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INFORMATION IN VAGUE DATA SOURCES

Milan Mareš and Radko Mesiar

This paper deals with the concept of the “size” or “extent” of the information in the sense of
measuring the improvement of our knowledge after obtaining a message. Standard approaches
are based on the probabilistic parameters of the considered information source. Here we deal
with situations when the unknown probabilities are subjectively or vaguely estimated. For the
considered fuzzy quantities valued probabilities we introduce and discuss information theoretical
concepts.1
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1. INTRODUCTION

The information can be measured by many, completely different, methods with regard
to its feature which is significant for a given problem. Here, we are not interested in
the technological volume of information measured by the space needed for its storage
or by the capacity of channel needed for its transmission. Our attention is focused on
the change of knowledge following from the acceptance of a message. Such approach is
typical for information theory and its methods.

The classical information theory formulated by C. Shannon (see, e. g., [6, 25, 28]) is
based on the stochastic parameters of the source of information, namely on the probabil-
ities of actual messages which essentially means the probabilities of particular symbols
from the source alphabet. For more advanced information theoretical methods also the
conditional probabilities of symbols in dependence on the foregoing n-tuple are impor-
tant and their knowledge is necessary. Note that there are several alternative approaches,
such as Havrda–Charvát entropy [9], or information theory proposed and developed by
Kampé de Fériet [10, 11].

In practical applications, the measurement of these probabilities by means of relative
frequencies and with the confidence into the effect of the large numbers laws is simple or
at least realizable only in some cases. Very often, it is too complex or even in principle
impossible whenever the relevant information source is not used frequently enough.

In such situations, it is not very rational to give up the information theoretical meth-
ods completely. The probabilities or conditional probabilities can be subjectively, which

1This paper is an extended version of our conference contribution [21], where a preliminary look at
the discussed problems was presented.
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means vaguely, estimated. In a more formal terms, the probabilities of symbols cannot
be represented by crisp real numbers from [0, 1] but rather by fuzzy subsets of the same
interval. It means that we granulate the uncountable set of probability values into (usu-
ally) finite number of fuzzy quantities representing, for example, such vague expressions
like “about 0.5”, “almost 1”, “close to 0”, and, may be, some others.

Our paper is focused on the analysis and discussion of the adequacy of such valued
probabilities to the information theoretical principles. We also discuss an alternative
“fuzzy information theory” using formal tools of fuzzy set theory. Note that our approach
differs from “fuzzy information theory” discussed by Vivona and Divari in [27], where
the fuzziness is in the domain of information measures, as well as from the idea of “fuzzy
entropy” [3, 16] measuring the fuzziness of the considered fuzzy sets.
The paper is organized as follows. In the next section, the basic concept of Shannon’s
entropy is briefly recalled. Section 3 brings a brief overview of fuzzy quantities and their
processing. Sections 4 – 6 bring our main results on information in vague data sources.
Finally, some concluding remarks are added.

2. SHANNON’S INFORMATION SOURCE

In the whole paper, we denote by A a non-empty and finite set called an alphabet. Its
elements a, b, . . . ∈ A are called symbols. Moreover, in the whole paper we denote, for
any non-empty set M , by P(M) the class of all probability distributions over M . Let
us denote by p ∈ P(A) a probability distribution over the alphabet, and by p(a) the
probability of a symbol a ∈ A. Suppose that p(a) > 0 for all a ∈ A.

Due to [25] or [6, 28], the information following from the acceptance of a symbol
a ∈ A is denoted by I(a) and equal to

I(a) = log2

1
p(a)

= − log2 p(a). (1)

This information is often called the Hartley information measure [8].
The information source is defined by the pair (A, p) and its degree of uncertainty is

characterized by the so called entropy which is denoted by H(A, p) and defined as the
expected value of information I(·) over the alphabet A, i. e.,

H(A, p) =
∑
a∈A

p(a) · I(a) = −
∑
a∈A

p(a) log2 p(a). (2)

It is a well known result that if we denote by n the number of symbols in A then the
entropy H(A, p) is maximal for the p ∈ P(A) for which

p(a) =
1
n

for all a ∈ A. (3)

One of the elementary concepts of information theory is the aggregated information.
If (a, b) ∈ A2, then we can introduce the aggregated information I(a, b) and define it
by the sum I(a, b) = I(a) + I(b). The sum is a natural consequence of (1) and the
properties of probability. Indeed, without going deeper into the necessary formalism of
probabilities on product spaces, considering p(a, b) = p(a)p(b), we get

I(a, b) = − log2 p(a, b) = − log2 p(a) + (− log2 p(b)) = I(a) + I(b).
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The Shannon information-theoretical model is successful and effective but it is not
unique. Namely, it is based on perfect knowledge of probabilities acting in relations
(1) and (2). Nevertheless, even if it is possible (and, may be, useful) to suggest alter-
native approaches to the quantification of such qualitative concepts like information or
knowledge, there exist some general structures which are to be respected to preserve the
essence of the above concepts.

Here, we suggest heuristic formulation of those structures. Recall that the classical
information theory was developed with respect to these principles:

• Information following from some message, its segment or a symbol is the larger
the less expected the message (segment, symbol) is.

• Information following from two (or more) messages (their segments or symbols) is
cumulated; i. e., the value of information of associated symbols is aggregated from
the information connected with the components.

• The source of information can be characterized by a function of information fol-
lowing from particular symbols of the alphabet.

• This characteristic should reflect the organization (or, vice versa, chaotism) of the
source. In other words, its value has to depend on the diversity of information
following from particular symbols.

• The source in which all symbols are equally expected is to be characterized as the
most chaotic one.

3. FUZZY QUANTITIES AND THEIR PROCESSING

We suppose the reader to be familiar with the basic notions and concepts of fuzzy set
theory [29], such as fuzzy subset, fuzzy union, fuzzy complement, etc.

Due to [4, 17, 18] and other papers, fuzzy quantity, in general, is a fuzzy subset r of
the set of real numbers R with membership function µr : R → [0, 1] such that:

There exists xr ∈ R for which µr(xr) = 1. (4)
There exist x1, x2 ∈ R, x1 < xr < x2, where µr(x) = 0 for x /∈ [x1, x2]. (5)
µr is nondecreasing on [x1, xr] and nonincreasing on [xr, x2]. (6)

Any real number xr fulfilling (4) is called the modal value of r.

For any non-empty set M we denote by F(M) the class of all its fuzzy subsets. It
means that fuzzy quantities are fuzzy sets from F(R) fulfilling (4), (5) and (6). By
F∗(R) we denote F∗(R) = {r ∈ F(R) : r fulfils (4), (5) and (6)}.

To simplify notation, for any x ∈ R we denote by 〈x〉 ∈ F∗(R) the fuzzy quantity for
which

µ〈x〉(x) = 1, µ〈x〉(y) = 0 for y ∈ R, y 6= x,

formally, 〈x〉 can be seen as the characteristic function of the singleton {x} ⊂ R.
The algebraic operations over fuzzy quantities are well investigated and summarized

in many publications, e. g., in [1, 4, 17, 18], and related results are also in [12]. Those
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operations are based on the so called extension principle [30]. We give here its most
general form, though our next considerations deal with the original form based on the
minimum as fuzzy connective.

Recall that a mapping T : [0, 1]2 → [0, 1] is called a triangular norm whenever it
is associative, commutative, nondecreasing in both arguments and 1 is its neutral el-
ement [13]. For any classical binary relation R ⊂ R2, its T -based fuzzy extension
FRT : F∗(R)2 → [0, 1] is given by, see [24],

FRT (r1, r2) = sup
(x1,x2)∈R

T (µr1(x1), µr2(x2)) . (7)

Formula (7) allows to introduce fuzzy extensions of binary relations over reals, stan-
dard real functions, etc. We recall some of these extensions, considering the strongest
triangular norm TM , TM (x, y) = min(x, y).

If r, s ∈ F∗(R) and ◦ is a binary operation over R, then ◦ can be extended on F∗(R)
and r ◦ s is a fuzzy quantity, see [30], with

µr◦s(z) = sup
x,y∈R
z=x◦y

min(µr(x), µs(y)), z ∈ R. (8)

For the operations of addition ⊕ and product � over fuzzy quantities, (8) gains the form

µr⊕s(z) = sup
x+y=z

min(µr(x), µs(y)), z ∈ R, (9)

µr�s(z) = sup
x·y=z

min(µr(x), µs(y)), z ∈ R. (10)

Observe that the class F∗(R) is closed under operations ⊕ and �, see [28].

Example 3.1. Consider fuzzy quantities r, s ∈ F∗(R) with membership functions
given by

µr(x) = max(0,min(x, 2− x)) =

 x if x ∈ [0, 1],
2− x if x ∈]1, 2],
0 else,

and

µs(x) = max (0,min (1, x, 2− x/2)) =


x if x ∈ [0, 1],
1 if x ∈]1, 2],
2− x/2 if x ∈]2, 4],
0 else.

Then

µr⊕s(z) = max (0,min (1, z/2, 2− z/3)) =


z/2 if z ∈ [0, 2],
1 if z ∈]2, 3],
2− z/3 if z ∈]3, 6],
0 else,

and

µr�s(z) =


√

z if z ∈ [0, 1],
1 if z ∈]1, 2],
2−

√
z/2 if z ∈]2, 8],

0 else.
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In the following sections, we also need the following concepts. If r ∈ F(R) is a fuzzy
quantity, then its opposite fuzzy quantity (−r) ∈ F∗(R) and reciprocal fuzzy quantity
(1/r) ∈ F∗(R) (supposing µr(0) = 0) are defined by

µ(−r)(x) = µr(−x), µ(1/r)(x) = µr(1/x) (11)

for x ∈ R, and x 6= 0 for the reciprocity. For x = 0, µ(1/r)(x) = 0 by definition.
There are many different suggestions how to compare and order fuzzy quantities.

Their representative overview is given in [12], some of them are discussed in [4, 18] and
in some other papers. Here, we use the method based on the paradigm that relations
between vague objects are naturally vague. A fuzzy relation of ordering � on F∗(R)
with membership function ν�(r, s) : F∗(R)×F∗(R) → [0, 1] is given by

ν(r, s) = sup
x≥y

min(µr(x), µs(y)). (12)

Finally, let f : R → R be a monotonous and continuous function. Then we can extend
it on fuzzy arguments and fuzzy values of function f using a simple formula

for r ∈ F∗(R), f(r) ∈ F∗(R), as well, and µf(r)(x) = µr(f(x)) (13)

where f : F∗(R) → F∗(R).
The methodology of the treatment of vagueness by means of fuzzy set theoretical

tools is deeply analyzed and assessed in [31, 34, 35] and other related papers. The ideas
presented here are especially significant for processing of quantitative data, uncertain
“measurements”, ordering the qualitative attributes into potentially quantifiable scales
and other bridges between quantitative parameters and qualitative phenomena.

4. GRANULATED EXPECTATIONS OF INFORMATION SOURCES

We have already mentioned that classical information theory is based on the assumption
that the probability distribution p over the alphabet A is exactly known and, conse-
quently, the information source (A, p) is strictly defined. In many cases, this assumption
appears too strong – the probabilities are not exactly known and instead of them we
rather dispose with some vague expectations. Usually subjective, often rather verbal
than numerical. The expectations are expressed by words like “very low”, “medium”,
“high”, or several similar formulations. In this way, the possibly rich alphabet A is
parted in several clusters of symbols whose appearance in messages is expected with
subjective probability characterized by the above words. Such clustering or, in another
term, a granulation (see [31, 34, 35]), is formally reflected by the methods and concepts
of fuzzy set (and fuzzy quantities) theory.

Let us note that even in the case of very simple, e. g., binary, alphabet A containing
exactly two symbols, the granulation has its sense. Most of information-theoretical
methods deal with conditional probabilities (and, consequently, conditional information,
etc.) conditioned by an n-tuple of foregoing symbols in the message. In such case, the
frequencies and probabilities of ordered (n + 1) tuples are to be considered, and their
number rapidly grow.



438 M. MAREŠ AND R. MESIAR

As we have excluded the existence of symbols with zero probability (cf. Section 2),
the probabilities of particular symbols gain crisp (and unknown) probabilities from (0, 1].
Their vague estimations, called here the subjective expectation of symbols (or their or-
dered n-tuples) are formally represented by fuzzy quantities with possible values in (0, 1].
More formally, let us denote

F∗((0, 1]) = {r ∈ F∗(R) | µr(x) = 0 for all x /∈ (0, 1]}. (14)

Then the expectation of a symbol a ∈ A is a fuzzy quantity

p(a) ∈ F∗((0, 1]). (15)

This expectation of a ∈ A specifies the probabilities with which a can be expected and
the possibility degrees with which they can be expected.

It could be useful to point at the formal similarity between the above concept of
expectations, and the formal apparatus of triangular norms and conorms. This relation
is not the topic of this contribution (cf. [13, 2]).

Similarly, the above definitions resemble the concept of ultra-fuzzy set (see [33]).
Even this relation, however close it can be, is not investigated in this paper.

Using the above procedure, we can define the fuzzy source of information as a pair
(A, (p(a))a∈A) whose components are specified above. To simplify notation, we use the
symbol p instead of (p(a))a∈A when it is possible. Then (A,p) denotes the fuzzy source.
The main purpose of the following subsections is to verify and discuss some approaches
to the formal representation of the information produced by that fuzzy source.

5. SHANNON’S ENTROPY OF FUZZY SOURCES

Shannon’s entropy of a classical information source (A, p) given by (2) can be seen as a
function of n variables, n = cardA, as well as an (n+1)-dimensional real relation. In the
first case one can apply the fuzzy extension of real functions as discussed in Section 3.
This approach was considered in our preliminary contribution [21].

Theorem 5.1. Let us consider a fuzzy source (A,p). Then the fuzzy entropy

H(A,p) =
∑
a∈A

⊕
p(a)� log2(1/p(a)),

with the membership function µH(A,p) given by

µH(A,p)(x) = sup

{
min{µp(a)(za) | a∈A} | za∈(0, 1],

∑
a∈A

za log2(1/za) = x

}

is a fuzzy quantity belonging to F∗((0,∞)).

Note that F∗((0,∞)) is formed by fuzzy quantities from F∗(R) with support in (0,∞).
The previous result can be formulated in a rather stronger way. Let us consider

fuzzy source (A,p) with granulated expectations of symbols. It means that usually
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several symbols a1, a2, . . . , am ∈ A are expected with the same fuzzy expectation p(a1) =
p(a2) = · · · = p(am).
Let us denote by n the number of symbols in A, and for every symbol ai ∈ A and
fuzzy probability p(ai) ∈ F∗((0, 1]) we denote by xai

∈ (0, 1] the modal value of p(ai),
i = 1, 2, . . . , n (let us note that there may be more than one modal value for every p(ai)).

Let p(ai), i = 1, . . . , n, be fuzzy expectations, and let there exist modal values xai of
p(ai), i = 1, . . . , n, respectively, such that

n∑
i=1

xai
= 1.

Then we say that the fuzzy source (A,p) is a fuzzy extension of the crisp source
(A, (xai)

n
i=1). As follows from the results summarized in [17, 18], the properties of

modal values characterize even the fuzzy expectations.

Lemma 5.2. If (A,p) is a fuzzy extension of (A, (xa)a∈A) for some crisp values xa,
a ∈ A, and if we denote by xH the crisp entropy of (A, (xa)a∈A), given by

xH = H (A, (xa)a∈A) ,

then xH is a modal value of H(A,p).

Theorem 5.3. Let (A,p) be a fuzzy source, let for any a ∈ A, xa be a modal value of
p(a), and let xa = 1/n for all a ∈ A. Let, moreover, (A,p) be a fuzzy source with modal
values xa of p(a), a ∈ A, such that ∑

a∈A

xa = 1.

Then
ν� (H(A,p), H(A,p)) = 1.

The previous statements show that the direct and relatively mechanical substitution of
crisp probabilities by fuzzy expectations is possible. Moreover, if the fuzzy expectations
extend some crisp source (it means that they respect its probabilistic structure) then
the result preserves the sense of the main information-theoretical principles.

Nevertheless, the processing of fuzzy data often cumulates the vagueness of data.
Even quite “narrow” supports of the membership functions on the input (i. e., in fuzzy
expectations) usually generate “wide” supports of fuzzy information and, consequently,
also of fuzzy entropy. This leads to the growth of vagueness of the relevant fuzzy
quantities which is not desirable.

To reduce the growth of vagueness fuzzy processing suffers from, in several papers
the constraint fuzzy arithmetic was proposed, see, e. g. [7, 15]. In our case this approach
corresponds to the relational look on Shannon’s entropy. Based on the results from
[7, 15], the next result can be shown.

Theorem 5.4. Let (A,p) be a fuzzy source. Then the constraint fuzzy entropy cH(A,p)
characterized by the membership function µcH(A,p) given by

µcH(A,p)(x) = sup

{
min{µp(a)(za)|a ∈ A}|za ∈ (0, 1],

∑
a∈A

za = 1,
∑
a∈A

za log2(1/za) = x

}
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is a fuzzy quantity belonging to F∗((0,∞)).

Evidently, Lemma 5.2 can be applied to the constrained fuzzy entropy, too.

Example 5.5. Let A = {a, b} be an alphabet with two symbols and let the fuzzy source
(A,p) be given by p(a) = [1/5, 2/5], p(b) = [3/5, 4/5], i. e.,

µp(a)(x) =
{

1 if x ∈ [1/5, 2/5],
0 otherwise,

and similarly µp(b). Then

H(A,p) =
[
log2 5− 8

5
,
1
e

log2 e +
3
5

log2

5
3

]
= [0.722, 0.973]

and

cH(A,p) =
[
log2 5− 8

5
, log2 5− 1

5
log2 108

]
= [0.722, 0.971] ⊂ H(A,p).

6. PROCESSING OF FUZZY INFORMATION SOURCES

Fuzzy set theory aims to describe and analyze another type of uncertainty than prob-
ability theory. It can motivate the endeavour to suggest not only an alternative inter-
pretation of the model of fuzzy source but also alternative approaches to its processing.
Here, we briefly mention one of them.

Let us consider a fuzzy source (A,p), described above, where p(a) is fuzzy expectation
of a ∈ A, and with membership function µp(a) ∈ F∗((0, 1]).

For every a ∈ A, we define fuzzy knowledge mediated by a, denoted by K(a) ∈ F(R),
with membership function µK(a) such that

µK(a)(x) = µp(a)(1− x), x ∈ R. (16)

Remark 6.1. (i) Evidently, K(a) ∈ F∗([0, 1]), as follows from (16) and (15).

(ii) For any fuzzy negation N : [0, 1] → [0, 1], N(1) = 0, N(0) = 1 and N(x) ≤ N(y)
whenever x ≥ y, one can define N -fuzzy knowledge mediated by a, denoted by
NK(a) ∈ F(R), with membership function µNK(a) given by

µNK(a)(x) =
{

µp(a)(N(x)) if x ∈ [0, 1],
0 otherwise.

Evidently, NK(a) ∈ F∗([0, 1]). As in the case of triangular norms, where we have
considered the original Zadeh’s approach based on TM = min only, also in the case of
fuzzy knowledge we will only consider the original fuzzy negation NZ : [0, 1] → [0, 1]
given by NZ(x) = 1− x. Obviously, NZK(a) = K(a) for all a ∈ A.
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If a, b ∈ A then we can define the aggregated fuzzy knowledge K(a, b) with member-
ship function µK(a,b) given by

µK(a,b)(x) = max
(
µK(a)(x), µK(b)(x)

)
, x ∈ R. (17)

It means that K(a, b) = K(a)∪K(b) in the usual fuzzy set theoretical sense (cf., [29]).

Evidently, the fuzzy knowledge is a fuzzy counterpart of the probabilistic information
I(a) and its fuzzy modification, fuzzy expectation I(a). This measure of vague infor-
mation reflects the fuzzy set theoretical methodology and it is based on monotonicity
instead of additivity.

Lemma 6.2. Let a, b ∈ A. Then ν�(p(a),p(b)) = ν�(K(b),K(a)).

P r o o f . The statement follows immediately from (16) and (12). �

The modified concept of entropy, reflecting the typical fuzzy style, would be rather
more difficult. Let us discuss two possible approaches.

The first possibility is to define the analogy of entropy for fuzzy sources as fuzzy
quantity. We call it a fuzzy disorganization of fuzzy source (A,p) and denote D(A,p) ∈
F([0, 1]) with membership function µD : [0, 1] → [0, 1], where

µD(x) = min
{
µK(a)(x) | a ∈ A

}
, x ∈ [0, 1]. (18)

Theorem 6.3. Let (A,p) be a fuzzy source with fuzzy expectations p(a), a ∈ A, and
let xa ∈ (0, 1) be modal values, a ∈ A, such that∑

a∈A

xa = 1.

Let, moreover, xa = 1/n. Then there exists a modal value xD ∈ [0, 1] of D(A,p), and
for each fuzzy disorganization D(A,p) of some fuzzy source (A,p) with membership
function µD and each x ∈ [0, 1] it holds

µD(xD) = 1 ≥ µD(x).

P r o o f . If the modal values of all fuzzy expectations p(a), a ∈ A, are mutually equal
then µa(1/n) = 1 for all a ∈ A, and, due to (16) and (18), µD(xD) = 1 for xD =
(n − 1)/n. As for any fuzzy disorganization D, µD(x) ∈ [0, 1] for each x ∈ [0, 1], the
statement is true. �

The alternative possibility is to define the measure of disorganization as a crisp quan-
tity. If (A,p) is a fuzzy source, µD is given by (18), then we denote by d(A,p) ∈ [0, 1]
and call crisp disorganization of (A,p) the number

d(A,p) = sup {µD(x) | x ∈ (0, 1)} . (19)
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Theorem 6.4. Under the notations and assumptions of Theorem 6.3,

d (A,p) = 1 ≥ d(A,p)

for any fuzzy source (A,p).

P r o o f . The statement follows immediately from (19) and Theorem 6.3. �

Above, we have suggested two ways to quite consequent fuzzifications of the basic
information-theoretical concepts. The first one of them appears a bit more adequate to
the vagueness of the input expectations.

Nevertheless, both models are based, namely, on the vague estimation of the partic-
ular probabilities of symbols, and, consequently, on the granulation of the expectations.
The fuzzy information, fuzzy knowledge, fuzzy disorganization, and in some sense also
the crisp disorganization, reflect rather the fuzziness of particular symbols of the alpha-
bet, than the fuzziness of the entire alphabet and of the choice of its symbols. Let us
discuss this problem.

We still consider a finite and non-empty alphabet A, and instead of (crisp) probability
p we consider a fuzzy subset Q of A, with membership function πQ : A → [0, 1] such that
πQ(a) = 1 for some a ∈ A. Observe that πQ can be seen as a possibility distribution
[32] and it defines a possibility measure π on A given by

π(B) = max {πQ(a) | a ∈ B} , B ⊆ A.

In our notation, Q ∈ F(A). The fuzzy set Q represents our vague (mostly subjective)
knowledge of the possibilities, with which particular symbols from the alphabet may
appear in messages produced by the source.

Then, it is quite acceptable to define the information transmitted by symbols as a
fuzzy subset I(Q) of A, with membership function ρQ : A → [0, 1], such that

I(Q) = Q, i. e., ρQ(a) = 1− πQ(a), a ∈ A. (20)

If (a, b) ∈ A2, based on possibility theory on product spaces, see [5], the aggregated
possibility of that pair can be defined as

πQ(a, b) = min (πQ(a), πQ(b)) , (21)

which is a possibilistic counterpart of the probability approach p(a, b) = p(a)p(b) con-
sidered in Section 2.

Remark 6.5. Relations (20) and (21) imply that aggregated information transmitted
by the pair (a, b) is

ρQ(a, b) = max (ρQ(a), ρQ(b)) .

Finally, the possibilistic entropy H(A,Q) can be then defined as

H(A,Q) = max {min (πQ(a), ρQ(a)) | a ∈ A} = max {min (πQ(a), 1− πQ(a)) | a ∈ A} .
(22)

Note that the Shannon entropy (2) can be seen as the Lebesgue integral H(A, p) =∫
A

I d, p, while the possibilistic entropy (22) corresponds to the Sugeno integral [26],
H(A,Q) = Su−

∫
A

ρQ dπ.
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7. CONCLUSIVE REMARKS

The essential properties of vagueness rather differ from those of randomness. It means
that also their models, fuzzy set theory and probability theory, are to be processed in
different ways. Nevertheless, comparing Sections 2 and 4-6 from the point of view of
Section 3, we may see that some general principles are valid in all presented models.

These general principles reflect some abstract models of uncertainty processing and
related aggregation operations. There exist models related to fuzziness and probability
dealing with triangular norms and conorms as the relevant aggregation operators (e. g.,
[13] or [2]), see the previous sections. Their properties with regard to the quantitative
measurement of information were not analyzed yet and some discussion of them keeps
an open topic.
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Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8. Czech Republic.

e-mail:

Radko Mesiar, Department of Mathematics and Descriptive Geometry, SvF, Slovak University
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