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PICKUP AND DELIVERY PROBLEM WITH SPLIT
DEMAND AND TRANSFERS

Jan Pelikán

We deal with a logistic problem motivated by a case study from a company dealing with
inland transportation of piece goods in regular cycles. The problem consists in transportation of
goods among regional centres — hubs of a network. Demands on transportation are contained
in a matrix of flows of goods between pairs of hubs. The transport is performed by vehicles
covering the shipping demands and the task is to design a cyclical route and to place a depot for
each vehicle. The route depot can be placed in any hub of the route. Goods can be transferred
from one route and vehicle to another route and vehicle. The aim is to minimize the total
transportation cost. The task is classified as a new case of the pickup and delivery problem
with split demand and transfers (SDPDPT). We propose a mathematical model and prove NP-
hardness of the problem. We study demand reducibility. We also deal with skip pickup and
delivery problem as a special case and show its complexity.

Keywords: pickup and delivery problem, case study, integer programming, skip trans-
portation

Classification: 90B35, 90B90

1. INTRODUCTION — DESCRIPTION OF THE CASE STUDY

The main problem is: how to organize inland transport of goods between pairs of lo-
gistical centres (hubs), where the hubs are placed on a network. The transportation is
carried out by vehicles of the same capacity, each of which can be placed in any logistical
centre, which is the depot for this vehicle. The hub is posed as node of the graph, arcs
of the graph are the shortest paths between pairs of hubs. Demands on transport are
formulated by a matrix D = (dij) representing the flows of goods between pairs of hubs.
The number dij can be understood as the average daily demand on transport. The
demand dij represents the amount of goods which will be loaded at node i and unloaded
at node j. During the transportation process, the goods can be divided into parts, which
can be transported independently on different vehicles, and can also be reloaded from
one vehicle to another one in some of the vehicles’ route nodes.

The task is to determine a set of cyclical routes of the graph and a depot on each
cycle. Each route is assigned to one vehicle. The depot can be placed in any node
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on the route. The aim is to find a set of cyclical routes with minimum transportation
cost. These routes can intersect themselves. In the intersections, the goods could be
transferred from one vehicle to the other one if necessary. In practice, this concerns nine
logistic centers in the Czech Republic.

2. PICKUP AND DELIVERY PROBLEM

There are problems in logistics where the goal is to assure pickup and delivery of goods
in a distribution network. While in those applications it is necessary to find cyclical
routes starting and ending at a given depot, in the studied problem it is required to
transport goods between nodes of the network by cyclical routes with different depots.
Each requirement is specified by the pickup node, the delivery node and the amount
of goods which has to be transported. In Savelsbergh and Sol [5] the problem is called
pickup and delivery problem. Definition of the pickup and delivery problem (Berbeglia
et al. [2]) involves the general problem described by Savelsbergh and Sol [5] and also
further logistic problems and their modifications: traveling salesman problem, vehicle
routing problem, dial-a-ride problem, swapping problem, stacker crane problem. The
dial-a-ride problem consists in covering a set of requests of people for transport from
an origin to a destination, door to door transport service. The swapping problem deals
with the swapping of objects among nodes of the network. The stacker crane problem
is a practical problem of managing crane operations.

A tree-field classification scheme is presented by Berbeglia et al. [2] for the class
of pickup and delivery problems. The first field structure is a specification of numbers
of origins and destinations for transport of commodities. The second field provides
information on pick and delivery operations at nodes. The third field gives the number
of vehicles. The static and dynamic pickup and delivery problem with time windows,
split deliveries and possible reloading is solved by Thangiah at al. [6]. Heuristics are
proposed and verified on real data.

The problem studied in this paper is a new case of the pickup and delivery problem,
in which demand can be split and reloaded. Route depot can be any node of the route.

3. MATHEMATICAL MODEL

The task introduced in the case study is classified as a new case of the pickup and delivery
problem with split demand and transfers (SDPDPT). The problem is modeled with a
complete digraph, where hubs are represented by nodes of the graph. Arcs represent the
shortest paths between pairs of nodes. The number of nodes of the graph is denoted n.
The lengths of arcs are given by a distance matrix C = (cij), where cij is the length of
the shortest path from node i to node j in the road network. The demands on the flows
of goods between pairs of nodes are given by a matrix D = (dk`), where dk` represents
the demand for transport from node k to node `. The task is to determine a family
R = {R1, R2, . . . , Rm} of cyclical routes R1, R2, . . . , Rm on the road graph. The length
of the cyclical route Rj is denoted h(Rj). The total length of routes is

∑
j h(Rj) and

this number is to be minimized.
All the vehicles have the same capacity Q > 0. The number of vehicles is not limited

beforehand.
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The mathematical model contains two types of flows in the graph:

• the flow of goods, which is a multiproduct flow in the graph; each demand on
transport dk` corresponds to one product,

• the flow of vehicles. The capacity of an edge for goods flow is given by the number
of vehicles going along this edge and the capacity of vehicle Q. The flow of vehicles
along the edge is unlimited.

Mathematical model:

Parameters:

• C – matrix of the length of arcs,
• D – matrix of demands on transport between pairs of nodes,
• Q – capacity of the vehicle,
• n – number of nodes.

Variables:

• yij – number of vehicles going along the arc (i, j) (i, j = 1, 2, . . . , n; i 6= j),

• xk`
ij – volume of goods transported from node i to node j, being a part of the

total amount dk` of goods which are to be transported from node k to node `
(i, j = 1, 2, . . . , n; i 6= j; k, ` = 1, 2, . . . , n; k 6= `).

The SDPDPT model:

minF (Y ) =
∑
i,j

cijyij subject to

∑
i

yij −
∑

i

yji = 0, j = 1, 2, . . . , n; (1)

∑
i

xk`
ij −

∑
i

xk`
ji =

 −dk`, j = k
dk`, j = `

0, j 6= k, `

 , k, ` = 1, 2, . . . , n; k 6= `; (2)

∑
k`

xk`
ij ≤ Qyij , i, j = 1, 2, . . . , n; i 6= j; (3)

xk`
ij ≥ 0, k, ` = 1, 2, . . . , n; k 6= `; i, j = 1, 2, . . . , n; i 6= j; (4)

yij ≥ 0, yij integer; i, j = 1, 2, . . . , n; i 6= j. (5)

The objective (1) corresponds to the sum of costs of all arcs in the solution, i. e., the
total length of all routes. Equations (2) are flow equations for vehicles: they say that
the number of vehicles entering a node has to be equal to the number of vehicles leaving
it. The equations (3) are flow equations for goods: they say that the amount of goods
being transported from k to ` entering a node also leaves the node (except for the source
and destination node). Inequalities (4) prevent the capacity of the vehicle transporting
goods between nodes i and j from being exceeded.
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Example 3.1. Consider a graph with nodes V = {1, 2, 3, 4}, the demand matrix D and
the cost matrix C of the form

D =


0 10 5 5
10 0 5 5
5 5 0 0
5 5 0 0

 , C =


0 3 2 2
3 0 2 2
2 2 0 3
2 2 3 0

 .

The capacity of a vehicle is Q = 10. The optimal solution of the model is

Y =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0


with optimum cost 16.

Using the matrix Y , two cyclical routes can be found using an algorithm, which will
be presented in the next section. The routes are

R1 = (1, 3, 2, 4, 1), R2 = (1, 4, 2, 3, 1)

and the depot is in node 1.
A summary of loadings and unloadings of the goods is shown in Table 1. Demand

d12 is divided into two parts: a part d′
12, which is transported along the cycle R1, and

a part d′′
12, which is is transported along R2. Clearly d12 = d′

12 + d′′
12. In a similar way,

the demand d21 is divided into d′
21 and d′′

21.

R1: Loaded Unloaded R2: Loaded Unloaded
nodes nodes

1 d′
12 = 5, d13 = 5 — 1 d14 = 5, d′′

12 = 5 —
3 d32 = 5 d13 = 5 4 d42 = 5 d14 = 5
2 d24 = 5, d′

21 = 5 d12 = 5, d32 = 5 2 d′′
21 = 5, d23 = 5 d′′

12 = 5, d42 = 5
4 d41 = 5 d24 = 5 3 d31 = 5 d23 = 5
1 — d′

21 = 5, d41 = 5 1 d31 = 5, d′′
21 = 5

Tab. 1. Routes R1 and R2.

3.1. Generation of cyclical routes

A number of vehicles entering each node equals to the number of vehicles leaving it in
the optimal solution Y of the model (1) – (6). When Y is available, we need to generate
the family of the cyclical routes, each in the form of a path (i1, i2, . . . , it). The following
general algorithm can be used (see [3]).
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Route generation algorithm:

Step 1. If yij = 0 for all arcs (i, j), it is not possible to generate any route. Otherwise
select an arbitrary arc (i1, i2) with yi1,i2 > 0. Set yi1,i2 = yi1,i2 − 1 and t = 2.

Step 2. Repeat while i1 6= it: select any arc (it, it+1) with yit,it+1 > 0. Set yit,it+1 =
yit,it+1 − 1 and t = t + 1.

Theorem 3.2. If
∑n

i=1 yij =
∑n

k=1 yjk for all j = 1, 2, . . . , n, then the Route Genera-
tion Algorithm correctly generates cycles.

P r o o f . If, in step 2, the path (i1, i2, . . . , it) is not closed, i. e. if yit,j = 0 for every
node j, then it holds that

1 ≤
n∑

i=1

yi,it 6=
n∑

j=1

yit,j = 0.

This contradicts the assumption. �

Comment. The Route Generation Algorithm gives us a set of routes, which depends
on the choice of the initial arc in Step 1 and on the choice of the arc in Step 2. A heuristic
modification of the algorithm, in which the number of reloadings of goods among different
routes is minimized, is proposed in [3].

4. COMPLEXITY OF SDPDPT

Proposition 4.1. SDPDPT is NP-hard.

P r o o f . We reduce a decision form of the metric Travelling Salesman Problem to
SDPDPT. First we recall the formulation of metric TSP.

Metric TSP problem:

• Input: A complete graph with n nodes and a matrix C of weights. The matrix C
satisfies the triangular inequality. A number L > 0 is given.

• Question: Is there a Hamiltonian cycle of length less than or equal to L?

Define

Q = n− 1, D =


0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


and solve SDPDPT. Its optimal solution is denoted R = {R1, R2, . . . , Rs}, where Ri is
the ith cycle. Its length is denoted h(Ri). The sum of all lengths is F =

∑
i h(Ri). We
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suppose that node 1 lies on the cycle R1. The cycles of R must cover all nodes since the
matrix D forces us to deliver one unit from the first node to each node.

We will prove that

a Hamiltonian cycle of length ≤ L exists ←→ F ≤ L.

Moreover, we find such a cycle if it exists.

• Case A: F ≤ L. If there is a single cycle R1 in the optimal solution R, i. e. if
s = 1, this cycle is Hamiltonian. Otherwise, when s ≥ 2, we join each pair of cycles
sharing a common node. We claim that there exists a cycle Rj sharing a common
node with R1. [Proof. If R1 shares a common node with none of the other cycles,
then we cannot transport one unit of goods from node 1, covered by R1, to the
nodes outside R1. But the matrix D forces us to transport one unit from node 1
to all remaining nodes.] Let cycles R1 and Rj share a common node. According
to the notation of nodes in Fig. 1, the common node of cycles R1 and Rj is the
node X, the preceding node of X on R1 is the node A1 and the following node is
A2. The node B1 precedes the node X and node B2 follows the node X on the
route Rj . The arc (X, A2) lies on R1 and the arc (B1, X) lies on Rj . We remove
those arcs and add a new arc (B1, A2). Then we obtain one cycle, see Fig. 2. The
length of the cycle is no more than h(R1)+h(Rj) due to the triangular inequality.
Joining all cycles, the cycle R1 is Hamiltonian and its length is less than or equal
to L.

1

A1

A2

R1 X R2

B2

B1

Fig. 1. Routes R1 and Rj before catenation.

1

A1

A2

R1 X

B2

B1

Fig. 2. Route R1 after catenation.
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• Case B: F > L. If a Hamiltonian cycle with length no more than L exists, we
have a contradiction: the Hamiltonian cycle is a feasible solution to SDPDPT and
the length of a feasible solution to SDPDPT is greater than L by assumption.

�

5. DEMAND REDUCIBILITY OF SDPDPT

The first question is how to define the notion of demand reducibility for the SDPDPT
problem. The property of demand reducibility is introduced and defined for the vehicle
routing problem with split demand, see [1]. The problem consists in transporting goods
from a depot to customers by using vehicles of a given capacity with minimum costs.
The demands of customers can be greater than the capacity of the vehicle. An instance
of the vehicle routing problem is said to be demand reducible if there exists an optimal
solution in which each customer is served by as many fully loaded depot-customer direct
trips as possible. If an instance of the vehicle routing problem is demand reducible,
we can reduce demands of customers by the capacity of vehicle Q as many as possible.
This part of demand will be delivered by direct round trips depot-node-depot. Next we
solve the problem with reduced demands of customers, i. e. with demands reduced by
as many capacities of a vehicle as possible.

Now we will define demand reducibility of the SDPDPT in a similar way.
The transport between two nodes (customers) is solved in SDPDPT. The transport

demand from node i to node j is denoted as dij , and from node j to node i as dji. If
both dij and dji are greater then or equal to the capacity Q, then we can use as many
fully loaded vehicles on the cyclic route (i, j, i) as possible. If this solution is optimal
for all pairs (dij , dji), then the instance of SDPDPT is said to be reducible. Hence we
define the reducibility in the following way:

Definition 5.1. The instance of SDPDPT is demand reducible if there exists an
optimal solution for which it holds yij ≥ λij := min{bdij

Q c, b
dji

Q c} and yji ≥ λij for
all i, j. SDPDPT is demand reducible if all instances of SDPDPT are demand reducible.

Comment. In Definition 5.1 there exists a simple cyclic route (i, j, i) for λij fully
loaded vehicles which ensure a part λijQ of the transport demand of dij and dji.

Proposition 5.2. SDPDPT is not demand reducible.

P r o o f . We will prove the proposition using the instance of Example 3.1 showing its
not demand reducibility. We will show that the solution with reduced demand is not
optimal. First we reduce the demands and then we find the optimal solution for the
problem with reduced demands. The direct route is 1, 2, 1, the length is 3 and this route
covers transport demand d12 = d21 = 10. The remaining demands are covered by the
optimal route 1, 3, 2, 4, 2, 3, 1 of length 6. Total costs are 3 + 6 = 9. The routes do not
represent an optimal solution since from Example 3.1 we know that the optimal value
is 8. �
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6. SKIP PICKUP AND DELIVERY PROBLEM

The skip transport consists in transporting skips (big containers, trailers) from an initial
location to a destination location using vehicles (tractors), see [1]. The capacity Q
of vehicles is integer and limited, usually the capacity of the vehicles is one or two
containers. The demand matrix D is also integer. The optimal solution has to be
integer. Therefore the integrality conditions for x-variables must be added to the model
(1) – (6).

Comment. Model (1) – (6) is a multi-product flow problem. The matrix of constraints
is not totally unimodular, even if Q = 1, and hence the polytope of a relaxation of the
model is not integral; see [4].

Lemma 6.1. If the nonnegative cost matrix C satisfies the triangular inequality, then
the length cij of the arc (i, j) is less than or equal to the length of any path from the
node i to the node j.

P r o o f . Let us have the path (k1, k2, . . . , ks), where k1 = i and ks = j. Then cij ≤
ci,k2 + ck2,j ≤ ck1,k2 + ck2,ks ≤ ck1,k2 + ck2,k3 + ck3,ks ≤ · · · ≤ ck1,k2 + ck2,k3 + · · · +
cks−1,ks . �

Lemma 6.2. Let (Y, X) satisfy the constraints (1) – (6). Assume that one skip from
the transport requirement dij is transported along the path P = (k1, k2, . . . , ks), where
k1 = i and ks = j. Let (Y ′, X ′) be the solution obtained from (Y, X), where the
transport of this skip along the path P is replaced by the transport along the arc (i, j).
Then F (Y ) ≥ F (Y ′).

P r o o f . Directly from Lemma 6.1. �

By Lemma 6.1 it holds that each demand dij has to be covered by dij vehicles going
along the arc (i, j). So, the total number of vehicles yij going through the arc (i, j)
should be greater than or equal to dij . It follows that we can formulate the following
mathematical model of the skip pickup delivery problem (under the assumptions of
Lemma 6.1):

min z =
∑
(i,j)

cijyij subject to

∑
(i,j), i 6=j

yij −
∑

(j,k), j 6=k

yjk = 0, j = 1, 2, . . . , n; (6)

yij ≥ dij , i, j = 1, 2, . . . , n; (7)
yij ≥ 0, yij integer; i, j = 1, 2, . . . , n. (8)

Equation (6) is a flow equation for vehicles. Inequality (7) assures the skip transport
demand D.
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Proposition 6.3. Let the matrix C be nonnegative satisfying the triangular inequality.
Let the transport requirement matrix D be integer. Let the capacity of vehicles be equal
to one. Then the model (6) – (8) is totally unimodular.

P r o o f . It follows from Lemma 6.2 that all skip transport requirements dij have to be
transported directly along the corresponding arcs (i, j) in the optimal solution. So the
solution Y has to meet the flow equation (6) to ensure the existence of a set of cyclical
routes. The inequalities (7) ensure all transport requirements D. The constraint matrix
of the model (6) – (8) is a node-arc matrix, which is totally unimodular. �

Corollary 6.4. Under the assumptions of Proposition 6.3, the skip pickup and delivery
problem can be solved in polynomial time.

7. CONCLUSION

The pickup and delivery problem, introduced and studied in this paper, was motivated
by a case study from a logistic company assuring regular transportation of piece good
among regions of the Czech Republic. The problem is solved in two phases; in the first
one, total transportation costs are minimized without forming routes. The result of
the first phase is a number of vehicles going through arcs. In this phase, no routes are
generated and no depots are determined. This is the objective of the second phase, in
which routes are sought out using heuristics. Both phases represent an original tool
for solving the problem, consisting of a mathematical model in the first stage and the
heuristic method in the second stage.

The main difference from the pickup and delivery problems published in literature
and the problem presented in the paper consists in the following points:

1. transport demand is given in the form of demand matrix of flows of goods between
pairs of nodes of the communication network,

2. transport demand can be divided into many parts which are transported separately
on different routes and vehicles and they can be reloaded from one route to another
route,

3. route depot can be placed in any node of the route.

The main results of this paper are: the mathematical model of the problem, proof of
the NP-hardness of the problem, proof of demand non-reducibility of the problem, and
reformulation of skip pickup and delivery problem model as single-product minimal-cost
flow problem.
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