Kybernetika 49 no. 2, 280-300, 2013

Application of the random field theory in PET imaging - injection dose optimization

Jiří Dvořák, Jiří Boldyš, Magdaléna Skopalová and Otakar Bělohlávek


This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality of simulated PET images. Dependence of the quality on the injection dose (amount of applied radiotracer) and patient's body parameters is estimated. It is used to derive curves of constant quality determining the injection dose needed to achieve desired quality of the resulting images. The curves are compared with the formula currently used in medical practice.


random field theory, Euler characteristic, PET imaging, PET image quality


60G35, 60G60


  1. C. K. Abbey and H. H. Barrett: Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability. J. Opt. Soc. Amer. A 18 (2001), 473-488.   CrossRef
  2. R. Accorsi, J. S. Karp and S. Surti: Improved dose regimen in pediatric PET. J. Nucl. Med. 51 (2010), 293-300.   CrossRef
  3. R. J. Adler: The Geometry of Random Fields. Wiley, London 1981.   CrossRef
  4. R. J. Adler and J. E. Taylor: Random Fields and Geometry. Springer, New York 2007.   CrossRef
  5. R. Boellaard et al.: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European J. Nucl. Med. Mol. Imaging 37 (2010), 181-200.   CrossRef
  6. J. Boldyš et al.: Monte Carlo simulation of PET images for injection dose optimization. In: Proc. III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2011. Taylor and Francis, London 2012.   CrossRef
  7. D. Brasse et al.: Correction methods for random coincidences in fully 3D whole-nody PET: Impact on data and image quality. J. Nucl. Med. 46 (2005), 859-867.   CrossRef
  8. J. Cao and K. J. Worsley: Applications of random fields in human brain mapping. In: Spatial Statistics: Methodological Aspects and Applications. Springer Lecture Notes in Statistics 169 (2001), pp. 169-182.   CrossRef
  9. M. Danna et al.: Optimization of tracer injection for 3D $^{18}$F-FDG whole body (WB) PET studies using an acquisition-specific NEC (AS-NEC) curve generation. IEEE Nucl. Sci. Conf. R. (2004), 2615-2619.   CrossRef
  10. H. Everaert et al.: Optimal dose of $^{18}$F-FDG required for whole-body PET using an LSO PET camera. European J. Nucl. Med. Mol. Imaging 30 (2003), 1615-1619.   CrossRef
  11. H. C. Gifford et al.: Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J. Nucl. Med. 41 (2000), 514-521.   CrossRef
  12. B. S. Halpern et al.: Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J. Nucl. Med. 46 (2005), 603-607.   CrossRef
  13. F. Jacobs et al.: Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. European J. Nucl. Med. Mol. Imaging 32 (2005), 581-588.   CrossRef
  14. S. Jan et al.: GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49 (2004), 4543-4561.   CrossRef
  15. T. Mizuta et al.: NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol. Imaging Biol. 11 (2009), 480-486.   CrossRef
  16. R. A. Powsner and E. R. Powsner: Essential Nuclear Medicine Physics. Second edition. Wiley-Blackwell, 2006.   CrossRef
  17. G. J. Székely and M. L. Rizzo: A new test for multivariate normality. J. Multivariate Anal. 93 (2005), 58-80.   CrossRef
  18. S. C. Strother, M. E. Casey and E. J. Hoffman: Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans. Nucl. Sci. 37 (1990), 783-788.   CrossRef
  19. J. E. Taylor, K. J. Worsley and F. Gosselin: Maxima of discretely sampled random fields, with an application to 'bubbles'. Biometrika 94 (2007), 1-18.   CrossRef
  20. H. C. Thode: Testing for Normality. Marcel Dekker, New York 2002.   CrossRef
  21. C. C. Watson: Count rate dependence of local signal-to-noise ratio in positron emission tomography. IEEE Trans. Nucl. Sci. 51 (2004), 2670-2680.   CrossRef
  22. C. C. Watson et al.: Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J. Nucl. Med. 46 (2005), 1825-1834.   CrossRef
  23. C. C. Watson, D. Newport and M. E. Casey: Evaluation of simulation-based scatter correction for 3D PET cardiac imaging. IEEE Trans. Nucl. Sci. 44 (1997), 90-97.   CrossRef
  24. K. J. Worsley et al.: A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12 (1992), 900-918.   CrossRef
  25. K. J. Worsley: Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. in Appl. Probab. 27 (1995), 943-959.   CrossRef
  26. K. J. Worsley: Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist. 23 (1995), 640-669.   CrossRef
  27. K. J. Worsley et al.: Searching scale space for activation in PET images. Hum. Brain Mapp. 4 (1996), 74-90.   CrossRef
  28. K.J. Worsley et al.: Detecting changes in non-isotropic images. Hum. Brain Mapp. 8 (1999), 98-101.   CrossRef