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PARAMETER INFLUENCE ON PASSIVE DYNAMIC
WALKING OF A ROBOT WITH FLAT FEET

Xiangze Lin, Haibo Du and Shihua Li

The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive
dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow
slopes without actuation. The steady gaits can be described by using stable non-smooth limit
cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three
parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As
the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations
leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by
increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical
simulations are given to verify our conclusion.
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1. INTRODUCTION

Biped robots are typical hybrid dynamic systems [6, 7] and have been studied for well
over 30 years. In many areas, biped robots provide potential advantages than wheeled
vehicles, such as maintenance of hazardous environments, exploration of unstructured
and unpaved terrains, deep-forest logging, fruit harvesting, etc. Therefore, the study of
locomotion problem for biped robot is very interesting and has received special attention
recently. Among these researches, the analysis of passive walking and design of feedback
controllers are two main important issues.

The concept of passive walking for biped robot was first introduced in [17, 18], where
a simple biped robot is designed. Under certain initial conditions, the robot can perform
a stable passive walking on a range of shallow slopes. After then, the passive walking for
biped robot has been further studied by many researchers [1, 2, 3, 4, 5, 10, 13, 19, 27]. In
[4, 5], a number of simulation results demonstrated that the biped robot gaits are sensi-
tive to some system parameters, including the ground slope angle, the normalized mass,
and the length of the robot. When any of the mentioned three parameters continually
changed, the robot gaits exhibited period doubling bifurcations phenomena. In [13, 19],
the chaotic gaits for the biped robot were investigated by using the largest Lyapunov
exponent and a surrogation analysis method. Based on the theory of hybrid dynamic
systems, the stability of the periodic gaits was analyzed in [6, 7].
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Another topic in the study of the biped locomotion is how to design feedback con-
trollers. Based on some advanced nonlinear control techniques, many valuable results
have been obtained [14 – 23], such as regulation walking on varying slopes [14, 15, 16, 25],
regulation walking speed and gait transitions [24], robustness to uncertainties and dis-
turbances [9], etc. In [25], based on passivity mimicking control method, a feedback
controller was designed such that the biped robot can perform stable walking on certain
steep slopes. In [14, 15], hip joint actuations were used to control bifurcations and chaos
in the passive walking. In [16], unstable chaotic gaits were stabilized by using impulsive
control and energy shaping method. Robustness issue was discussed by using energy
shaping method in [24]. In [9], it was shown that speed regulation and gait transitions
can be achieved by using passivity-based control.

However, most of the existing results related to passive dynamic walking are about
the biped robot with point or round feet. In order to better imitate human walking,
a compass-like biped robot with flat feet and fixed ankles was introduced in [11]. This
biped robot with flat feet is not only more like human, but it also has some other
advantages. For example, the robot with point feet can not stand alone when it is not
walking whereas the robot with flat feet can. However, the authors of reference [11] only
investigated that this robot could perform stable passive walking on a range of slopes. If
the slope becomes more and more steep, whether the robot gaits are still stable periodic
trajectories or exhibit period doubling bifurcations leading to chaos phenomena like the
robot with point feet in [4]? On the other hand, the question of how the length of the
foot will affect the passive gaits is still unknown. Considering these reasons, it motivates
us to analyze the effect of system parameters on gaits of the robot with flat feet. Our
contribution in this paper is as follow: 1) The influence of three parameters (i. e., the
ground slope, the length of the foot and the mass ratio of the robot) on the robots passive
gait are considered. 2) Compared with the case without feet, difference phenomena and
advantages of the robot with flat feet were verified.

The rest of this paper is organized as follows. The mathematical model of robot with
flat feet is given in Section 2. In section 3, we discuss the existence and stability of limit
cycles in passive gaits by using Poincaré map. In section 4, we show that the robot gaits
are affected by three parameters, i. e., the ground slope, the length of foot and the mass
ratio of the robot. Finally, we come to a conclusion and suggest directions for future
research.

2. MATHEMATICAL MODEL

Figure 1 shows the compass-like biped robot with solid flat feet and fixed ankles walking
down a slope. The assumptions are listed below as that in [4, 11].

Assumption 2.1.

1. The masses of the robot are concentrated at three points: the hip mass mH and
the leg mass m.

2. The legs are identical: a is the distance between the ankle and the leg mass, b is
the distance between the hip and the leg mass, l = a + b is the leg length, c is
the distance between the ankle and the end of heel, d is the distance between the
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Fig. 1: The robot model with flat feet.

ankle and the end of toe. In addition, the ankle is assumed to fix on the leg and
the angle is right angle.

3. There is no actuator in this model.

4. The robot walks down on a plane surface which inclines at a constant angle γ with
the horizontal.

5. The robotic knee is prismatic-joint, which is assumed to retract the lower leg to
clear the ground. The retraction of the lower leg is massless.

The robot motion consists of two kinds of dynamics, that is swing dynamics and
impact dynamics. Next, let us analyze these kinds of dynamics respectively.

1) Swing stage (Figure 2(a) and Figure 2(c)). During this stage, one leg is called
swing leg which leaves the ground while the other leg supports on the ground and is
called support leg. In Figure 2, the angles of the support leg and swing leg relative to
the vertical are denoted by θs and θns. For the plane graph of robot in Figure 2, the
positive direction of the each angle is defined as the right angle relative to the vertical
and the corresponding angle’s value is positive. And the left angle relative to the vertical
is the negative direction and its value is negative.

2) Impact stage (Figure 2(b) and Figure 2(d)). It occurs instantaneously when the
foot of the support leg touches the ground completely or the swing leg hits the ground.
Here, as in Ref. [5], the impact leg hitting the ground is assumed to be inelastic and
without sliding. So during the instantaneous impact stage, the robot configuration and
the total angular momentum are both unchanged, which will lead to a discontinuous
change in robot velocity. From a mathematical viewpoint, the impact condition is
θs = −γ or θs + θns + 2γ = 0. The detailed derivation for this condition is included in
the Appendix.

To analyze the dynamics of the robot motion, one step of the robot motion is divided
into four stages in Figure 2, i. e., two swing stages and two impact stages. Each stage has
different dynamic equations. The pivot point of the robot is denoted by a black point
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Fig. 2: Four dynamic processes of one step motion.

on the foot. The swing direction of the leg is denoted by a arrow. For convenience to
understand the motion, the phase plane for one complete step is presented in Figure 3.

Assumption 2.2. During the motion, there is no slipping at the pivot point. The im-
pact is inelastic and without sliding during instantaneous impact stage. This implies that
the robot configuration remains unchanged and the angular momentum is conserved.

In the sequel, we will give dynamic equations for each stage. These equations can be
found in [11]. We set mass ratio µ = mH/m and parameter c = d for this model. The
state vector is x = [θs, θns, θ̇s, θ̇ns]T ∈ R4. Then the robot system has three variable
parameters, i. e., the ground slope γ, the foot length c (or d) and the mass ratio µ.

1) Swing Stage 1 (From Figure 2(a) to Figure 2(b)): In Figure 2(a), the support
leg starts to rotate around the end of the heel and the swing leg starts to swing. This is
the start of Swing Stage 1. Because that the heel of the supporting leg acts as a pivot
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Fig. 3: Phase plane of two (half)-step motion for one leg.

by the assumptions, the dynamic equations of this phase are similar to the equations of
a double inverted pendulum. This stage ends when the foot of the support leg touches
the ground completely. The dynamic equations are given as:

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = 0, (1)

where θ = [θs, θns]T , θd = θs − θns, g = 9.81m/s2,

M(θ) =
(

µ(l2 + c2) + (l2 + a2 + 2c2) −b(l cos θd + c sin θd)
−b(l cos θd + c sin θd) b2

)
,

C(θ, θ̇) =
(

0 b(c cos θd − l sin θd)θ̇ns

−b(c cos θd − l sin θd)θ̇s 0

)
,

g(θ) =
(

((µ + 2)c cos θs − ((µ + 1)l + a) sin θs)g
gb sin θns

)
.

2) Impact Stage 1 (Figure 2(b)): The Impact Stage 1 occurs when the foot of
the support leg touches the ground completely. The angle of the support leg satisfies
θs = −γ. During the impact, the pivot point changes from the heel to the toe of
the support leg. The angles θs and θns keep unchanged while the angular velocities
change instantaneously. Since here it is assumed that there is no sliding motion during
the impact stage, the heel of stance foot will take off instantaneously after the Impact
Stage 1. From Assumption 2.2 and Ref. [11], we obtain the angular velocities satisfy
following equations:

θ−s = θ+
s = −γ, θ−ns = θ+

ns, Q
−(θ−s , θ−ns)θ̇

− = Q+(θ+
s , θ+

ns)θ̇
+, (2)
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where the pre-transition and post-transition variables are identified with the superscripts
− and + respectively and

Q−(θ−s , θ−ns)

=
(

µ(l2 − cd) + (l2 + a2 − 2cd))− b(l cos θ−d + c sin θ−d ) b(b− l cos θ−d + c sin θ−d )
−b(l cos θ−d + c sin θ−d ) b2

)
,

Q+(θ+
s , θ+

ns)

=
(

µ(l2 + d2) + (l2 + a2 + 2d2)− b(l cos θ+
d − d sin θ+

d ) b(b− l cos θ+
d + d sin θ+

d )
−b(l cos θ+

d − d sin θ+
d ) b2

)
,

θ−d = θ−s − θ−ns, θ
+
d = θ+

s − θ+
ns.

3) Swing Stage 2 (From Figure 2(b) to Figure 2(c)): This stage starts immediately
after the Impact Stage 1 and ends when the heel of the swing leg hits the ground. The
dynamic equations are similar to the equations in Swing Stage 1, just replacing c with
−d in equation (1). If c = d = 0, the dynamic equations in Swing Phase 1 and 2 become
the same equations as described in [4, 7, 25] which deal with the compass biped robot
with point feet.

4) Impact Stage 2 (Figure 2(d)):The non-supporting leg becomes the supporting
leg in this transition. This stage occurs when the heel of the swing leg hits the ground.
The impact condition is the angles θs and θns satisfying θs + θns + 2γ = 0. After the
impact, the swing leg becomes the support leg and vice-versa. At that moment, the
angular velocities satisfy following equations:

θ−s = θ+
ns, θ

−
ns = θ+

s , Q−(θ−s , θ−ns)θ̇
− = Q+(θ+

s , θ+
ns)θ̇

+, (3)

where

Q−(θ−s , θ−ns)

=
(
−ab + (µ(l2 − cd) + 2(al − cd)) cos θ−d − (c + d)(µl + l + a) sin θ−d −ab

−ab 0

)
,

Q+(θ+
s , θ+

ns)

=
(

µ(l2 + c2) + (l2 + a2 + 2c2)− b(l cos θ+
d + c sin θ+

d ) b(b− l cos θ+
d − c sin θ+

d )
−b(l cos θ+

d + c sin θ+
d ) b2

)
,

θ−d = θ−s − θ−ns, θ
+
d = θ+

s − θ+
ns.

3. A STEADY PASSIVE GAIT

Now, Let us analyze the stability of the robot gaits by using Poincaré map method.
In [4], it showed that if the robot can walk down a slope with stable symmetric gaits, it
should satisfy: 1)there exists initial condition that leads to a limit cycle in the passive
walking; 2)the limit cycle is locally stable.
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3.1. Existence of limit cycles in passive gaits

Firstly, let us investigate the existence of limit cycles of the robot with flat feet. We
choose the states right after Impact Stage 2 as the Poincaré section Σ. The Poincaré
map is illustrated in Figure 4. More details about Poincaré map can be found in [21, 22].
Since the state x has four components, only three components are needed to describe
the Poincaré map. Actually, according to the condition for Impact Stage 2, we know
that the surface of the Poincaré map is

θs + θns + γ = 0.

Thus the Poincaré map is determined by three variables (i. e. [θs, θ̇s, θ̇ns]). But here for
the convenience of description of robot walking, we still use x = [θs, θns, θ̇s, θ̇ns].
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Fig. 4: Poincaré map.
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Fig. 5: Period-1 limit cycle.

Definition 3.1. (Parker and Chua [21], Seydel [22]) Let xk be the kth intersection
between the trajectory and the surface of the Poincaré section Σ. The Poincaré map
denotes a relation such that

xk+1 = P (xk). (4)

If this trajectory is periodic through Σ, there is a fixed point x∗ that satisfies x∗ = P (x∗),
which means the system trajectory oscillates around an isolated closed orbit. It is called
a limit cycle.

In our model, the parameter values a = b = 0.5m, µ = 2, c = d = 0.1m, γ = 5◦ are
used. Using the algorithm in [21, 22], we find the fixed point is

x∗ = [0.3487,−0.5231,−1.436,−0.0219]T .

Figure 5 shows the trajectory of one leg of the robot starting from x∗, which is a limit cy-
cle. Note that when the impact occurs, the angular momentum of the robot is conserved
during impact. It will lead to a discontinuous change in robot velocity.
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3.2. Local stability of limit cycles

Definition 3.2. (Goswami et al. [4]) If any small disturbance is added to a limit cycle,
the resulting trajectories converge to the original cycle eventually, then the limit cycle
is called locally stable.

For a small perturbation δx∗ around the fixed point x∗, the nonlinear mapping func-
tion P can be expressed in terms of Taylor series expansion as

P (x∗ + δx∗) ≈ P (x∗) +∇P (x∗)δx∗, (5)

where ∇P (x∗) is a Jacobin matrix of the Poincaré map at the fixed point x∗.

Lemma 3.3. (Seydel [22]) If all eigenvalues of ∇P (x∗) lie inside the unit circle, then
the fixed point x∗ of the Poincaré map is locally stable.

Define Ω = [δx∗1, δx
∗
2, δx

∗
3, δx

∗
4], where δx∗1 = [ε1, 0, 0, 0]T , . . . , δx∗4 = [0, 0, 0, ε4]T with

εi any small scalars, i = 1, 2, 3, 4.
Since

∇P (x∗)δx∗i ≈ P (x∗ + δx∗i )− P (x∗) = P (x∗ + δx∗i )− x∗, (6)

then
∇P (x∗) ≈ [P (x∗ + δx∗1)− x∗, . . . , P (x∗ + δx∗4)− x∗]Ω−1. (7)

An immediate calculation shows that the eigenvalues of ∇P (x∗) are

[−0.2647 + 0.4388i,−0.2647− 0.4388i, 0, 0.1562].

The corresponding absolute values of these eigenvalues are

[0.5125, 0.5125, 0, 0.1562].

These values are all less than one, which means that the limit cycle is locally stable.

Remark 3.4. It should be noted that there is a zero eigenvalue for the matrix ∇P (x∗).
Actually, from [20], we know that, if the perturbation is along the limit cycle, the
resulting trajectory should be along the same limit cycle, which is the reason for existing
a zero eigenvalue. It should be pointed out that this zero eigenvalue is corresponding to
the zero Lyapunov’s exponent along limit cycle.

In this section, the existence and stability of limit cycles when the robot walks down
a shallow slope are verified by numerical simulations. However, when the system param-
eters (including the slope, the foot length and the mass ratio) vary, a question arises:
can the robot still walk down a slope with stable gaits?

4. INFLUENCE OF SYSTEM PARAMETERS ON STEADY PASSIVE GAITS

In the following subsections, we systematically study the effect of the varying system
parameters on robot gait by numerical simulations. As mentioned earlier, the system
parameters considered are the ground slope γ, the foot length c, and the mass ratio µ.
Set a = b = 0.5m for the following analysis.
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4.1. Effect of slope

In this subsection, we will investigate the effect of the varying ground slope γ on the
robot gait. We set µ = 2 and c = d = 0.1m and increase γ from 0.95◦ to 7.85◦ in steps
of 0.01◦. Figure 6 presents the evolution of the gait step period T as a function of the
slope γ. The diagram is called bifurcation diagram [4, 22].
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Fig. 6: Bifurcation diagram for step period T as a function of γ.
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From the bifurcation diagram, it can be found that the symmetric gaits are preserved
up to γ = 6.73◦. If the ground slope γ < 6.73◦, only one stable limit cycle is found for
each γ while the robot takes longer steps as the slope increasing. This behavior can be
observed from Figure 7 where the limit cycles are enlarged along both the position and
the velocity axes when γ is raised.

The diagram also shows that the first bifurcation occurs at γ = 6.73◦. In fact, at the
bifurcation point, one eigenvalue of the Jacobian of the Poincaré map reaches the unit
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circle and other eigenvalues stay within the unit circle. By numerical calculation, the
eigenvalues of ∇P (x∗) at γ = 6.73◦ are

[−1,−0.2831, 0, 0.0710].

After the first bifurcation, the 1-periodic gaits turn into 2-periodic ones. This phe-
nomenon is called period doubling. In this case, the fixed point x∗ of the Poincaré map
P is replaced by two points with period-2 that are related with

x∗2 = P (x∗1), x
∗
1 = P (x∗2).

Figure 8 presents limit cycles for 2-periodic gaits at γ = 7.25◦. Each leg now follows
a different trajectory, i. e., the robot limps, which implies that the robot gaits become
unstable.

Continuously increasing γ, period doubling route to chaos occurs as presented in
Figure 6. If the ground slope γ > 7.65◦, the robot gaits become unstable chaotic gaits.
Figure 9 shows the phase plane trajectories of the chaotic gaits associated with one leg
in 100 steps at γ = 7.75◦.

Remark 4.1. From above analysis, we know that the first bifurcation occurs at γ =
6.73◦. That is to say, the stable symmetric gaits are kept up to γ = 6.73◦. Compared
to the robot with point feet in [4], the robot with flat feet can keep stable walking on a
larger range of slopes. In [4], it was shown that the first bifurcation of the robot with
point feet occurred at γ = 4.37◦ with same fixed system parameters. In addition, it
should be pointed out that there is angle less than 6.73◦ for instable cyclic motion. For
example, by simulations, we do not observe any stable period-1 limit cycle when the
angle γ ≤ 0.5◦ under the condition µ = 2 and c = d = 0.1m. However, if the foot
length and the mass ratio are changed, we can observe stable period-1 limit cycle (e. g.,
c = d = 0m). That is to say, for small slope, the stability depends on the foot length or
the mass ratio.
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Remark 4.2. It should be noted that the foot length c = d = 0.1m in all above
discussions. In fact, if we set c = d = 0, the robot with feet will degenerate into the
robot with point feet and the equations in section 2 become the same equations as
described in [3, 4, 7], i. e., the robot with point feet is a special case of the one discussed
in this paper.

4.2. Effect of foot length
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Fig. 10: Bifurcation diagram for step period T as a function of c.

In this subsection, we will discuss the effect of the varying foot length on robot
passive gaits. Fixing parameter values µ = 2, γ = 4◦, we increase the foot length c from
0 in steps of 0.001m until the robot could not walk. Bifurcation diagram is shown in
Figure 10 which presents the evolution of the gait step period T as a function of the foot
length c.
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The robot gaits are stable limit cycles for c < 0.142m. Two limit cycles corresponding
to two different values of foot length c = 0 and c = 0.1m are depicted in Figure 11

respectively. It shows that the touchdown inter-leg angle increases for larger c, i. e., the
one step length increases. It is obvious that the step period decreases for the robot with
feet. This implies that adding feet to a robot increases the walking speed.

From Figure 10, it shows that the robot gaits are 2-periodic for c ≥ 0.142m. From
Figure 12, it shows that period-2 limit cycles at c = 0.15m. By continue increasing the
foot length from 0.15m, the robot will not be able to walk down the slope. Note that it
is very different from the period doubling route to chaos when the ground slope raised
in subsection 4.1.

Remark 4.3. Differing from the robot with point feet, we can regulate the walking
speed of the robot with flat feet by choosing different length feet. For example, in
the case µ = 2, γ = 4◦, when the length of foot is 0.1m, the step period T has a
minimum.This is a distinct advantage for the robot with flat feet.

4.3. Effect of mass ratio

Without loss of generality, we set γ = 5◦ and c = 0.1m. Mass ratio µ is increased from
0.6 to 10 in steps of 0.05. The evolution of the gait step period T as a function of µ is
presented in Figure 13. In fact, the robot gaits are still 2-periodic until µ ≤ 30.

The robot walking is a stable limit cycle for µ < 5.4. Limit cycles corresponding
to different values of µ are depicted in Figure 14. By increasing the parameter µ, we
can observe that the step length becomes longer and the step period becomes larger.
The period doubling occurs and the robot 1-periodic gaits turn into 2-periodic ones for
µ ≥ 5.4. Limit cycles for 2-periodic gait at µ = 10 are presented in Figure 15.

In order to compare the influence of mass ration between the biped robot with fixed
flat feet and the robot with point feet, we set γ = 4◦ and c = 0.1m since the robot with
point feet can not walk on the slope angle γ = 5◦. The evolution of the gait step period
T as a function of µ is also given in Figure 16. By a comparison with Fig C12 in Ref. [4],
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Fig. 13: Bifurcation diagram for step period T as a function of µ.
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we can find that with the increase of mass ratio, the step period T of biped robot with
fixed flat feet is larger than the robot with point feet.

4.4. The two-parameter bifurcation

In this subsection, we will study the analysis of two-parameter bifurcation. Without
loss of generality, we set µ = 2. The slope γ is increased from 4◦ to 5.1◦ in steps of 0.1◦

and the foot length c is increased from 0 to 0.15 in steps of 0.015. It can be found that
the robot gaits demonstrates bifurcation phenomenon. Figure 17 shows that the length
of the foot will affect the first bifurcation point when the ground slope is continuously
changed.
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Fig. 17: The influence of the length of the foot on the first bifurcation point.

4.5. Summary of this section

Having discussed the effect of system parameters on the robot with flat feet, now we
present some conclusions as follows:

1) According to the previous simulations, we know that if the system parameters
chosen appropriately, the robot with feet can keep a stable walking on a certain shallow
slope as the robot with point feet. While continuously increasing the slope, period
doubling route to chaos occurs. And the phenomenon of period doubling occurs by
increasing the foot length and mass ratio, respectively.

2) The robot with point feet is a special case of the one discussed in this paper.
Compared to the case without feet, the robot with flat feet can walk a larger range of
slopes, which means that adding feet can extend the application range to some extent.

3) With fixed slope and mass ratio, by adjusting the length of foot, the walking speed
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of the robot can be regulated.

5. CONCLUSION

The effect of system parameters on passive walking of a robot with flat feet and fixed an-
kles have been discussed. The robot motion exhibits bifurcation phenomena at a certain
slope angle. On further increase in the slope angle, the robot undergoes a period dou-
bling case until its motion becomes chaotic. Bifurcation and period doubling phenomena
are also shown to be produced by changing the foot length and the mass ratio. It is
interesting to identify the boundary of the basin of attraction with parameter varying
where the robot can walk in a steady fashion without any actuation. Also, it deserves
to further study how to model the robot with flat feet considering the foot’s mass, the
reaction forces, and the other configuration of the foot, e. g. compass gait biped with
rounded feet or feet with different distance between ankle and heel and ankle and toe,
in our future work.

APPENDIX

The appendix collects the detailed derivation of impact condition for Impact Stage 2.
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Fig. 18: Geometric pattern for Impact Stage 2.

According to the geometric pattern shown in Figure 18, we know ∠EDB = γ, which
means ∠ADB = 90◦ − γ. By the definitions of θns and θs, and noticing that the
superscripts + and − denote the right and left angles relative to the vertical, we obtain

∠ABD = 180◦ − (90◦ − γ)− (−θns) = 90◦ + γ + θns,

which leads to ∠ACD = ∠ABD = 90◦ + γ + θns. Note that ∠ADB = ∠ACD + θs.
Then we conclude that

θs + θns + 2γ = 0.
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