AN ITERATIVE ALGORITHM FOR COMPUTING THE CYCLE MEAN OF A TOEPLITZ MATRIX IN SPECIAL FORM

Peter Szabó

The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n \times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of n-1.

Keywords: max-plus algebra, eigenvalue, sub-partition of an integer, Toeplitz matrix

Classification: 90C27, 15B05, 15A80

1. INTRODUCTION

The class of Toeplitz matrices is much studied and still important within mathematics as well as in a wide range of applications (see [4, 6, 7]). Nevertheless, relatively little is known about their spectral properties. The aim of this work is to propose an efficient algorithm to find a real solution λ , $x_1, \ldots, x_n \in \mathbb{R}$ to the system of equations

$$\max\{t_{i-1} + x_1, t_{i-2} + x_2, \dots, t_0 + x_i, x_{i+1}, \dots, x_n\} = \lambda + x_i$$
 (1)

for i = 1, 2, ..., n. It will be assumed that t_i , for i = 0, 1, ..., n - 1 are non-negative real values. The system of equations (1) can be written in the form

$$A \otimes x = \lambda \otimes x$$

where $A = (a_{kj})$ is a triangular Toeplitz matrix, $a_{kj} = t_{k-j}$ for $k \ge j$, $a_{kj} = 0$ for k < j and $(\oplus, \otimes) = (max, +)$ are operations of the max-plus algebra. For a general $n \times n$ real matrix $A = (a_{ij})$ there exist standard $O(n^3)$ algorithms (see [5]) to find λ , x_1, \ldots, x_n , solutions of the system

$$A \otimes x = \lambda \otimes x. \tag{2}$$

The proposed iterative algorithm solves the problem (1) in time $O(n^3)$ and uses special, combinatorial properties of triangular Toeplitz matrices. The algorithm is applied to special cycles which are characterized by sub-partitions of n-1. We show that using such cycles (sub-partitions), the values λ , x_1, \ldots, x_n of system (1) can be computed.

2. COMPUTING THE EIGENVALUE IN MAX-PLUS ALGEBRA.

In general, max-plus algebra is understood as an algebraic structure $(\overline{\mathbb{R}}, \max, +)$, where \mathbb{R} is the set of real numbers, $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$ and $a \oplus b = \max\{a,b\}$, $a \otimes b = a + b$ for all $a,b \in \overline{\mathbb{R}}$. Formally the operations (\oplus, \otimes) can be extended to matrices and vectors in the same way as in linear algebra. The eigenvalue-eigenvector problem (2) (shortly: eigenproblem) was one of the first problems studied in max-plus algebra. Here we only discuss the case when A does not contain $-\infty$, where for every matrix there is exactly one eigenvalue.

We begin with the discussion of a special digraph D_A and the basic concept of the cycle mean. Let $\mathbb{R}^{n\times n}$ denotes the set of real $n\times n$ matrices. The associated digraph $D_A = (V, E)$ of a real matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is defined as a complete weighted digraph with the node set $V = N = \{1, ..., n\}$ and with the weights $w(i, j) = a_{ji}$ for every $(i, j) \in E = N \times N$. The set E is called the edge set of D_A and $(i, j) \in E$ is called a directed edge. We say that the edge $(i, j) \in E$ is joining vertices i and j. In general, the path $p = \langle i_1, \dots, i_k \rangle$ in a graph G = (V, E) is a sequence of vertices $\{i_1, \dots, i_k\} \subseteq V$ and edges $(i_{j-1}, i_j) \in E$ for $j = 2, \ldots, k$. Vertex i_1 is called the start vertex and vertex i_k the end vertex. The path $s = \langle i_j, \dots, i_l \rangle$ is a sub-path of p if $1 \leq j$ and $l \leq k$. The paths will also be marked as $p = \langle p(1), p(2), \dots, p(l+1) \rangle$, where p(i) are vertices for $i=1,\ldots,l+1$. If p contains no vertices and no edges then the path p is called empty. Let $p = \langle i_1, \dots, i_k \rangle$ be a path. The number k-1 is denoted as |p| and called the length of p. The value $w(p) = a_{i_1i_2} + \ldots + a_{i_{k-1}i_k}$ is termed the weight of p. If start vertex and end vertex is the same $(i_1 = i_k)$ then path p is called a cycle. The cycle p is termed an elementary cycle if, moreover, $i_j \neq i_l$ for $j, l = 1, \ldots, k-1, j \neq l$. The cycle p is a loop if it contains only the vertex i_1 and edge (i_1, i_1) . If σ is an elementary cycle then the value $\frac{w(\sigma)}{|\sigma|}$ is called the cycle mean of σ . A cycle with the maximum cycle mean is termed the critical cycle. The basic result of max-plus algebra [2] states that the maximum cycle mean in D_A is equal to the unique eigenvalue of A.

Theorem 2.1. For every matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ there is a unique value of $\lambda = \lambda(A)$ (called the eigenvalue of A) to which there is a vector $x \in \mathbb{R}^n$ satisfying (2). The unique eigenvalue is the maximum cycle mean in D_A that is

$$\lambda(A) = \max_{\sigma} \frac{w(\sigma)}{|\sigma|}$$

where $\sigma = \langle i_1, \dots, i_k \rangle$ denotes an elementary cycle in D_A . The maximization is taken over elementary cycles of all lengths in D_A , including loops.

In general, a matrix $A \in \mathbb{R}^{n \times n}$ with $-\infty$ has several eigenvalues and the value $\lambda(A)$ from Theorem 2.1 is the greatest eigenvalue of A. A summary of concepts, methods, applications and combinatorial character of max-plus algebra can be found in [3] or [1]. One of the first publications to deal with max-plus algebra is [9].

3. GRAPHS, CYCLES AND INTEGER PARTITIONS

The class of $n \times n$ triangular Toeplitz matrices is defined as

638 P. SZABÓ

$$T_n(t) = \begin{pmatrix} t_0 & 0 & 0 & \dots & 0 \\ t_1 & t_0 & 0 & & 0 \\ t_2 & t_1 & t_0 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ t_{n-1} & & \dots & t_1 & t_0 \end{pmatrix}$$

where $t = (t_0, t_1, \ldots, t_{n-1})^T$, $t_i \in \mathbb{R}_0^+ = \langle 0, \infty \rangle$ for $i = 0, \ldots, n-1$. With every matrix $A \in T_n(t)$, a directed acyclic graph (DAG) $G_t = (N, E_t)$ can be associated, where $N = \{1, \ldots, n\}$ are the vertices and $E_t = \{(i, j) | i < j; i, j = 1, \ldots, n\}$ are the edges of graph G_t with weight function $w_G(i, j) = a_{ji} = t_{j-i}$ for all $(i, j) \in E_t$. If D_A is the associated digraph of matrix A then G_t is a sub-graph of D_A . A characterization of cycles of triangular Toeplitz matrices are presented in [8]. We recall briefly the main results of this paper.

Definition 3.1. Let $A \in T_n(t)$. Cycle c_p in $D_A = (N, E)$ is called a *triangular Toeplitz cycle* if it can be decomposed as $c_p = p \cup e$, where $p = \langle p(1), \ldots, p(l+1) \rangle$ is a path in G_t and $e = (p(l+1), p(1)) \in E$.

Lemma 3.2. Let $A \in T_n(t)$ then for every cycle c' from D_A there is a triangular Toeplitz cycle $c_p = p \cup e$ such that $w(p) = w(c_p)$ and $\frac{w(c)}{|c|} \ge \frac{w(c')}{|c'|}$.

Hence, it follows that it is sufficient to consider only the triangular Toeplitz cycles for the computation of the eigenvalue of $A \in T_n(t)$.

If $m = \sum_{k=1}^{l} i_k \le n-1$ and l > 1 then the sequence of positive integers i_1, \ldots, i_l is termed a sub-partition on the integer n-1 of size l. Also to be noted, that if i_1, \ldots, i_l is a sub-partition on n-1 then the order of the terms in the sum $\sum_{k=1}^{l} i_k$ is not significant. Let us assume that $A \in T_n(t)$ then we say that a path p in G_t is given by sub-partition i_1, \ldots, i_l if (3) is fulfilled. We show that the paths in G_t given by an arbitrary permutation of set $\{i_1, \ldots, i_l\}$ have the same weight. The next result of [8] describes the basic characteristics of paths in G_t .

Lemma 3.3. Let $A \in T_n(t)$. The sequence of positive integers i_1, \ldots, i_l is a sub-partition on number n-1 if and only if there is a path in graph G_t such that

$$p = \langle 1, i_1 + 1, i_1 + i_2 + 1, \dots, i_1 + \dots + i_l + 1 \rangle = \langle p(1), p(2), \dots, p(l+1) \rangle. \tag{3}$$

Lemma 3.4. Let $A \in T_n(t)$, and $p = \langle p(1), \ldots, p(l+1) \rangle$ be a path in G_t given by sub-partition i_1, \ldots, i_l . Let $\pi : \{i_1, \ldots, i_l\} \to \{i_1, \ldots, i_l\}$ be a permutation of the set $\{i_1, \ldots, i_l\}$ and the path p_{π} be given by sub-partition $\pi(i_1), \ldots, \pi(i_l)$. Then $w(p) = w(p_{\pi}) = t_{i_1} + \ldots + t_{i_l}$ and $p(l+1) = p_{\pi}(l+1)$.

Proof. It follows from (3) that $p(1)=1, p(j)=1+i_1+\ldots+i_{j-1}$ for $j=2,\ldots,l+1$. Suppose that $A\in T_n(t)$ then the weight of edge (p(j),p(j+1)) is equal to $w(p(j),p(j+1))=a_{p(j+1)p(j)}=t_{p(j+1)p(j)}=t_{p(j+1)-p(j)}=t_{i_j}$ for $j=1,\ldots,l$. Therefore, the weight of path p equals $w(p)=t_{i_1}+\ldots+t_{i_l}$ and the path p_{π} given by subpartition $\pi(i_1),\ldots,\pi(i_l)$ equals $w(p_{\pi})=t_{\pi(i_1)}+\ldots+t_{\pi(i_l)}$. Thus, for each permutation

$$\pi: \{i_1, \dots, i_l\} \to \{i_1, \dots, i_l\}$$
 we have $w(p) = t_{i_1} + t_{i_2} + \dots + t_{i_l} = t_{\pi(i_1)} + t_{\pi(i_2)} + \dots + t_{\pi(i_l)} = w(p_{\pi})$ and $p(l+1) = 1 + i_1 + \dots + i_l = 1 + \pi(i_1) + \dots + \pi(i_l) = p_{\pi}(l+1)$. \square

Figure 1 shows a graph G_t , where $t=(t_0,t_1,t_2,t_3,t_4), n-1=4$. The path $p=\langle 1,2,3,5\rangle$ in G_t corresponds to a sub-partition 1,1,2 of 4 and the path $p_{\pi}=\langle 1,2,4,5\rangle$ corresponds to a sub-partition 1,2,1 and vice versa. The weight of path p equals $w(p)=t_1+t_1+t_2=t_1+t_2+t_1=w(p_{\pi}), l=3$ and $p(4)=p_{\pi}(4)=5$.

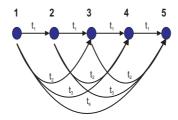


Fig. 1. Graph G_t .

4. AN ESTIMATION FUNCTION AND ITS FEATURES

In this chapter we define a specific function. The features of function will serve to determine the wanted eigenvalue. It will be assumed that the triangular Toeplitz matrix A given by vector $t(z) = (z, t_1, \ldots, t_{n-1})^T$ where $t_i \in \mathbb{R}_0^+$ are fixed numbers for $i = 1, \ldots, n-1$ and $z \in \mathbb{R}_0^+$ is a variable. Note that it follows from the definition of graph G_t that $G_{t(z)} = G_t$ for all $z \in \mathbb{R}_0^+$.

Definition 4.1. Let $A \in T_n(t(z))$ be a triangular Toeplitz square matrix given by the vector $t(z) = (z, t_1, \ldots, t_{n-1})$. The vector $x(z) = (x_1(z), \ldots, x_n(z))$ is called the *sub-eigenvector* of A corresponding to the value $z \in \mathbb{R}_0^+$ if it is defined by the formula:

1.
$$x_1(z) = 0$$

2.
$$x_i(z) = \max\{x_{i-1}(z), \max_{j=1,\dots,i-1}\{t_{i-j} + x_j(z) - z\}\}\$$
 for $i = 2,\dots,n$.

The sub-eigenvector x(z) may become an eigenvector of the matrix A due to the following Lemma.

Lemma 4.2. Let $A \in T_n(t(z))$, $z \in \mathbb{R}_0^+$ and x(z) be a sub-eigenvector of A. Then $A \otimes x(z) = z \otimes x(z)$ if and only if $z \geq x_n(z)$.

Proof. Suppose that $z \geq x_n(z)$. Let us denote $[A \otimes x(z)]_i$ the ith element of the vector $[A \otimes x(z)]_i$. It follows from Definition 4.1 that $0 = x_1(z) \leq \cdots \leq x_n(z)$, therefore $[A \otimes x(z)]_1 = \max\{z + x_1(z), x_2(z), \ldots, x_n(z)\} = \max\{z, x_n(z)\} = z$. For all i > 1 we have $x_i(z) \geq \max_{j=1,\ldots,i-1}\{t_{i-j} + x_j(z)\} - z$ and by a simple computation $[A \otimes x(z)]_i = \max\{t_{i-1} + x_1(z), t_{i-2} + x_2(z), \ldots, t_1 + x_{i-1}(z), z + x_i(z), x_{i+1}(z), \ldots, x_n(z)\}$

640 P. SZABÓ

=max $\{x_i(z) + z, x_n(z)\} = x_i(z) + z$ is obtained. Hence, $A \otimes x(z) = z \otimes x(z)$. Let us assume that $A \otimes x(z) = z \otimes x(z)$ and x(z) is a sub-eigenvector of A. The relation $z \geq x_n(z)$ is obtained after insertion of known data $[A \otimes x(z)]_1 = \max\{z + x_1(z), x_2(z), \dots, x_n(z)\} = \max\{z, x_n(z)\} = z$.

Lemma 4.3. Let $A \in T_n(t(z))$, $z \in \mathbb{R}_0^+$ and x(z) be a sub-eigenvector of A. Then x(z) = 0 if and only if $z \ge \max_{j=1,\dots,n-1} t_j$.

Proof. Let $A \in T_n(t(z))$. Let us assume that $z \geq \max_{j=1,\ldots,n-1} t_j$. By a simple computation it follows that $x_i(z) = 0$ for all $i = 1,\ldots,n$ (shortly: x(z) = 0) and $A \otimes x(z) = z \otimes x(z)$. In this case z is the eigenvalue and x(z) = 0 is the eigenvector. From the assumption x(z) = 0, it follows that $z \geq \max_{j=1,\ldots,n-1} t_j$.

Let $A \in T_n(t(z))$ be a triangular Toeplitz matrix where $t(z) = (z, t_1, \dots, t_{n-1})$. In the next, it will be assumed that $z < \max_{j=1,\dots,n-1} t_j$, i.e. $x(z) \neq 0$. Otherwise, according to Lemma 4.3 $z = \lambda(A)$ and x(z) = 0. Let us focus on the real function $y_A(z) = x_n(z) - z$.

Definition 4.4. Let $x(z) = (x_1(z), \dots, x_n(z))$ be a sub-eigenvector of a matrix $A \in T_n(t(z))$. The expression

$$y_A(z) = x_n(z) - z$$

is termed an estimation function of eigenvalue $\lambda(A)$.

Theorem 4.5. Let $x(z) = (x_1(z), \dots, x_n(z))$ be a sub-eigenvector of a matrix $A \in T_n(t(z))$. For each $z \in (0, \max_{j=1,\dots,n-1} t_j)$ there is a path p in G_t such that

$$y_A(z) = x_n(z) - z = w(p) - (|p| + 1)z$$

and n is the end vertex of p.

Proof. Let z be an arbitrary element of the interval $(0, \max_{j=1,\dots,n-1} t_j)$ and x(z) be a sub-eigenvector of A. We shall show first that there is a path p in graph G_t such as

$$y_A(z) = x_n(z) - z = w(p) - (|p| + 1) z.$$
 (4)

From the assumption $z \in (0, \max_{j=1,\dots,n-1} t_j)$ and from Lemma 4.3 it follows that the sub-eigenvector $x(z) \neq 0$ and $x_n(z) > 0$. It follows from the definition of x(z) that the vector components are non-decreasing, non-negative and $x_n(z) \geq t_{n-k} + x_k(z) - z$ for all $k = 1, \dots, n-1$.

We will first prove that the set $M_n(z)=\{l;\,x_n(z)=t_{n-l}+x_l(z)-z\}$ is non empty. If we assume that $x_n(z)>t_{n-k}+x_k(z)-z$ for all $k=1,\ldots,n-1$ then $x_n(z)=x_{n-1}(z)$ by Definition 4.1. The condition $x_n(z)>0$ implies that there is an index j such that $x_n(z)=x_{n-1}(z)=\cdots=x_{n-j}(z)$ and $x_{n-j}(z)=t_{n-j-l}+x_l(z)-z>0$ for some l, moreover $n-j-l\geq 1$. Therefore, we obtain $x_n(z)=x_{n-j}(z)=t_{n-j-l}+x_l(z)-z\leq t_{n-(j+l)}+x_{j+l}(z)-z$, where $j+l\leq n-1$, which is a contradiction.

Let $l_1 \in M_n(z)$ be an arbitrary index and let p be an empty path in G_t . We add vertices l_1 , n and the edge (l_1, n) to the path p. The value $y_A(z)$ can be written as follows: $y_A(z) = x_n(z) - z = t_{n-l_1} + x_{l_1}(z) - 2z$. If $x_{l_1}(z) = 0$ then $y_A(z) = t_{n-l_1} - 2z = w(p) - (|p| + 1)z$. If $x_{l_1}(z) > 0$ then $M_{l_1}(z) = \{j; x_{l_1}(z) = t_{l_1-j} + x_{j}(z) - z\}$ is non empty. Let $l_2 \in M_{l_1}(z)$ be an arbitrary index $(l_2 < l_1)$. We add the vertex l_2 and the edge (l_2, l_1) to the path p. If $x_{l_2}(z) = 0$ then $y_A(z) = t_{n-l_1} + t_{l_1-l_2} - 3z = w(p) - (|p| + 1)z$. While $x_{l_k}(z) > 0$ this procedure is repeated. If the condition $x_{l_j}(z) = 0$ is met, the procedure is finished. Such a component $x_{l_j}(z)$ of x(z) exists because $x_1(z) = 0$ and $x_1(z) \le \ldots \le x_n(z)$. Finally, we obtain $y_A(z) = t_{n-l_1} + t_{l_1-l_2} + \ldots + t_{l_{j-1}-l_j} - (j+1)z = w(p) - (|p| + 1)z$, where $p = \langle l_j, \ldots, l_1, n \rangle$ is a path in graph G_t .

Note, if for $z \in (0, \max_{j=1,\dots,n-1} t_j)$ there is a path p from G_t such that $y_A(z) = x_n(z) - z = w(p) - (|p| + 1)z$, so there exists such a path p* of minimum length, i. e.

$$|p*| = \min\{|p|; y_A(z) = x_n(z) - z = w(p) - (|p| + 1)z\}.$$

We show how to construct such a path in time $O(n^2)$. Each element $l_1 \in M_n(z)$ from the proof of Theorem 4.5 defines a class of paths in G_t . This class of paths is characterized by integers $n-l_1, l_1-l_2, \ldots, l_{j-1}-l_j$ or by directed edges with weights $t_{n-l_1}, t_{l_1-l_2}, \ldots, t_{l_{j-1}-l_j}$, which define the path $p_{l_1} = \langle l_j, \ldots, l_1, n \rangle$. We denote $m_i(z) = \min M_i(z) = \min \{l; x_i(z) = t_{i-l} + x_l(z) - z\}$ for $i = 1, \ldots, n$ and we define $m_j(z) = 0$ when $M_j(z) = \emptyset$ for some j. The l_i values are computed as $l_i = m_{l_{i-1}}(z)$ for $i = 1, \ldots, j$. The complexity of the computation of integers $n - l_1, l_1 - l_2, l_2 - l_3, \ldots, l_{j-1} - l_j$ (or path p_{l_1}) is $O(j) \leq O(n)$. The computation and the assignment of a path p_i^* is performed for each element $i \in M_n(z)$. Now just assign $|p^*| = \min \{|p_i^*|; y_A(z) = x_n(z) - z = w(p_i^*) - (|p_i^*| + 1)z\}$. The overall complexity of the procedure is $O(n^2)$, because $|M_n(z)| \leq n$. We will refer to the procedure of creation the path p^* as a path assignment procedure. So the next claim is proved.

Lemma 4.6. For each $z \in (0, \max_{j=1,\dots,n-1} t_j)$ the path assignment procedure finds all paths p in G_t such that $y_A(z) = w(p) - (|p| + 1)z$ in time $O(n^2)$.

Now, we can define an equivalence relation of paths in G_t . Two paths p_1 , p_2 are said to be equivalent if and only if $w(p_1) = w(p_2)$ and $|p_1| = |p_2|$. If a path p belongs to the same class of equivalence then this class is marked as [p].

Theorem 4.7. Let $x(z) = (x_1(z), \dots, x_n(z))$ be a sub-eigenvector of a matrix $A \in T_n(t(z))$. The function $y_A(z) = x_n(z) - z$ is decreasing and piecewise linear on interval $(0, \max_{j=1,\dots,n-1} t_j)$ with integer slopes and moreover $y_A(z^*) = 0$ if only if $z^* = \lambda(A)$.

Proof. Let z be an arbitrary element of interval $\langle 0, \max_{j=1,\dots,n-1} t_j \rangle$. From Theorem 4.5 it follows that there is a path in G_t such that $y_A(z) = x_n(z) - z = w(p) - (|p|+1)z$. If there is only one equivalence class [p*] such that $y_A(z) = x_n(z) - z = w(p*) - (|p*|+1)z$ (in other words, if $[z,y_A(z)]$ is not an intersection point of two lines) then there is a small neighbourhood (z_1,z_2) around z where $y_A(z)$ is linear (with negative slope) and decreasing. Assume now that $y_A(z) = w(p_1) - (|p_1|+1)z = w(p_2) - (|p_2|+1)z$ and $|p_1| < |p_2|$. Therefore, there are two paths p* and $\overline{p*}$ such that $y_A(z) = w(p*) - (|p*|+1)z = w(p$

642 P. SZABÓ

 $(|p*|+1)z=w(\overline{p*})-(|\overline{p*}|+1)z$ and p* has a minimum and $\overline{p*}$ a maximum length of such paths, hence $|p*|<|\overline{p*}|$. For this reason, there is a small interval (z_1,z) where $y_A(z)=w(\overline{p*})-(|\overline{p*}|+1)z$ and a small interval (z,z_2) where $y_A(z)=w(p*)-(|p*|+1)z$. Function $y_A(z)$ on intervals (z_1,z) and (z,z_2) is linear and decreasing, therefore $y_A(z)$ is a piecewise linear and decreasing on interval (z_1,z_2) interval (z_1,z_2) is a piecewise linear and decreasing on interval (z_1,z_2) .

Now we prove the second part of the theorem. If the condition $y_A(\overline{z})=0$ is met then $\overline{z}=\lambda(A)$ with regard to Lemma 4.2. Now we suppose that $\overline{z}<\max_{j=1,\dots,n-1}t_j$ and $\overline{z}=\lambda(A)$. It is necessary to prove that $y_A(\overline{z})=x_n(\overline{z})-\overline{z}=0$. The condition $y_A(\overline{z})=x_n(\overline{z})-\overline{z}>0$ implies that $\overline{z}\neq\lambda(A)$ by Lemma 4.2. Assume that $y_A(\overline{z})=x_n(\overline{z})-\overline{z}<0$. From Lemma 4.2 it follows that for any non-critical cycle c of D_A the inequality $y_A(\frac{w(c)}{|c|})>0$ is fulfilled. The function $y_A(z)$ is piecewise linear on the interval $(\frac{w(c)}{|c|},\overline{z})\subseteq \langle 0,\max_{j=1,\dots,n-1}t_j\rangle$. Therefore $y_A(z)$ is also a continuous function. Hence, there exists $z'\in(\frac{w(c)}{|c|},\overline{z})$ such as $y_A(z')=x_n(z')-z'=0$. The already proved sufficient condition implies that $z'=\lambda(A)$. From Theorem 2.1 it follows that $\lambda(A)=\overline{z}$ is a unique eigenvalue, but $\lambda(A)=z'\neq\overline{z}$, which contradicts with condition $y_A(\overline{z})<0$.

5. AN ITERATIVE ALGORITHM

We propose a simple iterative algorithm to obtain the eigenvalue $\lambda(A)$ based on Theorem 4.7.

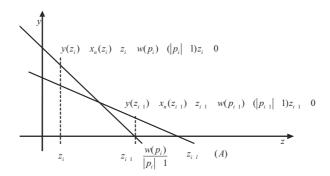


Fig. 2. An iterative step of the algorithm.

The Figure 2 shows an iterative step of the algorithm, where z_i , z_{i+1} are estimates of the eigenvalue $\lambda(A)$. The algorithm solves problem (1) in $O(n^3)$ steps. Each iterative step has a complexity $O(n^2)$ (paths p_i with minimum slope are created by path assignment procedure, see Lemma 4.6). The number of iterative steps does not exceed n, the maximum possible slope of function $y_A(z)$. The number of iterative steps depends on the initial estimate z_0 , but on the general complexity of the iterative method it has no effect.

Algorithm 1 An iterative algorithm

```
{Input: A \in T_n(t), where t = (t_0, t_1, \dots, t_{n-1})^T, t_j \in \mathbb{R}_0^+ for j = 0 \dots, n-1.} i = 0; z_0 = t_0; if y_A(z_0) \leq 0 then \{z_0 = t_0 \text{ is the eigenvalue}, x(z_0) \text{ is an eigenvector of matrix } A \text{ and the loop } (1,1) \text{ is a critical cycle.} \} end if while y_A(z_i) > 0 do i = i+1; z_i = \frac{w(p_{i-1})}{|p_{i-1}|+1}; end while \{\text{If } y_A(z_i) = w(p_i) - (|p_i|+1)z_i > 0 \text{ then } i = i+1 \text{ and } z_i = \frac{w(p_{i-1})}{|p_{i-1}|+1} \text{ is the next estimate of } \lambda(A). \text{ If } y_A(z_i) = w(p_i) - (|p_i|+1)z_i = 0 \text{ then } z_i \text{ is the eigenvalue of } A, x(z_i) \text{ is an eigenvector (see Theorem 4.7) and } c_{p_i} = p_i \cup e \text{ is a critical cycle. The value of } w(p_i) \text{ can be expressed as } t_{i_1} + \dots + t_{i_l} \text{ and the indices } i_1, \dots, i_l \text{ define a sub-partition of } n-1. \}
```

ACKNOWLEDGEMENT

The author would like to thank the anonymous referees for their helpful comments and constructive advices to improve the article.

(Received July 16, 2012)

REFERENCES

- [1] P. Butkovič: Max-linear Systems: Theory and Algorithms. Springer-Verlag, London 2010.
- [2] R. A. Cuninghame-Green: Minimax Algebra. Springer-Verlag, Berlin 1979.
- [3] B. Heidergott, G. J. Olsder, and J. van der Woude: Max Plus at Work. Modeling and Analysis of Synchronized Systems. Princeton University Press 2004.
- [4] G. Heinig: Not every matrix is similar to a Toeplitz matrix. Linear Algebra Appl. 332–334 (2001), 519–531.
- [5] R. M. Karp: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309–311.
- [6] H. J. Landau: Tile inverse eigenvalue problem for real symmetric Toeplitz matrices. J. Amer. Math. Soc. 7 (1994), 749–767.
- [7] J. Plavka: Eigenproblem for monotone and Toeplitz matrices in a max-algebra. Optimization 53 (2004), 95–101.
- [8] P. Szabó: A short note on the weighted sub-partition mean of integers. Oper. Res. Lett. 37(5) (2009), 356–358.
- [9] K. Zimmermann: Extremální algebra (in Czech). Ekonomický ústav SAV, Praha 1976.

Peter Szabó, Technical University of Košice, Faculty of Aeronautics, Department of Aerodynamics and Simulations, Rampová 7, 040 ,21 Košice. Slovak Republic.

 $e ext{-}mail: peter.szabo@tuke.sk$