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REFERENCE POINTS BASED RECURSIVE
APPROXIMATION

Martina Révayová and Csaba Török

The paper studies polynomial approximation models with a new type of constraints that
enable to get estimates with significant properties. Recently we enhanced a representation
of polynomials based on three reference points. Here we propose a two-part cubic smoothing
scheme that leverages this representation. The presence of these points in the model has several
consequences. The most important one is the fact that by appropriate location of the reference
points the resulting approximant of two successively assessed neighboring approximants will be
smooth. We also show that the considered models provide estimates with appropriate statistical
properties such as consistency and asymptotic normality.
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1. INTRODUCTION

Data with complex, nonlinear structure can be approximated using various nonparamet-
ric methods such as kernel smoothers [6] or smoothing splines [7]. There are situations
when for further work with data or the applied model one needs approximation equa-
tions that these methods do not provide. The paper proposes smoothing schemas with
a new parametric approximation model for noisy data in plane, where the parameter
is estimated by a Robbins–Monro type recursive sequence [11]. Recursive estimating
procedures occur e. g. in stochastic approximation [11] or in adaptive filters, see the
recursive least squares filter [5]. These methods are utilized in practice for solving prob-
lems, where the information extraction and noise reduction proceed online, and use the
accumulated and most recently arrived data effectively. We were motivated by the knot
detection problem for piecewise approximation, when the detection algorithm proceeds
successively from left to right [3]. After finding a knot, one can proceed at the first
glance independently of the past, however it is advisable to take the current state into
consideration, too. In our case it means smooth transition from the last segment to
the new one. Given the model and the recursive estimate, our goal is to investigate the
properties of this sequence.

In the background of the proposed smoothing schemas lies the discrete projective
transformation, introduced in [1] and studied in [4, 10]. Using the complete version of
this transformation we succeeded to derive in [8] an enhanced representation of polyno-



Reference points based approximation 61

mials using three reference points. This representation enables elaborating new approxi-
mating polynomial models, in which the first three coefficients a0, a1, a2 of a polynomial
Pp(x) = a0 + a1x + · · ·+ apx

p, p ≥ 3, are replaced with new parameters defined by the
reference points. Thanks to the reference points the resulting models possess in addition
to approximating properties also interpolating ones: the three new parameters are used
for interpolation and the rest for the approximation. For the free parameter of these
models we construct recursive schemas that are similar to the ones in [2, 3]. Our goal was
to improve those approximating procedures and investigate their theoretical properties.
The main outcomes of this paper are the quasi smooth approximating two-part schema
and the proof of the asymptotic normality of the recursive estimate.

The structure of the paper is the following. In section two we provide the three
reference point representation of polynomials. In the next two sections we introduce two
cubic smoothing models for which we construct iterative estimations and prove their
consistency and asymptotic normality. The main results are in section four. Section five
contains a simulation study.

2. REPRESENTATION OF POLYNOMIALS

In our approach to smoothing noisy data by piecewise polynomial models with a special
type of constraints the key role is played by a set of three arbitrary, but mutually different
reference points

R = {[v0, y0], [v1, y1], [v2, y2] : v0 6= v1 6= v2, vi ∈ R, i = 0, 1, 2}

and a special representation of polynomials using these points. The aim of this section
is to present this representation introduced in [8].

We will denote the polynomials

Pa,p(x) =
p∑

i=0

aix
i

for the sake of simplicity both with Pa(x) and Pp(x), depending on whether we want to
emphasize the coefficients aT = (a0, a1, . . . , ap) or the polynomial degree p. The next
theorem provides the P = I + ZA representation of polynomials.

Theorem 2.1. Let p be an integer greater than or equal to three. Then the polynomial
Pp(x) can be expressed based on the set R with yi = Pp(vi), i = 0, 1, 2, in the form

Pp(x) = I(x) + Z(x)A(x), (1)

where
I(x) ≡ IR(x) = p0(x)y0 + p1(x)y1 + p2(x)y2, (2)

Z(x) ≡ ZR(x) = (x− v0)(x− v1)(x− v2), (3)

A(x) =
p∑

i=3

aiTi−3(x)

and
p0(x) = (x−v1)(x−v2)

(v0−v1)(v0−v2)
, p1(x) = (x−v0)(x−v2)

(v1−v0)(v1−v2)
, p2(x) = (x−v0)(x−v1)

(v2−v0)(v2−v1)
,
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Ti(x) =
i∑

j=0

rjx
i−j , i ∈ Z+

0 ,

rj =
j∑

k0=0

j−k0∑
k1=0

vk0
0 vk1

1 vj−k0−k1
2 , j ∈ Z+

0 .

Let us notice that I is an incomplete interpolating polynomial of degree 2, A is a poly-
nomial of degree p− 3, and

I(v0) = y0, I(v1) = y1, I(v2) = y2,

Z(v0) = 0, Z(v1) = 0 and Z(v2) = 0.

Based on this representation with mutually different reference points [v0, y0], [v1, y1] and
[v2, y2], where yi = P3(vi), i = 0, 1, 2, we will consider a new parametrization for a cubic
polynomial

P3(x) = b0 + b1x + b2x
2 + b3x

3

= I(x) + Z(x)b3 (4)
= p0(x)y0 + p1(x)y1 + p2(x)y2 + Z(x)b3,

where from the original four parameters remains only the parameter b3. We will take
advantage of this representation of cubic polynomials (4) in the next sections in the
definition of the approximating models.

3. MODEL WITH KNOWN REFERENCE POINTS

In this and the subsequent section we introduce two cubic smoothing schemas that are
obtained from the polynomial representation (4). We will assume about the model of
this section that the ordinates of the three reference points are known. This one-part
model does not depend on the choice of the abscissas of the reference points. In the
two-part model of the next section the three ordinates are unknown and they have to
be assessed, and the abscissas are not arbitrary, but bounded to the shared point.

3.1. Model

Consider a cubic polynomial Pb(x), x ∈ [0, 1], where bT = (b0, b1, b2, b3) and a set of N
data points in the interval [0, 1]{

[xi,N , ỹi,N ] : xi,N =
i

N
, ỹi,N ≡ Pb(xi,N ) + εi,N , i = 1, N

}
,

where {εi,N}i=1,N is an uncorrelated error sequence, Eεi,N = 0 and Eεi,Nεj,N =
σ2δi,j < ∞ i, j = 1, N , δi,j is the Kronecker delta.
The definition of the new approximation model for these data needs three reference
points. In this section we will suppose that they are given and errorless. Let the set of
reference points be

R = {[v0, y0], [v1, y1], [v2, y2] : v0 6= v1 6= v2, yi = Pb(vi), i = 0, 1, 2}. (5)
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Based on (4) we define a cubic, the simplest approximating model

ỹ(x) = I(x) + Z(x)b + ε, (6)

where I(x), Z(x) are defined by (2), (3) using vi and yi, i = 0, 1, 2, from (5) and b ≡ b3.

3.2. Recursive estimate and its properties

For the approximation of Pb(x) according to (6) let us consider

ŷ(x) = I(x) + Z(x)̂b,

where for the evaluation of the estimate b̂ various techniques can be considered. We will
use a recursive estimation scheme, see [2, 3],

bi = bi−1 +
Zi,N

ζi
(ỹi,N − Ii,N − Zi,Nbi−1), i = 1, N, b0 = 0, (7)

where ỹi,N = ỹ(xi,N ), Ii,N = I(xi,N ), Zi,N = Z(xi,N ) =
(

i
N − v0

) (
i
N − v1

) (
i
N − v2

)
and ζi =

∑i
k=1 Z2

k,N . Using (6) bi can be expressed as

bi = bi−1 +
Zi,N

ζi
(Zi,N (b− bi−1) + εi,N ),

whereas
b1 = b +

Z1,Nε1,N

ζ1
, b2 = b +

Z1,Nε1,N + Z2,Nε2,N

ζ2
.

Hence by induction we get a relation for bi

bi = b +

i∑
k=1

Zk,Nεk,N

ζi
, i = 1, N, (8)

that enables the investigation of its properties.

Let us now take a look at the basic statistical properties of the estimates bi and b̂ ≡ bN .
From (8) it follows immediately that

Ebi = b, i = 1, N.

Mentioning that

ζN =
1

N6

N∑
k=1

((k −Nv0)(k −Nv1)(k −Nv2))2 = O(N), (9)

from (8) we also get

DbN =
σ2ζN

ζ2
N

=
1

O(N)
.
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Hence and from the Tchebychev inequality it follows that for ∀ε > 0

lim
N→∞

P{|bN − b| > ε} ≤ lim
N→∞

DbN

ε2
= 0,

i. e. the estimate bN is consistent, bN
P→ b. However we can prove the asymptotic

normality, too.

Theorem 3.1. Consider the estimate (7) of the free parameter b of the model (6). Then

(bN − b)
√

ζN

σ

d→ N (0, 1),

where ζN is defined by (9).

P r o o f . First we show that

(bN − b)
√

ζN

σ
=

SN√
DSN

,

where
ξk,N =

√
ζN

σ
√

N
Zk,Nεk,N , k = 1, N,

SN = ξ1,N + ξ2,N + . . . + ξN,N .

Because SN =
√

ζN

σ
√

N

∑N
k=1 Zk,Nεk,N , we have DSN = 1

N ζ2
N . Hence and from (8) for

i = N it follows that

(bN − b)
√

ζN

σ
=

√
ζN

N∑
k=1

Zk,Nεk,N

σζN
=

SN√
DSN

.

To prove that this estimate has a standard normal distribution for N →∞, it is sufficient
to show that for ∀ε > 0 the Lindeberg condition

lim
N→∞

1
DSN

N∑
k=1

∫
{x:|x−Eξk,N |≥ε

√
DSN}

(x− Eξk,N )2 dFk,N (x) = 0 (10)

is satisfied, where Fk,N (x) is the distribution function of ξk,N . Since Eξk,N = 0 and (9)
implies that DSN = O(N), we have

1
DSN

N∑
k=1

∫
{x:|x|≥ε

√
DSN}

x2 dFk,N (x) ≤ N

O(N)
max

1≤k≤N

∫
{x:|x|≥εO(

√
N)}

x2 dFk,N (x).

For any k, 1 ≤ k ≤ N, ξk,N has a finite integral

Dξk,N =

∞∫
−∞

x2 dFk,N (x) < ∞.
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It is left to prove that if the integrals are finite the remainings tend to zero. Obviously

{x : |x| ≥ εO(
√

N)} ↓ ∅ for N →∞,

therefore
lim

N→∞

∫
{x:|x|≥εO(

√
N)}

x2 dFkN ,N (x) = 0,

and consequently the condition (10) is fulfilled. �

It was the case when the reference points were known. As we shall see in the next
section, which deals with successive approximation over two intervals, the consistency
and normality of an appropriately constructed estimate bN hold even when the ordinates
of the reference points are not given but assessed.

4. ESTIMATED REFERENCE POINTS

This section deals with the case when the ordinates of the reference points are unknown.
We will investigate two polynomials over two neighboring intervals that are smooth in
the shared point. First we describe a two-part scheme, and then construct an iterative
estimate and investigate its properties.

4.1. Model

Consider two cubic polynomials Pa(x) and Pb(x) over the intervals [−1, 0] and [0, 1],
respectively, where aT = (a0, a1, a2, a3) and bT = (b0, b1, b2, b3). Let be given two data
sets from these intervals{

[xi,M , ỹi,M ] : xi,M = − i

M
, ỹi,M ≡ Pa(xi,M ) + ε∗i,M , i = 1,M

}
,{

[xi,N , ỹi,N ] : xi,N =
i

N
, ỹi,N ≡ Pb(xi,N ) + εi,N , i = 1, N

}
,

where M,N � 1. Let M = κN , 0 < κ < ∞ and {ε∗i,M}i=1,M , {εk,N}k=1,N be
uncorrelated error sequences, Eε∗i,M = 0, Eεk,N = 0, Eε∗i,Mε∗j,M = σ2δi,j < ∞,
Eεk,Nεl,N = σ2δk,l < ∞ and Eε∗i,Mεk,N = 0 for i, j = 1,M , k, l = 1, N , where δ∗,∗
is the Kronecker delta. We suppose that the polynomials are continuous and quasi
smooth at x = 0

Pb(0) = Pa(0),
P ′

b(0) = P ′
a(0) + o(τ), (11)

P ′′
b (0) = P ′′

a (0) + o(τ),

i. e. |P (j)
a (0)− P

(j)
b (0)| < cjτ , where τ is a small positive real number and P (j) denotes

the jth derivative of P . We propose a two-part smoothing scheme for data from the
interval [−1, 1]. For the data points from [−1, 0] we consider the classical polynomial
model

ỹ(x) = Pa(x) + ε∗. (12)
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Similarly to the preceding section we use the formula (4) for the definition of the local
model

ỹ(x) = IR(x) + Z(x)b + ε (13)

for the interval [0, 1], where R denotes a set of reference points. The abscissas of
the reference points from R can be selected suitably to ensure the quasi continuity of
transition of second order (11) in the shared zero point of the two local approximants.
If we choose the abscissas of these points as {−2τ,−τ, 0}, where τ is a small positive
real number, and suppose

Pb(−2τ) = Pa(−2τ), Pb(−τ) = Pa(−τ) and Pb(0) = Pa(0), (14)

then from the numerical mathematics it is well known that (11) holds. So let the set of
reference points R be

R = {[−2τ, Pb(−2τ)], [−τ, Pb(−τ)], [0, Pb(0)]}.

Since we assume that (14) holds, we get

R = Ra = {[−2τ, Pa(−2τ)], [−τ, Pa(−τ)], [0, Pa(0)]}. (15)

The models (12) and (13) with reference points from (15) make up our two-part smooth-
ing scheme for Pa(x) and Pb(x) that satisfy the new type of constraints (11).

So we consider two polynomials over two neighboring intervals. We can estimate the
coefficients of the polynomial from the first interval using any method, however for the
investigation of the theoretical properties of the second model we will consider the LS
method. As we shall see, the approximant for the second interval uses three estimated
points from the approximant for the first interval as reference points.

4.2. Recursive estimate of bi

This section deals with the approximation of Pb(x). Let us denote the LS approximant
of Pa(x) from the interval [−1, 0] by Pâ(x). Based on (13) we introduce for Pb(x) an
approximant

ŷ(x) = IR̂(x) + Z(x)b̂, (16)

where R̂ denotes a set of reference points, the ordinates of which are estimated by Pâ(x):

R̂ = Râ = {[−2τ, Pâ(−2τ)], [−τ, Pâ(−τ)], [0, Pâ(0)]}.

For the evaluation of b̂ we propose the recursive scheme

bi = bi−1 +
Zi,N

ζi
(ỹi,N − Îi,N − Zi,Nbi−1), b0 = 0, i = 1, N, (17)

where based on (3)

Zi,N ≡ ZR̂(xi,N ) =
(

i

N
+ 2τ

)(
i

N
+ τ

)
i

N
,
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ζi =
i∑

k=1

Z2
k,N , ỹi,N = ỹ(xi,N ) and Îi,N = IR̂(xi,N ).

From (13) we get

bi = bi−1 +
Zi,N

ζi
(Ii,N − Îi,N + Zi,N (b− bi−1) + εi,N ), b0 = 0, i = 1, N,

where Ii,N ≡ IRi,N and R is defined by (15). It can be shown analogously as (8) that

bi = b +
1
ζi

(
i∑

k=1

Zk,N (Ik,N − Îk,N + εk,N )

)
, i = 1, N. (18)

While the recursive formula (17) serves for numerical computation of bi, relation (18)
for theoretical investigation of its properties.

We turn now to the exploration of the statistical properties of the estimate bi. First we
clear up the convergence rate of the sequence {bi} and then prove that the asymptotic
distribution of its modification is the Gaussian one.

Based on (2) and (4) we express Ik,N − Îk,N the following way

Ik,N − Îk,N =
2∑

i=0

pi(xk,N )(Pa((i− 2)τ)− Pâ((i− 2)τ)

= (a0 − â0) + (a1 − â1)
k

N
+ (a2 − â2)

k2

N2
+ (a3 − â3)

(
−3τ

k2

N2
− 2τ2 k

N

)
.

Let us denote

∆a = a− â = −(XT X)−1XT ε∗, (19)

νT
N =

(
N∑

k=1

Zk,N ,

N∑
k=1

k

N
Zk,N ,

N∑
k=1

k2

N2
Zk,N ,

N∑
k=1

(
−3τ

k2

N2
− 2τ2 k

N

)
Zk,N

)

=
(

N

4
+ O(1),

N

5
+ O(1),

N

6
+ O(1),

τ(4τ + 5)N
10

+ O(1)
)

. (20)

Then
N∑

k=1

Zk,N

(
Ik,N − Îk,N

)
= νT

N∆a.

Hence and from (18) we get

bN = b +
1

ζN

(
νT

N∆a +
N∑

k=1

Zk,Nεk,N

)
, (21)
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where

ζN =
N∑

k=1

Z2
k,N =

1
N6

N∑
k=1

((k + 2Nτ)(k + Nτ)k)2

=
(

1
7

+ τ +
13
5

τ2 + 3τ3 +
4
3
τ4

)
N + O(1). (22)

Lemma 4.1. Consider the estimate (17) of the free parameter b of the model (13).
Then

1. Ebi = b for i = 1, N ,

2. DbN = 1
O(N) .

P r o o f . a) Since Eâ = a, we have EÎk,N = Ik,N and so the statement is a conse-
quence of (18).
b) From (21) we obtain

DbN =
1

ζ2
N

(
DνT

N∆a + D

N∑
k=1

εk,NZk,N

)
.

Since

var∆a = (XT X)−1σ2 =
{

1
Oij(M)

}
i,j=0,3

,

we get from (20) due to M = κN that

DνT
N∆a =

O(N2)
O(M)

= O(N). (23)

(22) implies

D

N∑
k=1

Zk,Nεk,N = σ2ζN = O(N).

Hence and from (23), (21) we get DbN = O(N)
O(N2) . �

Let us introduce the notations

UM =
XT X
M

,U = lim
M→∞

UM , cN =
νN

N
and c = lim

N→∞
cN .

Theorem 4.2. If the assumptions of lemma 4.1 are fulfilled, then

1. the estimate bN is consistent, bN
P→ b,
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2. (bN − b)
√

ζN

σ

d→ N
(
0, 1

κTcT U−1c + 1
)
,

where T = 1
7 + τ + 13

5 τ2 + 3τ3 + 4
3τ4.

P r o o f . a) It follows from lemma 4.1 and the Tchebychev inequality.
b) First we show that

(bN − b)
ζN

σ
√

NδN

d→ N (0, 1),

where δN = 1
κcT

NU−1
M cN + ζN

N .
Let SN be (see (21))

SN = (bN − b)ζN = νT
N∆a +

N∑
k=1

Zk,Nεk,N .

Using (19) we obtain

νT
N∆a =

M∑
k=1

diε
∗
k,M ,

and so SN is a sum of non-correlated random variables with finite variances. From the
relations D

√
M∆a = U−1

M σ2, N
M = 1

κ and the non-correlation of ε∗ and ε we get

DSN =
σ2

M
νT

NU−1
M νN + σ2ζN = σ2N

(
1
κ

νT
N

N
U−1

M

νN

N
+

ζN

N

)
= σ2NδN ,

and so
(bN − b)

ζN

σ
√

NδN

=
SN√
DSN

.

Hence thanks to DSN = O(N) the proof of the fulfillment of the Lindeberg condition is
similar to the proof of theorem 3.1.

Since limN→∞
NδN

ζN
= 1

κTcT U−1c + 1 we get by standard techniques

(bN − b)
√

ζN

σ

d→ N
(

0,
1

κT
cT U−1c + 1

)
. �

We proved the consistency and asymptotic normality of the estimate (21) of the free
parameter b and its modification in the local cubic model (13), respectively. Obviously
based on the representation (1) we could construct polynomial models of higher degree,
or tending τ to zero express I(x) with the first two derivatives of Pp(x).

5. SIMULATION STUDY

To get a picture of the proposed approach and the effect of τ on the approximation
quality we conducted a simulation study. Consider over intervals [−1, 0] and [0, 1]
polynomials Pa(x) = 1 − x + x3 and Pb(x) = 1 − x + 0.5x3, which at x = 0 ful-
fill the conditions Pa(0) = Pb(0), P ′

a(0) = P ′
b(0) and P ′′

a (0) = P ′′
b (0). Based on

Pb(x) and xi,10 = i/10, i = 1, 10, random data ỹi,N , i = 1, 10 were generated with
εi,10 ∼ N (0, 0.052), see the first row of Table 1. For the sake of simplicity we did not
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ỹi,10 0.91 0.76 0.77 0.65 0.50 0.51 0.46 0.44 0.50 0.42
bi 7.80 -3.95 1.87 0.98 0.28 0.46 0.48 0.48 0.53 0.48

Tab. 1. Noisy ordinates and the estimate (τ = 0.01) sequence bi,

i = 1, 10.

simulate ordinates for Pa(x). For estimating b ≡ b3 using the recursion (17) we simply
supposed that Pâ(x) ≡ Pa(x) and so Îi,10 ≡ Ii,10. We remind that in our model (13)

ỹ(x) = IR(x) + Z(x)b + ε,

the incomplete interpolation IR(x) =
∑2

i=0 pi(x)Pâ((i − 2)τ plays a threefold role: it
ensures reparameterization, a quasi smooth transition between neighboring segments
and a numerical saving: three parameters from four should not be estimated, but simply
computed based on Pâ(x).

Fig. 1.

The recursive schema (17)

b0 = 0,

bi = bi−1 +
Zi,10

ζi
(ỹi,10 − Îi,10 − Zi,10bi−1), i = 1, 10,

where Zi,10 = (x− 2τ)(x− τ)x, τ = 0.01, ζi =
∑i

k=1 Z2
k,10 and

Îi,10 = 5099.96( i
10 + 0.01) i

10 − 10099.99( i
10 + 0.02) i

10 + 5000( i
10 + 0.02)( i

10 + 0.01),
produces the estimates bi, i = 1, 10 for b ≡ b3, see the second row of Table 1 rounded to
two decimal digits. Hence the leading coefficient 0.5 of Pb(x) is estimated by b10 = 0.48.
The approximant (16) with
IR̂(x) = 5099.96(x + 0.01)x− 10099.99(x + 0.02)x + 5000(x + 0.02)(x + 0.01)
equals

Pb̂(x) = IR̂(x) + 0.4815(x + 0.02)(x + 0.01)x
(= 1− 1.0001037x− 0.01555x2 + 0.4815x3).
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τ 0.01 0.001 0.0001
b10 0.4815 0.4658 0.4638

P ′
b̂
(0) -1.0001 -1.0000 -1.0000

P ′′
b̂
(0) -0.0311 -0.004 0

Tab. 2. The impact of τ on the derivatives in the shared point zero.

τ 0.01 0.001 0.0001
Sample mean of |b̂10 − 0.5| 0.02 0.002 0.0003

Sample variance of b̂10 0.0012 0.0012 0.0012

Tab. 3. Average deviations from b3 ≡ 0.5.

Figure 1 depicts in addition to Pa(x), {ỹi,N} and Pb̂(x) their first two derivatives, too.
The plot of derivatives enable the visual check of smooth transition at the share point.
According to the quasi smooth condition (11) Pa(0) = Pb̂(0), and P ′

a(0) = P ′
b̂
(0)+o(τ),

P ′′
a (0) = P ′′

b̂
(0) + o(τ). Since Pa(0) = 1, P ′

a(0) = −1 and P ′′
a (0) = 0, the values o(τ) can

be assessed from Table 2.
Table 2 was constructed with various τ values. As we can see, the smaller the τ is, the
more accurate are the derivatives in zero computed from Pb̂(x), that is the consequence
of the LS method. The second derivative is more sensitive to the value of τ , however in
accordance with the quasi smooth condition P ′′

b (0) = P ′′
a (0) + o(τ). Mention should be

made that smaller τ does not imply more correct decimal places in bi, see the second row
of Table 2. Therefore we analyzed as well as the impact of τ on the average convergence
of the estimate sequence. Table 3 contains three sample means |0.5−b̂10| of the difference
|0.5− b10| and the corresponding sample variances, each computed from 10000 random
samples of length 10 with three different τ . We see that for τ = 10−k, k = 2, 3, 4,
the recursive formula (17) returns in average k − 1 correct decimal places. The sample
variances practically do not depend on the given values of τ . This result is in accordance
with the theoretical value of the variance of b10 computed based on (21) or Theorem
4.2, Db10 = σ2

ζ10
≈ 0.00118, where σ = 0.05.

We can conclude based on the simulations that smaller τ implies smaller deviations of
derivatives at the shared point x = 0, however smaller deviations of bi from the estimated
leading parameter only in average.

6. CONCLUSION

The paper introduced a new cubic approximation model based on a polynomial repre-
sentation formula in which the key role is played by three reference points. Its main
results are a two-part recursive smoothing scheme providing a smooth approximant for
two neighboring local polynomials and the asymptotic normality of the second model’s
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parameter from the two-part scheme. Our goal is to apply the scheme in knot detection
algorithms to model the trend of signals.

Our approach to smoothing data can be generalized in several ways. Instead of
the considered model one can also construct a two-part scheme with higher polynomial
degree. The presented technique can be generalized as well as to smoothing data in
space by polynomial surfaces.

The new approach is not limited to two polynomials and three reference points. Local
and global piecewise smoothing schemas can be elaborated with any reasonable number
of reference points and polynomial degree. However it is out of the scope of this work
and is the task of the near future.
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