Kybernetika 49 no. 1, 141-148, 2013

The strongest t-norm for fuzzy metric spaces

Dong Qiu and Weiquan Zhang


In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.


fuzzy metric space, t-norm, isometry, analysis


93E12, 62A10


  1. J. Dombi: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Set and Systems 8 (1982), 149-163.   CrossRef
  2. A. George and P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Set and Systems 64 (1994), 395-399.   CrossRef
  3. V. Gregori and S. Romaguera: On completion of fuzzy metrics paces. Fuzzy Set and Systems 130 (2002), 399-404.   CrossRef
  4. V. Gregori, S. Morillas and A. Sapena: Examples of fuzzy metrics and applications. Fuzzy Set and Systems 170 (2011), 95-111.   CrossRef
  5. E. P. Klement, R. Mesiar and E. Pap: Triangular norms. Kluwer Academic, Dordrecht 2000.   CrossRef
  6. I. Kramosil and J. Michálek: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334.   CrossRef
  7. K. Menger: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535-537.   CrossRef
  8. A. Sapena: A contribution to the study of fuzzy metric spaces. Appl. Gen. Topology 2 (2001), 63-76.   CrossRef
  9. B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.   CrossRef
  10. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North Holland, Amsterdam 1983.   CrossRef
  11. E. Thorp: Best possible triangle inequalities for statistical metric spaces. Proc. Amer. Math. Soc. 11 (1960), 734-740.   CrossRef