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DISTRIBUTED OUTPUT REGULATION FOR LINEAR
MULTI-AGENT SYSTEMS WITH UNKNOWN LEADERS

Xinghu Wang, Haibo Ji and Chuanrui Wang

In this paper, the distributed output regulation problem of linear multi-agent systems with
parametric-uncertain leaders is considered. The existing distributed output regulation results
with exactly known leader systems is not applicable. To solve the leader-following with unknown
parameters in the leader dynamics, a distributed control law based on an adaptive internal
model is proposed and the convergence can be proved.
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1. INTRODUCTION

It is known that the output regulation design aims to force a plant to achieve asymp-
totically tracking and/or rejecting for a class of reference signals and/or disturbances
with maintaining the stability of the closed-loop system, where the reference inputs and
disturbances are generated by a so-called exosystem. Since 1970s, many results on this
problem for both linear and nonlinear systems have been obtained [1, 7, 8]. Moreover,
different adaptive control methods have been proposed for the exosystem with uncertain
parameters [11, 13, 14].

Recently, as the rapid development of multi-agent systems [4, 15], distributed output
regulation (DOR) has attracted much attention [5, 16, 17, 19]. In DOR formulation, the
leader in the multi-agent system is regarded as an exosystem which provides reference
signals for the follower agents. The information communication topology is described
by a digraph. Not all the followers can access the information of the leader systems.
Therefore, the results on the conventional output regulation problem for single systems
fail to solve this challenging problem. In fact, the DOR problem provides a general
framework for leader-follower multi-agent systems. There are two main approaches to
solve the problem. One is based on distributed estimaters or observers. The research
started with the tracking of active leaders, viewed as exosystems, by distributed estima-
tion [3, 6], and later the distributed observer was provided in [16]. The other approach
is based on internal model [5, 17, 18]. An internal model is a copy of the exosystem
and allows parameter uncertainties in the system matrices. In [5, 17], a p-copy type
internal model was constructed to achieve the solvability of the DOR for an uncertain
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multi-agent system. Additionally, [18] provided a design for multi-agent systems with
switching topologies by using canonical internal model.

In the existing results, a precise linear model of the leader agent must be known.
Based on the known leader assumption, the DOR problem of linear multi-agent systems
is converted into a simultaneous eigenvalue placement problem of an augmented system
composed of the nominal system and a dynamic compensator (i. e., a distributed internal
model or a distributed observer). However, this approach can not handle the case when
there exists some uncertain parameters in the leader system. In this paper, in light of
the result given in [14], we provide a distributed control law based on an adaptive inter-
nal model to solve the DOR problem of multi-agent systems with an uncertain leader.
The adaptive internal model asymptotically provides an estimation of the uncertain pa-
rameters in the leader. By utilizing the concept of the input-to-state stability of the
cascaded nonlinear systems, we prove that, under the designed distributed control, the
overall system admits a bounded solution over [0,∞) for any initial conditions, and the
regulated outputs converge to zero asymptotically.

The rest of the paper is organized as follows. Section 2 introduces some preliminaries
on the multi-agent systems and presents the DOR problem. Section 3 presents a dis-
tributed control with the help of an adaptive internal model. Section 4 gives a numerical
example. Section 5 contains some conclusions.

2. PROBLEM FORMULATION

We first give a brief introduction of graph theory (see [2] for details). A digraph G =
(V, E) consists of a set of nodes V = {0, 1, 2, . . . , N} and an edge set E ⊂ V × V.
If (i, j) ∈ E , then node i is said to be the father of node j and node j is the child
of node i. All the fathers of node i constitute an in-neighboring set of node i and
will be denoted by Ni. If the digraph G contains a sequence of edges of the form
(i1, i2), (i2, i3), . . . , (ik, ik+1), then the set {(i1, i2), . . . , (ik, ik+1)} is called a path of G
from i1 to ik+1, and node i1 is said to be reachable from node ik+1. If ik+1 = i1, the
the path is called a loop. If a node is reachable from every other node of the digraph,
then the node is called globally reachable.

The adjacency matrix of G is denoted as A = (aij) ∈ R(N+1)×(N+1), where for
i, j = 0, 1, . . . , N , aij = 1 if (i, j) ∈ E and aij = 0 otherwise. The Laplacian of a digraph
G is denoted by L = (lij) ∈ R(N+1)×(N+1), where for i, j = 0, 1, . . . , N , lii =

∑N
j=0 aij

and lij = −aij if i 6= j.
Consider a multi-agent system composed of N interconnected agents as follows:

ẋi = Axi +Bui + Ev

yi = Cxi, i = 1, . . . , N (1)

where xi ∈ Rn is the state of ith agent, ui, yi ∈ R are control input and measurement
output, respectively. v ∈ Rnv is the exogenous signal representing both the reference
input and the disturbance, and is generated by the leader system expressed as

v̇ = S(ω)v (2)
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where ω ∈ Rnω represents the uncertain parameter in (2). Let y0 = −Fv ∈ R be the
output of leader (2), which represents the desirable reference trajectory. For agent i, the
regulated output is defined as

ei(t) = yi − y0. (3)

A digraph G can be used to describe the information exchange of a multi-agent system
with regarding the N agents as nodes. Considering the multi-agent system (1) with the
leader (2), a digraph G with N + 1 nodes can be defined, in which node 0 is associated
with the leader and the other N nodes are associated with the N agents of system (1).
The edge set E contains an edge (i, j) if agent j can get the measurement output yi of
agent i.

To construct the distributed control law, we first define the neighbor based regulated
error eiv for agent i as follows:

eiv =
{
ei, (0, i) ∈ E

1
|Ni|

∑
j∈Ni

(yi − yj) = 1
|Ni|

∑
j∈Ni

(ei − ej), (0, i) /∈ E (4)

where |Ni| is the cardinality of the set Ni.
In this paper, the distributed output regulation (DOR) problem is formulated as: for

system (1) with leader (2), find the following distributed control law

ui = fi(zi), żi = gi(zi, eiv) (5)

where zi ∈ Rnzi , with nzi to be defined later, fi and gi are possible nonlinear functions
of their arguments vanishing at the origin, such that, for all initial conditions of the
closed-loop system and any ω ∈ Rnω , the solution of the closed-loop system exists and
is bounded over [0,∞), and moreover,

lim
t→∞

ei(t) = 0.

To solve the problem, some standard assumptions are listed.

Assumption 2.1. All eigenvalues of S(ω) are distinct with zero real parts for all ω.

Assumption 2.2. (A,B) is stabilizable, and (C,A) is detectable.

Assumption 2.3.

rank
(
A− λIn B

C 0

)
= n+ 1, ∀λ ∈ σ(S(ω)) (6)

where σ(S(ω)) denotes the spectrum of S(ω).

Assumption 2.4. The digraph G contains no loop and the node 0 is globally reachable.

Remark 2.5. Assumptions 2.1 to 2.3 are standard requirements for guaranteeing the
solvability of the output regulation problem with unknown exosystems by the central-
ized control method (see [13, 14]). Assumption 2.1 means that the leader can produce
sinusoidal signals with arbitrary unknown frequencies. Assumption 2.4 is used in [17] to
describe the interconnection graph for the multi-agent system.
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Under Assumption 2.3, for ω ∈ Rnω , there exists a solution X,U to the regulator
equations

X(ω)S(ω) = AX(ω) +BU(ω) + E

0 = CX(ω) + F. (7)

It can be verified that there exists an integer s such that

dsUv

dts
− αs−2(ω)

ds−2Uv

dts−2
− · · · − αs−2d s

2 e(ω)
ds−2d s

2 eUv

dts−2d s
2 e

= 0 (8)

with

ds
2
e =

{
s/2, s is even

(s− 1)/2, s is odd

where, according to Caley-Hamilton theorem, αj(ω)’s are real numbers such that all
roots of polynomial

P(λ) = λs − αs−2(ω)λs−2 − · · · − αs−2d s
2 e(ω)λs−2d s

2 e (9)

belong to the set containing all eigenvalues of matrix S(ω) and are distinct with zero
real parts for ω ∈ Rω. Define α = [αs−2d s

2 e · · · αs−2]T .
Performing the coordinate transformation

x̄i = xi −Xv, τj = USj−1v, j = 1, . . . , s

converts the systems (1) and (2) into

˙̄xi = Ax̄i +Bui −BΓτ
τ̇ = Φ(α)τ (10)

with the regulated output ei = Cx̄i and τ = [τ1 · · · τs]T , where

Φ(α) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 α1(ω) 0 · · · αs−2(ω) 0

 , Γ =


1
0
...
0


T

, when s is odd

Φ(α) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
α0(ω) 0 α2(ω) · · · αs−2(ω) 0

 , Γ =


1
0
...
0


T

, when s is even.

Another assumption is needed to guarantee the parameter convergence in the follow-
ing analysis.

Assumption 2.6. The initial condition v0 excites all oscillatory modes of the τ sub-
system in (10).

Remark 2.7. Assumption 2.6 is a requirement of minimality for Φ(α). If this condition
does not hold, the dimension of Φ(α) can be reduced leaving out the part which is not
excited by the initial condition. Following a similar argument as Theorem 4.1 of [11],
τ(t) is PE (Persistence of Excitation).
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3. MAIN RESULTS

In this section, we present a solution for the DOR problem of (1) with an unknown
leader (2). To this end, we construct an observable pair first. Let µ = [µ1, . . . , µs] be
such that the polynomial

P̄(λ) = λs−1 +
µs−1

µs
λs−2 + · · ·+ µ2

µs
λ+

µ1

µs

is stable, G ∈ Rn be such that the matrix (A − GC) is Hurwitz, and ∆ = Gµ. Then,
from Assumption 2.3, there exists solution (Π(α),M(α)) to the equations:

Π(α)Φ(α) = AΠ(α)−BM(α)−∆
0 = CΠ(α)− µ. (11)

The above obtained pair (M(α),Φ(α)) has the following observability property.

Lemma 3.1. The pair (M(α),Φ(α)) is observable.

P r o o f . Consider the following linear equations

(λ0I − Φ(α))z = 0, ∀λ0 ∈ σ(Φ(α)) (12)
µz = 0. (13)

From (12), we see that zj = λj−1
0 z1, j = 2, . . . , s. Substituting this expression of zj into

(13) gives µsP̄(λ0)z1 = 0. Because, for each λ0 ∈ σ(Φ(α)), P̄(λ0) 6= 0, z1 = 0, which
implies

Rank
([

λ0I − Φ(α)
µ

])
= s, ∀λ ∈ σ(Φ(α)).

By using Popov–Belevitch–Hautus (PBH) test, the pair (µ,Φ(α)) is observable. On the
other hand, consider another group of linear equations

(λ0I − Φ(α))z = 0, ∀λ0 ∈ σ(Φ(α)) (14)
M(α)z = 0. (15)

Post-multiplying both sides of (11) by z, from (14) and (15), we have

(A−GC − λ0I)Π(α)z = 0
CΠ(α)z − µz = 0. (16)

Because A − GC is Hurwitz and λ0 has a zero real part, the matrix (A − GC − λ0I)
is nonsingular. Therefore, Π(α)z = 0, which means µz = 0. From the observability of
(µ,Φ(α)), z = 0. Then,

Rank
([

λ0I − Φ(α)
M(α)

])
= s.

By using PBH test again, the conclusion follows. �
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With the above observable pair, we can perform the transformation

x̃i = x̄i −Π(α)O−1τ, θ = O−1τ

on (10) with

O =


M(α)

M(α)Φ(α)
· · ·

M(α)Φs−1(α)


and obtain the following form:

˙̃xi = Ax̃i +Bui + ∆θ
θ̇ = Φ(α)θ
ei = Cx̃i + µθ. (17)

Based on (17), we consider a distributed dynamic feedback control

η̇i = Aηi +Bui + ∆ζi +G(eiv − Cηi − µζi)
ζ̇i = Φ(α̂i)ζi + Ḡ(eiv − Cηi − µζi)
˙̂αi = ΛΩi(eiv − Cηi − µζi)
ui = Kηi + ϕ(α̂i)ζi (18)

where K is selected such that (A+BK) is Hurwitz, and

ϕ(α̂i) = M(α̂i) +KΠ(α̂i)
Ḡ = [0 · · · 0 ḡ1 ḡ2]T ∈ Rs

Ωi = [ζi,s−2ds/2e+1 ζi,s−2ds/2e+3 · · · ζi,s−3 ζi,s−1]T

Λ = diag(Λ1, . . . ,Λds/2e)

with ḡ1 = 1/µs, ḡ2 > 0, Λj > 0, for j = 1, . . . , ds/2e.

Remark 3.2. The dynamics in (18) constitutes an adaptive internal model. α̂i’s are
used to estimate unknown vector α which depends on the uncertain parameter ω.

Under the distributed control (18), we conclude our main result.

Theorem 3.3. Under Assumptions 2.1 – 2.6, for any initial conditions and ω ∈ Rnω ,
the solution of the closed-loop system composed of (17) and (18) exists and is bounded
over [0,+∞), and moreover, for each i = 1, . . . , N , ei converges to zero asymptotically.
Namely, the distributed control (18) solves the DOR problem of multi-agent system (1)
with the unknown leader (2).

P r o o f . Let δi = x̃i − ηi, εi = θ − ζi, and εi = α̂i − α. Then, the error dynamics can
be represented in the following form: for (0, i) ∈ E ,

δ̇i = (A−GC)δi
ε̇i = (Φ(α)− Ḡµ)εi + (Φ(α)− Φ(α̂i))ζi − ḠCδi

ε̇i = ΛΩi(Cδi + µεi) (19)
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and for (0, i) /∈ E ,

δ̇i = (A−GC)δi +
1
|Ni|

G
∑
j∈Ni

ej

ε̇i = (Φ(α)− Ḡµ)εi + (Φ(α)− Φ(α̂i))ζi − ḠCδi +
1
|Ni|

Ḡ
∑
j∈Ni

ej

ε̇i = ΛΩi(Cδi + µεi)−
1
|Ni|

ΛΩi

∑
j∈Ni

ej . (20)

In what follows, four steps are given for the proof.

Step 1: Due to the special form of matrices Φ(α), Ḡ and µ, the εi subsystem in (19)
can be decomposed into the following form

ε̇i,j = εi,j+1, j = 1, . . . , s− 2

ε̇i,s−1 = −
s−1∑
k=1

µk

µs
εi,k − ḡ1Cδi

ε̇i,s = −ḡ2
s∑

k=1

µkεi,k − ḡ2Cδi

−
ds/2e∑
k=1

(
αkεi,s−2(ds/2e−k)−1 + εi,kζi,s−2(ds/2e−k)−1

)
. (21)

Taking δ̄i = [δT
i εi,1 · · · εi,s−1]T , we obtain

˙̄δi = Āδ̄i

ε̇i,s = −βδ̄i − γεi,s − ΩT
i εi

ε̇i = ΛΩi(C̄δ̄i + µ̄εi,s) (22)

where Ā, β, γ, C̄ and µ̄ are defined as

Ā =
[

(A−GC) 0
[0 · · · 0 ḡ1]

T
C Ξ

]
β =

{
[−ḡ2µ1 − ḡ2µ2 − α1 · · · − ḡ2µs−1 − αs−2e], s is odd
[−ḡ2µ1 − α0 − ḡ2µ2 · · · − ḡ2µs−1 − αs−2], s is even (23)

γ = −ḡ2µs, C̄ = [C µ1 · · · µs−1], µ̄ = µs

with

Ξ =

 0 1 · · · 0

· · · · · ·
. . . · · ·

−µ1/µs −µ2/µs · · · −µs−1/µs

 .
Since G and µ are chosen to satisfy that Ā is Hurwitz, δ̄i(t) subsystem is exponentially
stable, namely, there exists a quadratic Lyapunov function

Vi =
1
2
δ̄T
i P δ̄i
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satisfying

ci,1‖δ̄i‖2 ≤ Vi ≤ ci,2‖δ̄i‖2

V̇i ≤ −ci,3‖δ̄i‖2 (24)

for some positive constants ci,1, ci,2 and ci,3.
Under Assumption 2.6, τ(t) is PE, so is θ(t). Applying Lemma 13.5 in [10], for

j = 1, . . . , ds/2e, ζi,s−2(ds/2e−j)−1 = θs−2(ds/2e−j)−1−εi,s−2(ds/2e−j)−1 is also PE. Hence,
by using Lemma B.2.3 in [12], we have that, when δ̄i = 0, the trajectories (εi,s(t), εi(t))
of (εi,s, εi) subsystem in (22) satisfy

‖(εi,s(t), εi(t))‖ ≤ c̄ie−$it‖(εi,s(0), εi(0))‖, ∀t ≥ 0

for some c̄i > 0 and $i > 0. By using converse Lyapunov function theorem, there is a
continuously differentiable function V̄i(t, εi,s, εi) satisfying

di,1‖(εi,s, εi)‖2 ≤ V̄i ≤ di,2‖(εi,s, εi)‖2

˙̄Vi|δ̄i=0 ≤ −di,3‖(εi,s, εi)‖2∥∥∥( ∂V̄i

∂εi,s
, ∂V̄i

∂εi

)∥∥∥ ≤ di,4‖(εi,s, εi)‖ (25)

for some positive constants di,1, di,2, di,3, di,4. Thus, along the trajectories of (εi,s, εi)
subsystem in (22) without the restriction δ̄i = 0, we have

˙̄Vi ≤ −di,3‖(εi,s, εi)‖2 +
∂V̄i

∂εi,s
(−βδ̄i) +

∂V̄i

∂εi
(ΛΩiC̄δ̄i)

≤ −1
2
di,3‖(εi,s, εi)‖2 +

d2
i,4

2di,3

(
‖β‖2‖δ̄i‖2 + ‖Λ‖2‖Ωi‖2‖C̄‖2‖δ̄i‖2

)
. (26)

Because

Ωi =


θs−2ds/2e+1

θs−2ds/2e+3

· · ·
θs−1

−

εi,s−2ds/2e+1

εi,s−2ds/2e+3

· · ·
εi,s−1


we have ‖Ωi‖2 ≤ 2‖θ‖2 + 2‖δ̄i‖2. Since all eigenvalues of Φ(α) are distinct with zero
real parts, θ(t) is bounded for all t ≥ 0. Without loss of generality, we assume that
‖θ(t)‖ ≤ B̆, B̆ > 0. Thus,

˙̄Vi ≤ −1
2
di,3‖(εi,s, εi)‖2 +

d2
i,4

2di,3

((
‖β‖2 + 2B̆2‖Λ‖2‖C̄‖2

)
‖δ̄i‖2 + 2‖Λ‖2‖C̄‖2‖δ̄i‖4

)
. (27)

Let Wi = ki,1Vi + ki,2V
2
i + V̄i with

ki,1 ≥
1
ci,3

(
1 +

d2
i,4

2di,3

(
‖β‖2 + 2B̆2‖Λ‖2

))
, ki,2 ≥

1
2ci,1ci,3

(
1 +

d2
i,4

di,3
B̆2‖Λ‖2

)
.
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Then, the time derivative ofWi along the trajectories of the system (22) can be computed
as

Ẇi|(22) ≤ −ki,1ci,3‖δ̄i‖2 − 2ki,2ci,1ci,3‖δ̄i‖4 −
1
2
di,3‖(εi,s, εi)‖2

+
d2

i,4

2di,3

((
‖β‖2 + 2B̆2‖Λ‖2‖C̄‖2

)
‖δ̄i‖2 + 2‖Λ‖2‖C̄‖2‖δ̄i‖4

)
≤ −

(
ki,1ci,3 −

d2
i,4

2di,3

(
‖β‖2 + 2B̆2‖Λ‖2‖C̄‖2

))
‖δ̄i‖2

−

(
ki,2ci,1ci,3 −

d2
i,4

di,3
‖Λ‖2‖C̄‖2

)
‖δ̄i‖4 −

1
2
di,3‖(εi,s, εi)‖2

≤ −‖δ̄i‖2 − ‖δ̄i‖4 −
1
2
di,3‖(εi,s, εi)‖2 (28)

from which, by using Lyapunov stability result, we conclude that the system (19) is
globally asymptotically stable.

Step 2 : The time derivative of function Wi along the trajectories of system (20) is
given as

Ẇi|(20) ≤ −‖δ̄i‖2 − ‖δ̄i‖4 −
1
2
di,3‖(εi,s, εi)‖2

+
k1 + 2k2Vi

|Ni|
δ̄T
i P

[
GT 0 · · · 0 − ḡ1

]T ∑
j∈Ni

ej

+
∂V̄i

∂εi,s

 ḡ2
|Ni|

∑
j∈Ni

ej

− ∂V̄i

∂εi

 1
|Ni|

ΛΩi

∑
j∈Ni

ej

 . (29)

Because
k1 + 2k2Vi

|Ni|
δ̄T
i P

[
GT 0 · · · 0 − ḡ1

]T ∑
j∈Ni

ej

≤ 1
2
‖δ̄i‖2 +

1
4
‖δ̄i‖4 +

k2
i,1‖P‖2(‖G‖2 + ḡ2

1)
2|Ni|

∑
j∈Ni

e2j +
216k4

i,2‖P‖4(‖G‖4 + ḡ4
1)

|Ni|2
∑
j∈Ni

e4j

and

∂V̄i

∂εi,s

 ḡ2
|Ni|

∑
j∈Ni

ej

− ∂V̄i

∂εi

 1
|Ni|

ΛΩi

∑
j∈Ni

ej


≤ 1

4
di,3‖(εi,s, εi)‖2 +

1
4
‖δ̄i‖4 +

d2
i,4

(
ḡ2
2 + 4B̆2‖Λ‖2

)
di,3|Ni|

∑
j∈Ni

e2j +
16d4

i,4‖Λ‖4

|Ni|2d2
i,3

∑
j∈Ni

e4j

we conclude

Ẇi|(20) ≤ −1
2
‖δ̄i‖2 −

1
2
‖δ̄i‖4 −

1
4
di,3‖(εi,s, εi)‖2 + %i,1

∑
j∈Ni

e2j + %i,2

∑
j∈Ni

e4j (30)
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where

%i,1 =
k2

i,1‖P‖2(‖G‖2 + ḡ2
1)

2|Ni|
+
d2

i,4

(
ḡ2
2 + 4B̆2‖Λ‖2

)
di,3|Ni|

%i,2 =
216k4

i,2‖P‖4(‖G‖4 + ḡ4
1)

|Ni|2
+

16d4
i,4‖Λ‖4

|Ni|2d2
i,3

. (31)

Noting that ej = Cx̄j , the system (20) is ISS with respect to input x̄j , j ∈ Ni.

Step 3: The x̄i subsystem in (10) can be rewritten as

˙̄xi = (A+BK)x̄i −BKδi −Bϕ(α)εi +Bϕ̃(εi)ζi (32)

where ϕ̃(εi) = ϕ(α̂i) − ϕ(α). Since ϕ̃(0) = 0, according to Lemma 3.5 of [10], there
exists a class K function ρ(·) such that

‖ϕ̃(εi)‖2 ≤ ρ(‖εi‖). (33)

Let Q be such that Q(A + BK) + (A + BK)TQ = −I, and consider the Lyapunov
function W̄i = x̄T

i Qx̄i. Then, the time derivative of W̄i can be obtained as

˙̄Wi = −‖x̄i‖2 + 2x̄T
i Q (−BKδi −Bϕ(α)εi +Bϕ̃(εi)ζi)

≤ −1/2‖x̄i‖2 + 4‖QBK‖2‖δi‖2 + 4‖QB‖2‖ϕ(α)‖2‖εi‖2

+4‖QB‖2(B̆2ρ(‖εi‖) + ρ2(‖εi‖) + ‖εi‖4). (34)

From which, the x̄i subsystem (32) is ISS with respect to inputs δi, εi, εi. Since ei = Cx̄i,
with regarding ei as output of x̄i subsystem, the x̄i subsystem is also input-to-output
stable.

Step 4: According to [2], under Assumption 2.4, we can relabel the nodes such that, if
(i, j) ∈ E , then i < j. In what follows, we using the relabeled index of nodes. Obviously,
agent 1 is such that (0, 1) ∈ E . Thus, according to Theorem 10.5.2 of [9], the system
composed of (δ1, ε1, ε1, x̄1) is globally asymptotically stable.

For agent 2, if (0, 2) ∈ E , then, similar to agent 1, the system composed of (δ2, ε2, ε2, x̄2)
is globally asymptotically stable. Otherwise, the system of (δ2, ε2, ε2) is the dynamics
(20) with i = 2, which is ISS with respect to x̄1. Since x̄1 subsystem is globally asymptot-
ically stable, by utilizing Theorem 10.5.2 of [9], the system of (δ2, ε2, ε2) is also globally
asymptotically stable. Also, because x̄2 is ISS with respect to (δ2, ε2, ε2), x̄2 subsystem
is globally asymptotically stable. In both cases, the system (δ1, ε1, ε1, x̄1, δ2, ε2, ε2, x̄2) is
globally asymptotically stable.

In a recursive manner, we can prove that the system of (δ1, ε1, ε1, x̄1, . . . , δN , εN , εN ,
x̄N ) is globally asymptotically stable.

From the boundedness of θ(t) and the relationship between (δi, εi, εi, x̄i) and (ηi, ζi, α̂i,
x̃i), the solution of the closed-loop system composed of (17) and (18) exists and is
bounded over [0,+∞). Moreover, because ei = Cx̄i, limt→∞ ei = 0, i = 1, . . . , N . The
conclusion follows. �
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Remark 3.4. In this paper, we only discuss the case when the agent system (1) has a
single input and a single output. However, our results can be extended to the system
possessing the multi-input and multi-output.

Remark 3.5. Note that, the equations (11) can be rewritten in the standard form of a
linear equation: Q(α)χ = ν, where

Q(α) = Φ(α)T ⊗
[

In 0n×1

01×n 01

]
− Is ⊗

[
A −B
C 0

]
χ = vec

([
Π(α)
M(α)

])
, ν = vec

([
−∆
−µ

])
with ⊗ denoting the Kronecker product of matrices and vec(·) being a vector-valued
function of a matrix such that, for any X = [X1 · · · Xm] ∈ Rn×m, vec(X) =
[XT

1 · · · XT
m]T . Thus, the solution (Π(α),M(α)) of the equation (11) depends on the de-

terminant of matrix Q(α). Under Assumption 2.3, det (Q(α)) 6= 0 for each α. However,
it may happen that det (Q(α̂i)) crosses the zero value for some estimation α̂. In order
to avoid this situation, as in [14], we make a slight change on function ϕ(α̂i) by selecting
ϕ(α̂i) = det2 (Q(α̂i))ψ(α̂i)/max($,det2 (Q(α̂i))), where ψ(α̂i) = (M(α̂i) + KΠ(α̂i)),
and $ is such that $ < mini=1,...,N det2(Q(α̂iss)), with α̂iss being the steady state of
α̂i. The existence of class K functions ρ(·) in (33) can still be guaranteed when the
slight change is made on ϕ(·). Because the convergence of α̂i to α is independent of x̄i,
under Assumption 2.1 – 2.6, we still have α̂i → α = α̂iss and det(Q(α̂iss)) 6= 0 for each
i = 1, . . . , N .

4. A NUMERICAL EXAMPLE

Consider the distributed output regulation problem of a group of four double-integrator
systems with sinusoidal disturbances:

ẋi,1 = xi,2

ẋi,2 = ui + 0.5v2, i = 1, 2, 3, 4
ei = xi,1 − v1 (35)

with the unknown leader

v̇1 = wv2

v̇2 = −wv1, v(0) = [v10 v20]T (36)

which is an unforced harmonic oscillator with an uncertain frequency w ∈ R. We assume
that w can be an arbitrarily positive number. The interconnection of the multi-agent
system is given in Figure 1.

In our example, we have

A =
[

0 1
0 0

]
, B =

[
0
1

]
, E =

[
0 0
0 0.5

]
C = [1 0], F = [−1 0]

S(w) =
[

0 w
−w 0

]
. (37)
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1 4

0

2 3

Fig. 1. Communication digraph for the example.

It can be verified that Assumptions 2.1 – 2.4 are satisfied. Moreover, the solution to the
regulator equations associated to (35) is

X = I2, U = [−1 − 0.5]

and U(w)v = −v1 − 0.5v2 = (v10w − v20
w ) sin(wt) − (v10 + 0.5v20) cos(wt). Obviously,

U(w)v satisfies
d2U(w)v
dt2

= −w2U(w)v.

Therefore, the τ subsystem in (10) is given with

τ = [U(w)v dU(w)v
dt ]T

Φ(α) =
[

0 1
α0 0

]
, Γ = [1 0], α = α0 = −w2

and the non-zero initial condition of (36) with w 6= 0 excites all modes of τ subsystem.
Therefore, a distributed control taking the form of (18) is designed with the following

parameters:

K = [−1 − 1], G = [1 1]T , µ = [1 1]
ḡ1 = ḡ2 = 1, Λ = 50

∆ =
[

1 1
1 1

]
, ϕ̂(α̂i) = [−3− 3α̂i − 5− α̂i], i = 1, 2, 3, 4. (38)

The simulation result is shown in Figures 2 and 3. In the simulation, the initial conditions
are selected as x1,1(0) = 1, x1,2(0) = −4, x2,1(0) = 2, x2,2(0) = −3, x3,1(0) = 3, x3,2(0) =
−2, x4,1(0) = 4, x4,2(0) = −1, v10 = 3, v20 = 3 and the initial conditions for the dynamic
regulator are all zero. The uncertain parameter is chosen as w = 2.2. The numerical
results demonstrate the effectiveness of the distributed control by showing the regulated
output ei in Figure 2. Moreover, estimated parameter α̂i converges to α = −4.84 as
shown in Figure 3.
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Fig. 2. Response of the regulated outputs ei of the followers.
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Fig. 3. Response of the estimated parameters α̂i.
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5. CONCLUSIONS

In this paper, we studied the distributed output regulation problem of the leader-
following multi-agent systems. We focused on the case where the leader contains some
uncertain parameters and proposed a distributed control based on an adaptive internal
model. By using the results on the input-to-state stability of the cascaded systems, we
proved that the designed distributed control guarantees that all agents can track the
uncertain leader.
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