Kybernetika 49 no. 1, 40-59, 2013

Goodness-of-fit test for the Accelerated Failure Time model based on martingale residuals

Petr Novák


The Accelerated Failure Time model presents a way to easily describe survival regression data. It is assumed that each observed unit ages internally faster or slower, depending on the covariate values. To use the model properly, we want to check if observed data fit the model assumptions. In present work we introduce a goodness-of-fit testing procedure based on modern martingale theory. On simulated data we study empirical properties of the test for various situations.


goodness-of-fit, survival analysis, accelerated failure time model


62N01, 62N03


  1. V. Bagdonavičius and M. Nikulin: Accelerated Life Models. Chapman and Hall / CRC, Boca Raton 2002.   CrossRef
  2. J. Buckley and I. R. James: Linear regression with censored data. Biometrika 66 (1979), 429-436.   CrossRef
  3. D. R. Cox: Regression models and life tables. J. Roy. Statist. Soc. Ser. B 34 (1972), 187-220.   CrossRef
  4. D. R. Cox and D.Oakes: Analysis of Survival Data. Chapman and Hall / CRC, Boca Raton1984.   CrossRef
  5. T. R. Fleming and D. P. Harrington: Counting Processes and Survival Analysis. Wiley, New York 1991.   CrossRef
  6. D. Y. Lin and C. F. Spiekerman: Model checking techniques for parametric regression with censored data. Scand. J. Statist. 23 (1996), 157-177.   CrossRef
  7. D. Y. Lin, L. J. Wei and Z. Ying: Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80 (1993), 557-572.   CrossRef
  8. D. Y. Lin, L. J. Wei and Z. Ying: Accelerated failure time models for counting processes. Biometrika 85 (1998), 605-618.   CrossRef
  9. D. Y. Lin and Z. Ying: Semiparametric inference for the accelerated life model with time-dependent covariates. J. Statist. Plann. Inference 44 (1995), 47-63.   CrossRef
  10. D. Pollard: Empirical Processes: Theory and Applications. Hayward, California: IMS 1990.   CrossRef
  11. G. R. Shorack and J. A. Wellner: Empirical Processes with Applications to Statistics. Wiley, New York 1986.   CrossRef
  12. B. W. Silverman: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986.   CrossRef