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In this paper there are considered Markov decision processes (MDPs) that have the dis-
counted cost as the objective function, state and decision spaces that are subsets of the real
line but are not necessarily finite or denumerable. The considered MDPs have a cost function
that is possibly unbounded, and dynamic independent of the current state. The considered
decision sets are possibly non-compact. In the context described, conditions to obtain either
an increasing or decreasing optimal stationary policy are provided; these conditions do not
require assumptions of convexity. Versions of the policy iteration algorithm (PIA) to approxi-
mate increasing or decreasing optimal stationary policies are detailed. An illustrative example
is presented. Finally, comments on the monotonicity conditions and the monotone versions of
the PIA that are applied to discounted MDPs with rewards are given.
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1. INTRODUCTION

In this paper, there are considered Markov decision processes (MDPs) with the dis-
counted cost as the objective function (see [3, 8, 9, 13]). Conditions to ensure the
existence of monotone optimal stationary policies are described, when the existence of
an optimal stationary policy is assumed. Such conditions are given in terms of the ele-
ments of the Markov decision model (for other kinds of conditions see [2]); in particular,
these conditions allow the state space X and the decision space A to be subsets of R
that can be finite, denumerable or non-denumerable.

Specifically, there are considered discrete-time MDPs on real spaces that have an in-
finite time horizon and discounted cost as the objective function. The MDPs considered
have a dynamic of the system that is independent of the current state, a cost function
that is not necessarily bounded, and compact or non-compact decision sets.

The dynamic described here permits the construction of conditions that do not require
the properties of stochastic order, superadditivity or subadditivity in the transition law,
and monotonicity in the reward function (as in [5, 13, 14]). In previous work the dynamic
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of the system is more general; however, the state spaces are finite ([5]) or denumerable
([13]), the decision spaces are finite ([5, 14]), or the reward function is bounded ([14]).
Contrary to the conditions presented in [7], the conditions presented here do not contain
assumptions of convexity.

Models that have dynamic independent of the current state do not embrace all control
structures, but is natural for certain types of problems. This dynamic is observed in
models of capital accumulation, fisheries management, and reservoir operation ([6, 9,
12]). Other examples concern single-product dynamic inventory models and models
regarding replacement and maintenance ([10]). MDPs with finite decision sets, where
the transition probabilities depend on the decisions taken and not on the current state
were named “invariant MDPs” by Assaf (see [1]). In this paper, this terminology will
not be used. In [1] (Section 5), it is shown that (modulo measurability technicalities)
any problem may be transformed into an invariant one. More examples that possess
this special structure or those that can be converted into such problems can be found
in economic literature (see [10]).

Policy iteration, which is also known as the approximation in policy space (see [3, 8,
13]), is a method for solving optimal decision problems (ODPs). It directly refers to the
particular structure of the ODPs.

In the same context described four paragraphs above, in this paper, modified versions
of the policy iteration algorithm (PIA) are provided and implemented in R. These
new algorithms allow one to approximate monotone (increasing or decreasing) optimal
stationary policies. Contrary to the existing algorithm (see [8]), in the versions presented
here, when the initial stationary policy is increasing (or decreasing), the policies obtained
at each iteration are also increasing (or decreasing) and stationary. [13] considers an
increasing version of the PIA for MDPs with rewards, but there both the state and
decision spaces are finite subsets of R.

The main and novel contribution of the paper is the presentation of a detailed study of
the MDPs on real spaces with costs and dynamic independent of the current state, by the
following: a) Non-convex conditions which guarantee the existence of monotone optimal
policies are provided. These conditions extend the previous ones given for discrete MDPs
in [13], and complete the study of the existence of monotone optimal policies given in
Section 4 of [7], because in this reference only convex conditions are provided. b) Suitable
versions of the PIA in order to approximate the (monotone) optimal policies are given.
These versions are refinements of the PIA proposed for MDPs on Borel spaces in [8].
In fact, the versions of the PIA provided permit to take, as initial condition, monotone
stationary policies instead of measurable ones, as the version presented in [8] require.
c) There is included an illustration of how the theory presented works by means of an
elaborated example.

The paper is organized as follows. Section 2, provides basic concepts and results in
R and on MDPs with costs. In Section 3, the non-convex conditions under which it is
possible to guarantee the existence of monotone optimal stationary policies are provided.
In Section 4, the monotone versions of the PIA are detailed. In Section 5, an example
is detailed to illustrate the existence of an increasing optimal stationary policy and
to illustrate the corresponding version of the PIA. Section 6, presents remarks about
the conditions that ensure the existence of monotone optimal stationary policies for
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MDPs with rewards and the corresponding modified versions of the PIA. Finally, the
conclusions are supplied in Section 7.

2. PRELIMINARIES

2.1. Terminology and some results in R

This subsection contains concepts and results in R (see [7] and [14] for the more general
context in lattice theory). For such a space, x ∧ y := inf{x, y} and x ∨ y := sup{x, y}.

Let Γ be a fixed subset of R.
Let Θ and Υ be subsets of Γ. Θ is lower than Υ, and is denoted as Θ v Υ, if θ∧υ ∈ Θ

and θ ∨ υ ∈ Υ for all θ ∈ Θ and υ ∈ Υ.
Let Z be a nonempty subset of R. For x ∈ Z, let Γ(x) be a nonempty subset of Γ.

It is said that the multifunction x → Γ(x) is ascending if x → Γ(x) is increasing with
respect to the relation v, i. e., Γ(x) v Γ(y) for x ≤ y in Z. It is said that x → Γ(x) is
descending if x → Γ(x) is decreasing with respect to the relation v.

Let X and A be nonempty Borel subsets of R with Borel σ− algebras B(X) and B(A),
respectively. For each x ∈ X, let A(x) be a nonempty (measurable) subset of A (i. e.,
x → A(x) is a multifunction from X to A). Suppose that K := {(x, a) : x ∈ X, a ∈ A(x)}
is a measurable subset of X ×A.

A function T : K → R is subadditive (it has antitone or decreasing differences)
on K if T (y, b) + T (x, a) ≤ T (y, a) + T (x, b) for all x ≤ y in X and a ≤ b, with
a, b ∈ A(x) ∩A(y). T is called superadditive (it has isotone or increasing differences) on
K if −T is subadditive on K.

2.2. Markov decision processes

This subsection contains concepts and results of Markov decision processes (MDPs) as
in [7].

Let {X, A, {A(x) : x ∈ X}, Q, c} be a discrete-time, stationary Markov decision model
and consists of the state space X, the decision set A, the admissible decision sets A(x),
x ∈ X, the transition law Q, and the one-stage cost c. The cost function c : K → R is
measurable.

In this paper, the sets X, A, A(x) for each x ∈ X, and K are considered as in
Subsection 2.1. The transition law is independent of the current state, and therefore
Q(B|a), B ∈ B(X) and a ∈ A(x), is a stochastic kernel on X, given A. Specifically, the
evolution of the MDPs considered is given by the transition probability law Q induced
by the difference equation of the type:

xt+1 = U(at, ξt), (1)

t = 0, 1, ..., where x0 = x ∈ X is the initial state, {ξt} is a sequence of independent
and identically distributed random variables that, take on values in some real Borel
space S with density ∆. Let ξ denote a generic element of the sequence {ξt} (ξ will
be used in this paper to specify the assumptions related to the sequence {ξt}), and let
U : A× S → X be a measurable function.
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Let F be the set of decision functions or measurable selectors, i. e. the set of all
measurable functions % : X → A, such that %(x) ∈ A(x) for all x ∈ X. A sequence
π = {%t}, such that for each t, %t ∈ F is called a Markov policy. A stationary policy
is a Markov policy π, such that %t = %, for all t = 0, 1, ... and % ∈ F. The stationary
policy (%, %, . . .) will be identified with the element of the sequence, i. e., %. The set of
all policies will be denoted by Π.

The expected total discounted cost is taken into account as the objective function and
is given by:

V (π, x) := Eπ
x

[ ∞∑
t=0

αtc(xt, at)

]
, (2)

where x0 = x is the initial state, π is the policy that drives the system, and the discount
factor is given by α ∈ (0, 1).

A policy π∗ is called optimal if

V (π∗, x) = inf
π∈Π

V (π, x), (3)

for all x ∈ X, and the minimum cost V ∗(x) := V (π∗, x), x ∈ X, is referred to as the
optimal value function.

For {X, A, {A(x), x ∈ X}, Q, c} a fixed Markov decision model, as the one specified
above, the following results are considered and are adapted to the dynamic used in this
paper:

Assumption 2.1. (Assumptions 4.2.1 and 4.2.2 in [8])

a) The one-stage cost c : K → R is nonnegative, lower semi-continuous (l.s.c.) and
inf-compact on K, that is for every x ∈ X and s ∈ R, the set As(x) := {a ∈ A(x) :
c(x, a) ≤ s} is compact.

b) The transition law Q is strongly continuous, i. e.,

u′(a) :=
∫

u(z) Q(dz|a)

is continuous and bounded on A for each function u : X → R measurable and
bounded.

c) There is a policy π such that V (π, x) < ∞ for all x ∈ X.

Π0 denotes the family of policies for which Assumption 2.1 c) holds.

Lemma 2.2. (Theorem 4.2.3 parts a, b and c in [8]) Suppose that Assumption 2.1
holds, then:

a) The discounted cost optimal value function V ∗ satisfies the discounted cost opti-
mality equation (DCOE), i. e. for all x ∈ X,

V ∗(x) = min
a∈A(x)

[
c(x, a) + α

∫
V ∗(z) Q(dz|a)

]
. (4)
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b) There is f∗ ∈ F, such that

V ∗(x) = c(x, f∗(x)) + α

∫
V ∗(z) Q(dz|f∗(x)), (5)

where x ∈ X, and f∗ is optimal. Conversely, if f∗ is a stationary optimal policy,
then it satisfies (5).

c) If π∗ is a policy such that V (π∗, ·) is a solution to the DCOE and satisfies

lim
n→∞

αnEπ
x V (π∗, xn) = 0

for all π ∈ Π0 and x ∈ X, then V (π∗, ·) = V ∗(·); hence π∗ is a discounted optimal
policy.

Remark 2.3. (see [8], p. 51) For any deterministic stationary policy f , the discounted
cost V (f, ·) satisfies for all x ∈ X,

V (f, x) = c(x, f(x)) + α

∫
V (f, y) Q(dy|f(x)).

3. MONOTONICITY CONDITIONS

Define the function LV : K → R as

LV (x, a) := c(x, a) + α

∫
V ∗(z) Q(dz|a), (6)

which corresponds to the function that is minimized in (4).
For each x ∈ X, define A∗(x) by

A∗(x) :=
{

a ∈ A(x) : LV (x, a) = min
a∗∈A(x)

LV (x, a∗)
}

where A∗(x) represents the set of minimizers of the DCOE.

Lemma 3.1. (Lemma 6.1 in [7]) Assumption 2.1 implies that A∗(x) is a nonempty
compact set for every x ∈ X.

Let f : X → A be the greatest admissible decision for each x ∈ X that satisfies the
DCOE, i. e.

f(x) = supA∗(x), (7)

which is well defined and f(x) ∈ A∗(x) ⊂ A(x), by Lemma 3.1.

Assumption 3.2.

a) X is discrete (i. e., finite or denumerable).

b) X ⊂ R is an interval and f is monotone.

c) There exists a unique optimal policy for the discounted MDP taken into account.

Remark 3.3. a) It is not difficult to observe that each condition in Assumption 3.2
implies that f , defined in (7), is measurable.

b) In [4] the authors give conditions under which Assumption 3.2 c) is satisfied.
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3.1. Increasing optimal policies

Condition 3.4.

a) x → A(x) is ascending.

b) c(·, ·) is subadditive on K.

Lemma 3.5. Under Condition 3.4 b), the function LV that is defined in (6) is subad-
ditive.

P r o o f . Since the second term of (6) does not depend on x given that
∫

V ∗(z)Q(dz|a) =∫
V ∗(U(a, s)) ∆(s) ds by (1), the subadditivity of LV is a consequence of the fact that

c is subadditive. �

Theorem 3.6. Suppose that Assumption 2.1 holds and one of the conditions of As-
sumption 3.2 results, then there exists an increasing optimal stationary policy under
Condition 3.4.

P r o o f . The proof proceeds by contradiction. From Lemma 2.2 b), let f be defined
as in (7). Suppose that for x, y ∈ X with x ≤ y, f(y) < f(x), then, as x → A(x)
is ascending, and by Lemma 3.1, f(x) ∈ A∗(x) ⊂ A(x) and f(y) ∈ A∗(y) ⊂ A(y),
it follows that f(y) = f(x) ∧ f(y) ∈ A(x) and f(x) = f(x) ∨ f(y) ∈ A(y). Thus,
f(x), f(y) ∈ A(x) ∩ A(y). Since x ≤ y, f(y) < f(x), f(x), f(y) ∈ A(x) ∩ A(y), and LV
is subadditive (Lemma 3.5), it is obtained that

LV (y, f(x)) + LV (x, f(y)) ≤ LV (y, f(y)) + LV (x, f(x)).

According to the DCOE and since f(y) ∈ A(x), it follows that

LV (x, f(x)) ≤ LV (x, f(y)).

Thus,
0 ≤ LV (x, f(y))− LV (x, f(x)) ≤ LV (y, f(y))− LV (y, f(x)),

i. e.
LV (y, f(x)) ≤ LV (y, f(y)).

This contradicts the definition of f(y). Therefore, f is an increasing optimal policy. It
is measurable, according to Remark 3.3 a). �

3.2. Decreasing optimal policies

Condition 3.7.

a) x → A(x) is descending.

b) c(·, ·) is superadditive on K.
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Lemma 3.8. Under Condition 3.7 b), the function LV that is defined in (6) is super-
additive.

P r o o f . As in the proof of Lemma 3.5, the superadditivity of LV is a consequence of
the fact that c is superadditive, given that the second term of (6) does not depend on
the state x. �

Theorem 3.9. Suppose that Assumption 2.1 holds and suppose that one of the condi-
tions of Assumption 3.2 results, then there exists a decreasing optimal stationary policy
under Condition 3.7.

P r o o f . This proof is similar to the proof of Theorem 3.6. Now, suppose that f(x) <
f(y) for x ≤ y in X. Using Lemma 3.8 and LV (y, f(y)) ≤ LV (y, f(x)), it follows
that LV (x, f(y)) ≤ LV (x, f(x)). This is a contradiction given that f(x) ∈ A∗(x) and
f(y) ∈ A(x) (because A(·) is descending), for x ∈ X. Therefore, f is a decreasing
optimal policy and is measurable by Remark 3.3 a). �

Remark 3.10. a) Conditions 3.4 and 3.7 do not require the state and decision sets
to be convex, and thus it is possible to consider discrete models, i. e. Markov
decision models for which X and/or A are finite or denumerable sets.

b) In Heyman and Sobel [9] (Section 8.3) and Mendelssohn and Sobel [12], there are
several examples in resources management that are presented, where the dynamic
of the system is similar to (1). For example, there are models of capital accu-
mulation, fisheries management, and reservoir operation. In individual optimal
consumption and savings models, consider time t, where xt denotes the capital on
hand in units of dollars or physical quantities as the context dictates, at represents
the amount of xt that is reinvested, and zt = xt − at is the amount consumed.
Equation (1) represents the connection between the reinvestment decision and ac-
cumulated capital.

c) Jaśkiewicz [10] mentions a single-product dynamic inventory model, where the
dynamic of the system is similar to equation (1). In such a model an action a is
the stock after ordering, and ξ is a random variable denoting the demand. The
transition probability function Q(·|a) is a distribution function of a − ξ, which
describes the movement of the system from the current stock x to a new one y.

4. MONOTONE VERSIONS OF THE POLICY ITERATION ALGORITHM (PIA)

In this section, suitable versions of the PIA in order to approximate the (monotone)
optimal policies are presented. For it, let V (g, x) be the expected discounted total cost
when the policy g is used and take the initial state to be x0 = x.

4.1. PIA implemented to approximate increasing optimal policies

In this new version of the PIA, the initial condition is assumed to be an increasing
stationary policy and the policies that are obtained at each iteration of the algorithm
are also increasing and stationary.
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Let I be the set of increasing stationary policies.
The increasing version of the PIA, which is an improved version, in R, of the PIA

proposed for MDPs on Borel spaces in [8], is shown below.

Algorithm 4.1. Set n = 0 and select g0 ∈ I.

1) (Policy evaluation) Given that gn ∈ I, calculate the corresponding cost vn by
solving the equation

vn(x) = c(x, gn(x)) + α

∫
vn(y) Q(dy|gn(x)) (8)

for all x ∈ X. By Remark 2.3 vn(·) = V (gn, ·).

2) (Policy improvement) Determine gn+1 ∈ I such that for all x ∈ X,

c(x, gn+1(x)) + α

∫
vn(y) Q(dy|gn+1(x))

= min
a∈A(x)

[
c(x, a) + α

∫
vn(y) Q(dy|a)

] (9)

and calculate vn+1 according to (8).

If vn+1(x) = vn(x) for all x ∈ X, then take v = vn and stop; gn could be the increasing
optimal stationary policy. Otherwise, substitute gn by gn+1, increment n by 1 and
return to step 2.

Theorem 4.2. Suppose that Assumption 2.1, one of the conditions of Assumption 3.2,
and Condition 3.4 hold. Algorithm 4.1 yields a sequence {gn(·)} of increasing stationary
policies. If there exists an n for which vn+1(x) = vn(x) for all x ∈ X, then v = vn is a
solution to the DCOE

v(x) = min
a∈A(x)

[
c(x, a) + α

∫
v(z) Q(dz|a)

]
. (10)

In addition, if v satisfies
lim

t→∞
αtEπ

x v(xt) = 0 (11)

for all π ∈ Π0 and x ∈ X, then V ∗ = v and gn is a discounted optimal policy.

P r o o f . The policy gn+1(·) for n ∈ N, which is obtained in step 2 of Algorithm 4.1, is
increasing and stationary by Theorem 3.6 and the fact that

LVn(x, a) := c(x, a) + α

∫
vn(y) Q(dy|a),

for (x, a) ∈ K and n = 0, . . ., is subadditive (now consider LVn(x, a), for n = 0, . . .
instead of LV (x, a)). The last statement is a consequence of the fact that c(·, ·) is
subadditive on K (see Condition 3.4 b)).

If there exist an n for which vn+1(x) = vn(x) for all x ∈ X, then it follows from
(9) and Remark 2.3 that v = vn satisfies the DCOE (10). If (11) holds, the desired
conclusion follows from Lemma 2.2 c). �
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4.2. PIA implemented to approximate decreasing optimal policies

In this new version of the PIA, the initial condition is a decreasing stationary policy and
the policies obtained at each iteration are also decreasing and stationary.

Let D be the set of decreasing stationary policies.
The decreasing version of the PIA, which is an improved version, in R, of the PIA

presented in [8], is similar to Algorithm 4.1 with the difference being gn ∈ D, n = 0, 1, . . ..

Algorithm 4.3. Set n = 0 and select g0 ∈ D.

1) (Policy evaluation) Given gn ∈ D, calculate the corresponding cost vn by solving
equation (8) for all x ∈ X. By Remark 2.3 vn(·) = V (gn, ·).

2) (Policy improvement) Determine gn+1 ∈ D such that for all x ∈ X, (9) holds, and
calculate vn+1 according to (8).

If vn+1(x) = vn(x) for all x ∈ X, then take v = vn and stop; gn could be the decreasing
optimal stationary policy. Otherwise, substitute gn with gn+1, increment n by 1 and
return to step 2.

Theorem 4.4. Suppose that Assumption 2.1, one of the conditions of Assumption 3.2,
and Condition 3.7 hold. Algorithm 4.3 yields a sequence {gn(·)} of decreasing stationary
policies. If there exists an n for which vn+1(x) = vn(x) for all x ∈ X, then v = vn is
a solution to the DCOE (10). If in addition, v satisfies (11) for all π ∈ Π0 and x ∈ X,
then V ∗ = v and gn is a discounted optimal policy.

P r o o f . The proof is similar to the proof of Theorem 4.2 by changing the words “in-
creasing and subadditive” to “decreasing and superadditive”, respectively, and using
Theorem 3.9 and Condition 3.7 b) instead of Theorem 3.6 and Condition 3.4 b). �

Remark 4.5. If there exist positive numbers m and k, with 1 ≤ k ≤ 1
α and w as a

nonnegative measurable function on X such that for all (x, a) ∈ K,

a) c(x, a) ≤ mw(x),

b)
∫

w(y) Q(dy|a) ≤ kw(x),

then (11) holds (see remark in p. 58 and Proposition 4.3.1 b) in [8]).

5. AN EXAMPLE

Example 5.1. Consider X = A = [0,∞), and for each x ∈ X, A(x) =
[

x
2 ,∞

)
. The

dynamic of the system is given as in (1) by

xt+1 = at + ξt

for t = 0, 1, . . ., S = [0,∞), E[ξ] = µ, and there is a continuous ∆(·). Let c(x, a) = x+a,
for (x, a) ∈ K.
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Lemma 5.2. Example 5.1 satisfies Assumption 2.1, Assumption 3.2 b), and Condition
3.4. Therefore, for this example there exists an increasing optimal stationary policy by
Theorem 3.6.

P r o o f . In Example 5.1, c(·, ·) is nonnegative, continuous (particularly l.s.c.) and inf-
compact, given that for x ∈ X and s ∈ R, {a ≥ x

2 : c(x, a) ≤ s} = [x
2 , s − x] if s ≥ 3

2x,
and {a ≥ x

2 : c(x, a) ≤ s} = ∅ if s < 3
2x; hence {a ≥ x

2 : c(x, a) ≤ s} is compact for all s.
Q(B|a) =

∫
IB(a + s)∆(s) ds, a ∈ [x

2 ,∞), B ∈ B(X), and using the Change of Variable
Theorem, one can obtain that

Q(B|a) =
∫

B

∆(u− a) du,

i. e., ∆(· − a) is a density for Q(·|a) with respect to the Lebesgue measure on R. Since
∆(·) is continuous and taking into account Lemma 2.3 in [4], Q is strongly continuous.
Then, considering g(x) = x for x ∈ X, it is possible to verify that V (g, x) < ∞ (see the
proof of Lemma 5.3 below). Thus, Assumption 2.1 holds.

To prove Condition 3.4 consider the following: take x, y ∈ X with x ≤ y, a ∈ A(x)
and b ∈ A(y). To prove that A(x) v A(y), it is sufficient to consider the following
three cases: a ∈

[
x
2 , y

2

)
, a ∈ [y

2 , b) or a ∈ [b,∞). If a ∈ [y
2 , b) or a ∈ [b,∞), then

a ∧ b ∈ A(y) ⊂ A(x) and a ∨ b ∈ A(y); if a ∈
[

x
2 , y

2

)
, then a ∧ b = a ∈ A(x) and

a∨ b = b ∈ A(y). Since A(x) ⊂ R for x ∈ X, it follows that x → A(x) is ascending. One
can also verify that c(·, ·) is subadditive.

Thus, there exists an increasing optimal policy for Example 5.1, and as X = [0,∞)
is an interval in R, Assumption 3.2 b) is true. �

Lemma 5.3. For Example 5.1, vn+1(x) = vn(x) for all x, when n = 1 in Algorithm 4.1.
Also, g1 is an increasing optimal stationary policy because (11) is satisfied.

P r o o f . Set n = 0 and select g0(x) = x, which is an increasing stationary policy. Now
calculating the corresponding discounted cost:

v0(x) := V (g0, x) = Eg0
x

[ ∞∑
t=0

αtc(xt, at)

]
=

∞∑
t=0

αt Eg0
x [c(xt, at)] ,

using the last expression and the Change of Variable Theorem, it is obtained that:
for t = 0, Eg0

x [c(x0, a0)] = 2x;
for t = 1,

Eg0
x [c(x1, a1)] =

∫
[0,∞)

c(y, g0(y)) Q(dy|g0(x)) =
∫

[0,∞)

2y Q(dy|x)

=
∫

[0,∞)

2(x + s)∆(s) ds = 2x + 2µ;
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for t = 2,

Eg0
x [c(x2, a2)] =

∫
[0,∞)

(∫
[0,∞)

c(y, g0(y)) Q(dy|g0(z))

)
Q(dz|g0(x))

=
∫

[0,∞)

(2z + 2µ) Q(dz|x) = 2x + 4µ.

In general, it is possible to prove that Eg0
x [c(xk, ak)] = 2x + 2kµ, for all k = 0, 1, . . ..

Thus,

v0(x) =
∞∑

t=0

αt Eg0
x [c(xt, at)] =

∞∑
t=0

αt(2x + 2tµ) = 2x
1

1− α
+ 2µ

∞∑
t=0

tαt

= 2x
1

1− α
+ 2

α

(1− α)2
µ.

Then, the next decision function g1 must satisfy:

c(x, g1(x)) + α

∫
v0(y) Q(dy|g1(x)) = min

a∈A(x)

[
c(x, a) + α

∫
v0(y) Q(dy|a)

]
for all x ∈ X. Solving the second member of this equality, it is obtained that:

min
a∈A(x)

[
c(x, a) + α

∫
v0(y) Q(dy|a)

]
= min

a∈[ x
2 ,∞)

[
x + a + α

∫ (
2y

1
1− α

+ 2µ
α

(1− α)2

)
Q(dy|a)

]
= min

a∈[ x
2 ,∞)

[
x + a + 2

α2

(1− α)2
µ +

2α

1− α

∫
(a + s)∆(s) ds

]
= min

a∈[ x
2 ,∞)

[
x + 2

α2

(1− α)2
µ +

2α

1− α
µ +

(
1 +

2α

1− α

)
a

]
.

Hence g1(x) = x
2 , x ∈ X. Calculating the corresponding discounted cost:

v1(x) := V (g1, x) =
∞∑

t=0

αt Eg1
x [c(xt, at)] ,

it is obtained that:
for t = 0, Eg1

x [c(x0, a0)] = x + x
2 = 3

2x;
for t = 1,

Eg1
x [c(x1, a1)] =

∫
[0,∞)

c(y, g1(y)) Q(dy|g1(x)) =
∫

[0,∞)

3
2
y Q

(
dy|x

2

)
=

3
2

∫
[0,∞)

(x

2
+ s
)

∆(s) ds =
3
22

x +
3
2
µ;
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for t = 2,

Eg1
x [c(x2, a2)] =

∫
[0,∞)

(∫
[0,∞)

c(y, g1(y)) Q(dy|g1(z))

)
Q(dz|g1(x))

=
∫

[0,∞)

(
3
22

z +
3
2
µ

)
Q
(
dz|x

2

)
=

3
23

x +
(

3
22

+
3
2

)
µ.

Using induction, it can be proved that

Eg1
x [c(xk, ak)] =

3
2k+1

x + 3µ

k∑
i=1

1
2i

=
3

2k+1
x + 3µ

(
1−

(
1
2

)k
)

,

k = 1, . . .. Thus,

v1(x) =
∞∑

t=0

αt Eg1
x [c(xt, at)] =

3
2
xα0 +

∞∑
t=1

αt

[
3

2t+1
x + 3µ

(
1−

(
1
2

)t
)]

=
3
2
x + 3µ

(
1

1− α
− 1
)

+
(

3
2
x− 3µ

) ∞∑
t=1

(α

2

)t

=
3
2
x + 3µ

α

1− α
+
(

3
2
x− 3µ

)(
1

1− α
2

− 1
)

=
3
2

(
1 +

α

2− α

)
x + 3µα

(
1

1− α
− 1

2− α

)
.

As v1(·) 6= v0(·) substitute g0 by g1 and set n = 1. The next decision function g2 must
satisfy:

c(x, g2(x)) + α

∫
v1(y) Q(dy|g2(x)) = min

a∈A(x)

[
c(x, a) + α

∫
v1(y) Q(dy|a)

]
for all x ∈ X. Solving the second member of this equality, it is obtained that:

min
a∈A(x)

[
c(x, a) + α

∫
v1(y) Q(dy|a)

]
= min

a∈[ x
2 ,∞)

[
x + a + α

∫ (
3

2− α
y + 3µα

(
1

1− α
− 1

2− α

))
Q(dy|a)

]
= min

a∈[ x
2 ,∞)

[(
1 +

3α

2− α

)
a + x +

3α

2− α
µ + 3µα2

(
1

1− α
− 1

2− α

)]
.

Hence g2(·) = x
2 = g1(·). Therefore, v2(·) = v1(·).

Also, (11) holds by Remark 4.5 given that:

a) c(x, a) = x + a ≤ 2a + a = 3aw(x), where w(x) = 1 and m = 3a, and

b)
∫

w(y) Q(dy|a) = 1 = kw(x), for k = 1 < 1
α .

The proof is concluded by Lemma 5.2 and Theorem 4.2. �
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6. REMARKS ON THE MONOTONICITY CONDITIONS AND MONOTONE
VERSIONS OF THE PIA FOR MDPS WITH REWARDS

Analogously to what was done in the case of MDPs with costs, the conditions to ensure
the existence of monotone optimal stationary policies and the monotone versions of the
PIA for discounted MDPs with rewards, can be provided. This is discussed briefly in
this section.

To do this, it is necessary to change c by r in the context of Subsection 2.2 until (2),
and in (3) to consider the supremum instead of the infimum. Assumptions W and D in
[11] are used instead of Assumption 2.1 to guarantee the existence of optimal stationary
policies (Theorem 2 in [11]) for the corresponding discounted optimality equation.

Remark 6.1. a) Similar to Theorem 3.6 and using Condition 3.4 with superaddi-
tivity instead of subadditivity, it can be proved that there exists an increasing
optimal stationary policy.

b) Similar to Theorem 3.9 and using Condition 3.7 with subadditivity instead of
superadditivity, it can be proved that there exists a decreasing optimal stationary
policy.

For obtaining monotone versions of the PIA, to consider the maximum instead of the
minimum together with the changes proposed in the second paragraph of this section.

Remark 6.2. a) Similar to Algorithm 4.1, an increasing version of the PIA for MDPs
with rewards can be established. Similar to Theorem 4.2 using Condition 3.4 and
superadditivity instead of subadditivity, it is possible to prove that this algorithm
yields a sequence of increasing stationary policies. Under additional assumptions
(as in Theorem 4.2), an increasing optimal policy is obtained.

b) Similar to Algorithm 4.3, a decreasing version of the PIA for MDPs with rewards
can be established. Similar to Theorem 4.4 using Condition 3.7 with subadditi-
vity instead of superadditivity, it is possible to prove that this algorithm yields
a sequence of decreasing stationary policies. Under additional assumptions (as in
Theorem 4.4), a decreasing optimal policy is obtained.

c) Following the proof of Proposition 4.3.1 in [8] and observing that
limn→∞ αnEπ

x |V (π′, xn)| = 0 implies that limn→∞ αnEπ
x V (π′, xn) = 0 for all

π, π′ ∈ Π0 and x ∈ X, it is possible to show that Remark 4.5 is also valid for
discounted MDPs with rewards by considering supa∈A(x) |r(x, a)| instead of c(x, a)
in a) of such remark.

d) It can be proved that for the elementary consumption-investment problem given
in [8], pp. 37–38 (or for the problem of fisheries management in [9], Section 8.3),
there exists an increasing optimal stationary policy. If ∆(·) is continuous, then in
the corresponding PIA, v2(x) = v1(x) for all x, and g1 is an increasing optimal
stationary policy, by Remark 6.2 c).

In such example, X = A = [0,∞), and for each x ∈ X, A(x) = [0, x]. The dynamic
of the system is given as in (1) by xt+1 = at · ξt, for t = 0, 1, . . ., with S = [0,∞),
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µ = E[ξ] > 1, and 0 < αµ < 1. r(x, a) = p(x − a), for (x, a) ∈ K and constant
p > 0. See Remark 3.10 b) for a brief interpretation of this model.

7. CONCLUSIONS

The results explained in the previous sections permit to consider MDPs with costs and
rewards that have finite, denumerable or non-denumerable state and decision spaces
due to the conditions stated that guarantee the existence of a monotone (increasing or
decreasing) optimal stationary policy do not require convexity assumptions. Regarding
the monotone versions of the PIA given in this paper, it can be observed that when
the initial stationary policy has a certain monotonicity, the policies obtained at each
iteration have the same monotonicity. Thus, knowing that the optimal stationary policy
has a certain monotonicity, the algorithms presented here permit one to search among
the same types of policies instead of searching the largest set of all measurable policies.
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