Kybernetika 49 no. 6, 962-982, 2013

Fuzzy empirical distribution function: properties and applications

Gholamreza Hesamian and S. M. Taheri


The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha$-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.


Kolmogorov-Smirnov test, fuzzy cumulative distribution function, fuzzy empirical distribution function, fuzzy p-value, convergence with probability one, degree of accept, degree of reject, Glivenko-Cantelli theorem


93E12, 62A10


  1. M. Arefi, R. Viertl and S. M. Taheri: Fuzzy density estimation. Metrika 75 (2012), 5-22.   CrossRef
  2. A. Bzowski and M. K. Urbanski: Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables. \url{}   CrossRef
  3. T. Denoeux, M. H. Masson and P. H. Herbert: Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets and Systems 153 (2005), 1-28.   CrossRef
  4. D. Dubois and H. Prade: Operation on fuzzy numbers. Internat. J. System Sci. 9 (1978), 613-626.   CrossRef
  5. D. Dubois and H. Prade: Ranking of fuzzy numbers in the setting of possibility theory. Inform. Sci. 30 (1983), 183-224.   CrossRef
  6. P. Filzmoser and R. Viertl: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59 (2004), 21-29.   CrossRef
  7. J. D. Gibbons and S. Chakraborti: Non-parametric Statistical Inference. Fourth edition. Marcel Dekker, New York 2003.   CrossRef
  8. M. A. Gil: Fuzzy random variables: Development and state of the art. In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.   CrossRef
  9. Z. Govindarajulu: Non-parametric Inference. Hackensack, World Scientific 2007.   CrossRef
  10. P. Grzegorzewski: Statistical inference about the median from vague data. Control Cybernet. 27 (1998), 447-464.   CrossRef
  11. P. Grzegorzewski: Two-sample median test for vague data. In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.   CrossRef
  12. P. Grzegorzewski: K-sample median test for vague data. Internat. J. Intelligent Systems 24 (2009), 529-539.   CrossRef
  13. P. Grzegorzewski: Distribution-free tests for vague data. In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502.   CrossRef
  14. P. Grzegorzewski: A bi-robust test for vague data. In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144.   CrossRef
  15. G. Hesamian and S. M. Taheri: Linear rank tests for two-sample fuzzy data: a p-value approach. J. Uncertainty Systems 7 (2013), 129-137.   CrossRef
  16. M. Holena: Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252.   CrossRef
  17. O. Hryniewicz: Goodman-Kruskal $\gamma$ measure of dependence for fuzzy ordered categorical data. Comput. Statist. Data Anal. 51 (2006), 323-334.   CrossRef
  18. O. Hryniewicz: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and Systems 157 (2006), 2665-2673.   CrossRef
  19. C. Kahraman, C. F. Bozdag and D. Ruan: Fuzzy sets approaches to statistical parametric and non-parametric tests. Internat. J. Intelligent Systems 19 (2004), 1069-1078.   CrossRef
  20. E. P. Klement, M. L. Puri and D. A. Ralescu: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182.   CrossRef
  21. V. Krätschmer: Probability theory in fuzzy sample spaces. Metrika 60 (2004), 167-189.   CrossRef
  22. R. Kruse and K. D. Meyer: Statistics with Vague Data. Reidel Publishing Company, Dordrecht 1987.   CrossRef
  23. K. H. Lee: First Course on Fuzzy Theory and Applications. Springer, Heidelberg 2005.   CrossRef
  24. S. Li and Y. Ogura: Strong laws of large numbers for independent fuzzy set-valued random variables. Fuzzy Sets and Systems 157 (2006), 2569-2578.   CrossRef
  25. P. H. Kvam and B. Vidadovic: Non-parametric Statistics with Application to Science and Engineering. J. Wiley, New Jersey 2007.   CrossRef
  26. M. Mareš: Fuzzy data in statistics. Kybernetika 43 (2007), 491-502.   CrossRef
  27. H. Nguyen, T. Wang and B. Wu: On probabilistic methods in fuzzy theory. Internat. J. Intelligent Systems 19 (2004), 99-109.   CrossRef
  28. A. Parchami, S. M. Taheri and M. Mashinchi: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 209-226.   CrossRef
  29. K. R. Parthasarathy: Probability Measurs on Metric Space. Academic Press, New York 1967.   CrossRef
  30. M. L. Puri and D. A. Ralescu: Fuzzy random variables. J. Math. Anal. Appl. 361 (1986), 409-422.   CrossRef
  31. A. F. Shapiro: Fuzzy random variables. Insurance: Math. and Econom. 44 (2009), 307-314.   CrossRef
  32. S. M. Taheri and G. Hesamian: Goodman-Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47 (2011), 110-122.   CrossRef
  33. S. M. Taheri and G. Hesamian: A generalization of the Wilcoxon signed-rank test and its applications. Statist. Papers 54 (2013), 457-470.   CrossRef
  34. R. Viertl: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147.   CrossRef
  35. R. Viertl: Statistical Methods for Fuzzy Data. J. Wiley, Chichester 2011.   CrossRef
  36. X. Wang and E. Kerre: Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets and Systems 118 (2001), 387-405.   CrossRef
  37. H. C. Wu: Statistical hypotheses testing for fuzzy data. Fuzzy Sets and Systems 175 (2005), 30-56.   CrossRef
  38. Y. Yoan: Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 43 (1991), 139-157.   CrossRef