Kybernetika 49 no. 6, 935-947, 2013

Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei and Zhen Wang

Abstract:

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.

Keywords:

Lyapunov coefficient, four-wing chaotic attractors, degenerate Hopf bifurcations, period-doubling cascade

Classification:

34H10, 34H20

References:

  1. G. R. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466.   CrossRef
  2. Y. A. Kuznetsov: Elements of Applied Bifurcation Theory, Second edition. Springer-Verlag, New York 1998.   CrossRef
  3. E. N. Lorenz: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141.   CrossRef
  4. J. H. Lü and G. R. Chen: A new chaotic attractor conined. Internat. J. Bifur. Chaos 12 (2002), 659-661.   CrossRef
  5. J. H. Lü, G. R. Chen and D. Z. Cheng: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537.   CrossRef
  6. J. H. Lü, F. L. Han, X. H. Yu and G. R. Chen: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687.   CrossRef
  7. J. H. Lü, S. M. Yu, H. Leung and G. R. Chen: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165.   CrossRef
  8. J. H. Lü, T. S. Zhou, G. R Chen and S. C. Zhan: Local bifurcations of the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2257-2270.   CrossRef
  9. L. F. Mello and S. F. Coelho: Degenerate Hopf bifurcations in the L$\ddot{u}$ system. Phys. Lett. A 373 (2009), 1116-1120.   CrossRef
  10. M. Messias, D. C. Braga and L. F. Mello: Degenerate Hopf bifurcaton in Chua's system. Internat. J. Bifur. Chaos 19 (2009), 497-515.   CrossRef
  11. G. Y. Qi, G. R. Chen, M. A. Wyk, B. J. Wyk and Y. Zhang: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton Fract. 38 (2008), 705-721.   CrossRef
  12. O. E. Rössler: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398.   CrossRef
  13. R. Shaw: Strange attractor, chaotic behaviour and information flow. Z.Naturfosch. A 36 (1981), 80-112.   CrossRef
  14. S. Sotomayor, L. F. Mello and D. C. Braga: Bifurcation analysis of the Watt governor system. Comm. Appl. Math. 26(2007), 19-44.   CrossRef
  15. S. Sotomayor, L. F. Mello and D. C. Braga: Lyapunov coefficients for degenerate Hopf bifurcations. arXiv:0709.3949v1 [math.DS], http://arxiv.org/.   CrossRef
  16. J. C. Sprott: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650.   CrossRef
  17. J. C. Sprott: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23.   CrossRef
  18. J. C. Sprott: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274.   CrossRef
  19. Y. Sun, G. Y. Qi, Z. Wang and B. J. Wyk: Bifurcation analysis of the Qi 3-D four-wing chaotic system. Acta Phys. Pol. B 41 (2010), 767-778.   CrossRef
  20. G. van der Schrier and L. R. M. Maas: The diffusionless Lorenz equations; \u{S}ilnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36.   CrossRef
  21. X. Wang and G. R. Chen: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. {\mi 17} (2012), 1264-1272.   CrossRef
  22. Z. C. Wei and Q. G. Yang: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA 12 (2011), 106-118.   CrossRef
  23. Z. C. Wei and Q. G. Yang: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68 (2012), 543-554.   CrossRef
  24. Z. C. Wei and Q. G. Yang: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA. 12 (2011), 106-118.   CrossRef
  25. Z. C. Wei and Q. G. Yang: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217 (2010), 422-429.   CrossRef
  26. Q. G. Yang, G. R. Chen and K. F. Huang: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949.   CrossRef
  27. Q. G. Yang and G. R. Chen: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414.   CrossRef
  28. Q. G. Yang, Z. C. Wei and G. R. Chen: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083.   CrossRef
  29. S. M. Yu, J. H. Lü and X. H. Yu: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028.   CrossRef