C(u, v) := uv + u2v2(1−u)(1−v) is a symmetric
copula and satisfies

(ι(C))(u, v) = uv + u2v2(1−u)(1−v)
(ν1(C))(u, v) = uv − uv2(1−u)2(1−v)
(ν2(C))(u, v) = uv − u2v(1−u)(1−v)2

(ν(C))(u, v) = uv + uv(1−u)2(1−v)2

and hence |Γ(C)| = |{ι, ν1, ν2, ν}(C)| = 4.

(5) The function C ∈M given by C(u, v) := uv−uv(1−u)(1−v) is a symmetric copula
and satisfies

(ι(C))(u, v) = uv − uv(1−u)(1−v) = (ν(C))(u, v)
(ν1(C))(u, v) = uv + uv(1−u)(1−v) = (ν2(C))(u, v)

and hence |Γ(C)| = |{ι, ν1, ν2, ν}(C)| = 2.

In (1) and (2), all copulas in the orbit of C are asymmetric. The copula C considered in
(3) is asymmetric while that in (4) is symmetric, but both copulas have the same orbit.
In (5), all copulas in the orbit of C are symmetric. These observations are in accordance
with the results of Section 3.

These examples illustrate a benefit resulting from the use of transformations in Γ:
For a function C ∈ M, it is usually easy to check whether or not properties (ii) and
(iii) of a copula are fulfilled. By contrast, is it not always evident that property (i) of
a copula is fulfilled as well or even that C(u, v) ∈ [0, 1] holds for all (u, v) ∈ [0, 1]2; see
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Example 4.3(4). In such a case, it may be helpful to show that the orbit of C contains a
copula since, by Theorem 4.1, the function C is a copula if and only if some (and hence
each) of the functions in its orbit is a copula.

To complete the examples with regard to the orbit of a copula, we present an example
of an asymmetric copula C ∈ C with |Γ(C)| = 2:

Example 4.4. (Asymmetric copula with minimal orbit) We define a function C ∈M
as follows:
– For all u, v ∈ [0, 1] define

C(u, 0) := 0 C
(
u, 1

2

)
:= u

2 C(u, 1) := u

C(0, v) := 0 C
(

1
2 , v

)
:= v

2 C(1, v) := v.

– Define

C
(

1
6 ,

1
6

)
:= 1

36 C
(

1
6 ,

2
6

)
:= 1

36 C
(

1
6 ,

4
6

)
:= 5

36 C
(

1
6 ,

5
6

)
:= 5

36

C
(

2
6 ,

1
6

)
:= 3

36 C
(

2
6 ,

2
6

)
:= 4

36 C
(

2
6 ,

4
6

)
:= 8

36 C
(

2
6 ,

5
6

)
:= 9

36

C
(

4
6 ,

1
6

)
:= 3

36 C
(

4
6 ,

2
6

)
:= 8

36 C
(

4
6 ,

4
6

)
:= 16

36 C
(

4
6 ,

5
6

)
:= 21

36

C
(

5
6 ,

1
6

)
:= 5

36 C
(

5
6 ,

2
6

)
:= 11

36 C
(

5
6 ,

4
6

)
:= 19

36 C
(

5
6 ,

5
6

)
:= 25

36 .

– Define

S :=
{
0, 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 , 1

}2
.

By the previous definitions, C(u, v) is, in particular, defined for every (u, v) ∈ S.
Moreover, for every (u, v) ∈ [0, 1]2 for which C(u, v) has not yet been defined, there
exist unique (s, t), (x, y) ∈ S satisfying (s, t) ≤ (u, v) ≤ (x, y) and x−s = 1

6 = y−t;
this implies that there exist a, b, c, d ∈ [0, 1] satisfying a + b + c + d = 1 and
(u, v) = a(s, t) + b(s, y) + c(x, t) + d(x, y) and we thus define

C(u, v) := aC(s, t) + bC(s, y) + cC(x, t) + dC(x, y).

It now follows from Nelsen [8] (Proof of Lemma 2.3.5) that C is a copula, and it follows
from the definition of C that this copula is asymmetric and hence satisfies C 6= π(C).
Moreover, it is straightforward to show that, for a convex combination (u, v) = a(s, t) +
b(s, y) + c(x, t) + d(x, y), the identity

(γ(C))(u, v) = a (γ(C))(s, t) + b (γ(C))(s, y) + c (γ(C))(x, t) + d (γ(C))(x, y)

holds for every γ ∈ {ι, ν1, ν2, ν}. This yields C(ι) = {ι, ν1, ν2, ν} and hence C(π) =
{π, σ1, σ2, σ}. Since π(C) 6= C, it now follows from Theorem 3.3 that |Γ(C)| = 2.

On certain parts of the interior of the unit square, the copula considered in the
previous example coincides with the product copula; it is thus another distortion of the
product copula. Moreover, the copula C of Example 4.4 satisfies neither C ≤ Π nor
C ≥ Π, whereas each of the copulas C considered in Examples 4.3 has the remarkable
property that every copula D in the orbit of C satisfies D ≤ Π or D ≥ Π. This
observation suggests the following result:
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Theorem 4.5. Consider C ∈ C satisfying C ≤ Π or C ≥ Π. Then C has the following
properties:

(1) The number of copulas D ∈ Γ(C) satisfying D ≤ Π is equal to the number of
copulas D ∈ Γ(C) satisfying D ≥ Π.

(2) If γ ∈ C(ι) holds for some γ ∈ {ν1, ν2, σ1, σ2}, then C = Π.

P r o o f . Assume first that there exists some γ ∈C(ι) satisfying γ ∈{ν1, ν2, σ1, σ2}. In
the case C ≤ Π it follows from Example 4.2(3) and Lemma 2.8 that

Π = γ(Π) ≤ γ(C) = ι(C) = C ≤ Π

and in the case C ≥ Π it follows that

Π = γ(Π) ≥ γ(C) = ι(C) = C ≥ Π.

In either case we obtain C = Π, which proves (2).
Assume now that C(ι)∩{ν1, ν2, σ1, σ2} = ∅. Since C(ι) is a subgroup of Γ, Theorem 2.5
implies that C(ι) is one of the sets {ι, π, σ, ν}, {ι, ν}, {ι, π}, {ι, σ}, {ι}. For each of these
cases we determine the equivalence classes of Γ with respect to ∼C :
– In the case C(ι) = {ι, π, σ, ν}, the equivalence classes of ∼C are {ι, π, σ, ν} and

{ν1, ν2, σ1, σ2}.
– In the case C(ι) = {ι, ν}, the equivalence classes of ∼C are {ι, ν}, {π, σ}, {ν1, ν2}

and {σ1, σ2}.
– In the case C(ι) = {ι, π}, the equivalence classes of ∼C are {ι, π}, {ν, σ}, {ν1, σ2}

and {ν2, σ1}.
– In the case C(ι) = {ι, σ}, the equivalence classes of ∼C are {ι, σ}, {ν, π}, {ν1, σ1}

and {ν2, σ2}.
– In the case C(ι) = {ι}, the equivalence classes of ∼C are {ι}, {ν1}, {ν2}, {ν},

{π}, {σ1}, {σ2} and {σ}.
In either case, the elements of an equivalence class are either all order preserving or
all order reversing, and the number of equivalence classes containing order preserving
transformations is equal to the number of equivalence classes containing order reversing
transformations. Because of (2), this proves (1). �

Corollary 4.6. Consider C ∈ C satisfying C ≤ Π or C ≥ Π. If C is invariant, then
C = Π.

This means that a copula which is invariant and distinct from the product copula
cannot be compared with the product copula.

5. MEASURES OF CONCORDANCE

In this final section, we study the group Γ with respect to measures of concordance for
copulas.

There is a rich literature on measures of concordance. For example, Scarsini [10]
introduced the notion of a measure of concordance for bivariate random vectors with
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continuous marginal distribution functions, using the unique copula determined by the
distribution function of such a random vector; more recently, Taylor [11] proposed a
definition of a measure of concordance for copulas, which is closely related to that
of Scarsini but avoids the use of random vectors. Taylor’s definition of a measure of
concordance involves the group (G, �) of transformations on the unit square, which was
also considered by Edwards et al. [4].

In the spirit of Taylor [11] we propose a quite general definition of a measure of
concordance for copulas, using the group (Γ, ◦) instead of (G, �):

A function κ : C → [−1, 1] is said to be a measure of concordance if it has the following
properties:

(i) κ(M) = 1 and κ(Π) = 0.
(ii) The identities κ(π(C)) = κ(C) and κ(ν1(C)) = −κ(C) hold for every C ∈ C.

A measure of concordance κ is said to be order preserving if κ(C) ≤ κ(D) holds for all
C,D ∈ C such that C ≤ D, and it is said to be continuous if limn→∞ κ(Cn) = κ(C) holds
for every sequence {Cn}n∈N ⊆ C and every C ∈ C satisfying limn→∞ Cn(u, v) = C(u, v)
for all (u, v) ∈ [0, 1]2. In Scarsini [10] and Taylor [11] and in many other papers, being
order preserving and continuous is part of the definition of a measure of concordance;
see also Nelsen [8] (Definition 5.1.7).

In terms of our definition of a measure of concordance, Nelsen [8] (Definition 5.1.7)
and Taylor [11] require in addition that the identity κ(ν2(C)) = −κ(C) holds for every
C ∈ C, and Nelsen requires that also κ(W ) = −1. These identities turn out to be a
consequence of the definition:

Theorem 5.1. Consider a measure of concordance κ and a copula C. Then

κ(γ(C)) = κ(C)

holds for every γ ∈ {ι, π, σ, ν} and

κ(γ(C)) = −κ(C)

holds for every γ ∈ {ν1, ν2, σ1, σ2}. In particular, κ(W ) = −1, and if κ(C) = 0, then
κ(D) = 0 holds for every D ∈ Γ(C).

P r o o f . The general assertion follows from Lemma 2.4 and the final assertion then
follows from Example 4.2(2). �

Theorem 5.1 emphasizes once more the particular role of the transformations which
belong to the subgroup {ι, π, σ, ν} of Γ: They do not affect the value of a measure of
concordance and, as noticed at the end of Section 2, they are symmetry preserving and
order preserving involutions.

Theorem 5.1 implies that for certain copulas every measure of concordance is equal
to zero:
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Corollary 5.2. Consider a copula C. If ν1(C) = C, then every measure of concordance
κ satisfies

κ(C) = 0.

In particular, if C is invariant, then every measure of concordance κ satisfies κ(C) = 0.

The converse of the second implication of Corollary 5.2 is not true; see Example 4.4
for a copula C which is not invariant but satisfies ν1(C) = C and hence κ(C) = 0.

To complete the discussion of relations between measures of concordance and the
group Γ, we finally present a slight extension of the main result of Edwards et al. [4].

Proposition 5.3. For a copula D, the following are equivalent:

(a) D is invariant under Γ.
(b) There exist a, b ∈ R such that the map κD : C → R given by

κD(C) := a+ b

∫
[0,1]2

C(u, v) dD(u, v)

is a measure of concordance.

In this case, κD satisfies

κD(C) =
4

∫
[0,1]2

C(u, v) dD(u, v)− 1

4
∫
[0,1]2

M(u, v) dD(u, v)− 1

and is order preserving and continuous.

The arguments needed for the proof of Proposition 5.3 are all contained in the original
proof of Edwards et al. [4] (Theorem 3.1). However, our condition (b) is weaker than
theirs since it does not require the verification that κD is order preserving and continuous.

Example 5.4. By Example 4.2(3), the product copula Π is invariant, and it follows
from Example 4.2(2) and Lemma 3.8 that the mean (W+M)/2 of the Fréchet–Hoeffding
bounds is invariant as well. Since

κΠ(C) = 3
(

4
∫

[0,1]2
C(u, v) dΠ(u, v)− 1

)
κ(W+M)/2(C) = 2

(
4

∫
[0,1]2

C(u, v) d((W+M)/2)(u, v)− 1
)

we see that κΠ is Spearman’s rho and κ(W+M)/2 is Gini’s gamma, and it now follows
from Proposition 5.3 that Spearman’s rho and Gini’s gamma are order preserving and
continuous measures of concordance.

Corollary 5.5. Assume that C,D ∈ C are invariant. Then∫
[0,1]2

C(u, v) dD(u, v) =
1
4
.

This follows from Corollary 5.2 and Proposition 5.3.
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REMARK

The question arises whether some or all results of this paper can be extended to copulas
on [0, 1]d with d ≥ 3. Of course, the first step for passing from the bivariate case to
the general multivariate case consists in the construction of an appropriate group of
transformations which map the collection of all copulas on [0, 1]d into itself. This step
has been done in a recent paper by Fuchs [5] who also studied the impact of these
transformations on symmetry, order and measures of concordance of copulas on [0, 1]d.
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