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FINITE-TIME CONSENSUS PROBLEM
FOR MULTIPLE NON-HOLONOMIC MOBILE AGENTS

Jiankui Wang, Zhihui Qiu and Guoshan Zhang

In this paper, the problem of finite time consensus is discussed for multiple non-holonomic
mobile agents. The objective is to design a distributed finite time control law such that the
controlled multiple non-holonomic mobile agents can reach consensus within any given finite
settling time. We propose a novel switching control strategy with the help of time-rescalling
technique and graph theory. The numerical simulations are presented to show the effectiveness
of the method.
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1. INTRODUCTION

Consensus problem for multi-agent systems has received great attention from various
research communities recently due to its challenging features and many applications,
such as formation control, consensus and flocking [3, 8, 14].

The consensus of the multi-agent systems means that all the states of all agents are
required to agree upon certain quantities of interest. In order to achieve the aim, local
rules are usually applied to each agent, mainly based on the weighted average of its
own information and that of its neighbors [8]. The consensus problem for networks of
dynamic agents with fixed and switching topologies was discussed in [14].

Most of the existing consensus control laws for multi-agent are asymptotic consensus
laws, that is the states of the agents convergence to the desired value with infinite
time. Compared with this, finite time control can provide better disturbances-rejection,
fast response and tracking precision [1, 2, 9, 12]. Finite-time stabilizing control has been
studied and several finite-time consensus algorithms have been obtained in the references
such as [4, 5, 6, 13, 17], just to name a few.

Graph theory results related to consensus control are obtained for linear agents
mostly. However, many practical control applications involve agents that are nonlinear
and non-holonomic. Therefore, it is necessary to discuss the control of multiple non-
holonomic systems. The papers [10, 11] considered cooperative control of only a portion
of the state vector of each mobile robot and their proposed methods were specialized to
a specific class of robotic system. The paper [3] discussed the cooperative control prob-
lem for general nonholonomic agents with limited communication capabilities among
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neighbors. However, to the best of our knowledge, there are still no any results with
respect to finite time consensus for non-holonomic mobile agents. In this paper, based
on the results from papers [13] and the time-rescalling technique and switching control
technique from paper [7, 15, 16], not only can we solve the finite time consensus problem
for non-holonomic mobile agents, but also we can make all the non-holonomic mobile
agents reach consensus within any given finite time.

The remainder of this paper is organized as follows. In Section 2, formulation and
preliminary results are given. In Section 3 we first present a distributed switching control
strategy based on the result from paper [13], and prove the effectiveness of the method,
and secondly we employ a time-rescaling technique to reconstruct the distributed finite-
time controller to make all the non-holonomic mobile agents reach consensus within
any given finite time. In Section 4, we use the numerical simulations to show the
effectiveness of our distributed finite time control laws. Finally, some conclusions are
drawn in Section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Algebraic graph theory

In the multi-agent systems, the communication between the agents can be described
by the undirected graph G = (ν, ε, A), where the set of vertices ν = {1, 2, · · · , n}, set
of edges ε ⊂ ν × ν = {(i, j) : i, j ∈ ν}, and a adjacency matrix A = [aij ] ∈ Rn×n.
If there is an edge from vertex i to vertex j, i. e. (i, j) ∈ ε, then aij = aji > 0,
the vertex j is called a neighbor of i. The set of neighbors of vertex i is denoted by
Ni = {j ∈ ν : (i, j) ∈ ε, j 6= i}. In this paper we assume that aii = 0, 1 ≤ i ≤ n. The
degree matrix of G is diagonal matrix D = diag{d1, . . . , dn} ∈ Rn×n, where diagonal
elements di =

∑
j∈Ni

aij for i = 1, . . . , n. Then the Laplacian of the weighted graph G
is defined as L = D − A. A path on G is a non-empty graph P = (νP , εP , AP ) ⊆ G
with νP = {l0, l1, · · · , lk} and ε ∈ {l0l1, l1l2, · · · , lk−1lk}, where the li, 1 ≤ i ≤ k are all
distinct. A graph G is called connected if and only if any two of its nodes are linked by
a path on G.

In this paper, let 1 = [1, 1, · · · , 1]T ∈ Rn and 0 = [0, 0, · · · , 0]T ∈ Rn.

Lemma 2.1. If the undirected graph G is connected, L(A) has the following proper-
ties [14]:

1. 0 is a simple eigenvalue of L(A) and 1 is the associated eigenvector;

2. xT L[A]x = 1
2

∑n
i,j=1 aij(xi − xj)2, and the semi-positive definiteness of L(A) im-

plies that all eigenvalue of L(A) are real and not less than zero;

3. The second smallest eigenvalue of L(A), which is denoted by λ2(L(A))(the alge-
braic connectivity of G(A)) and satisfies λ2(L(A)) = minx6=0,1T x=0

xT L[A]x
xT x

> 0,
therefore, if 1T x = 0, xT L[A]x ≥ λ2(L(A))xT x.

According to paper [13], we can have the following two lemmas:
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Lemma 2.2. Consider the kinematics for n mobile agents, indexed by i ∈ ν, the kine-
matics of the ith agent is described by the following form:{

ẋi = vi

v̇i = ui
(1)

where [xi, vi]T and ui are the state and input of agent i respectively. If the graph G is
connected, then, the following distributed finite-time control law

ui(t) = k1

[
kp
2

( ∑
j∈Ni

aij(xj − xi)
)
− vp

i

] 2
p−1

, i ∈ ν (2)

can solve the finite-time consensus problem, namely such that state consensus can be
achieved within finite time T1 ≤ V (0)1−d/2

b2(1−d/2) , where

V (0) =
1
4

n∑
i=1

∑
j∈Ni

aij(xi(0)− xj(0))2 +
n∑

i=1

∫ civi(0)

v∗i (0)

(sp − v∗i (0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds,

v∗i (0) = −k2

[ ∑
j∈Ni

aij(xi(0)− xj(0)
]1/p

,

k2 ≥ p21−1/p + β + nγ

1 + p
+ k3,

k1 ≥ (2− 1/p)21−1/pk1+p
2 ×

(21−1/p + (β + nγ)p
1 + p

+
21−1/p(β + nγ)

k2
+ k3

)
,

b2 = k3/(2b
d/2
1 ),

b1 = max
{ 1

2λ2
,

1
(2− 1/p)k1+p

2

}
,

k3 is a positive constant, d = 1+1/p, 1 < p = p1/p2 < 2, p1, p2 are positive odd integers,
β = max1≤i≤n

{∑
j∈Ni

aij

}
, γ = max1≤i,j≤n{aij}.

Lemma 2.3. Consider the kinematics for n mobile agents, indexed by i ∈ ν, the kine-
matics of the ith agent is described by the following form:

ẋi = ui (3)

where xi and ui are the state and input of agent i respectively. If the graph G is
connected, then, the following distributed finite-time control law

ui(t) = k2

( ∑
j∈Ni

aij(xj − xi)
) 1

p

, i ∈ ν (4)

can solve the finite-time consensus problem, namely state consensus can be achieved

within finite time T2 = V0(0)
p−1
2p

k2
p−1
2p (2λ2)

1+p
2p

, where

V0(0) =
1
4

n∑
i=1

∑
j∈Ni

aij(xi(0)− xj(0))2
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and the definitions for k2 and p are the same as in Lemma 2.2.

2.2. Finite time stability and problem formulation

Lemma 2.4. (Hong and Wang [7]) Consider the nonlinear system

ẋ = f(x), f(0) = 0, x ∈ Rn,

where f : U0 → Rn is continuous with respect to x on an open neighborhood U0 of
the origin x = 0. Suppose there is a C1 function V (x) defined in a neighborhood
Û ⊂ U0 ∈ Rn of the origin, real numbers c > 0 and 0 < α < 1, such that V (x) is
positive definite on Û and V̇ (x) + cV α(x) ≤ 0 (along the trajectory) on Û . Then, V (x)
approaches 0 in finite time along the trajectory with any initial condition x(0) ∈ Û/{0},
in addition, the finite settling time T satisfies that T ≤ V (x(0))1−α

c(1−α) .

Consider the kinematics for n non-holonomic mobile agents, indexed by i ∈ ν, the
kinematics of the ith agent is described by the following form: q̇1i = u1i

q̇2i = u2i

q̇3i = q2iu1i

(5)

where q∗i = [q1i, q2i, q3i]T and u∗i = [u1i, u2i]T are the state and input of agent i respec-
tively.

This paper aims to find distributed controller

u1i = u1i(q1k1 , q2k1 , q3k1 , · · · , q1kmi
q2kmi

, q3kmi
)

u2i = u2i(q1k1 , q2k1 , q3k1 , · · · , q1kmi
, q2kmi

, q3kmi
) (6)

with Ki = {k1, · · · , kmi
} ⊆ {i} ∪Nifor system (5) with any initial condition such that

the system (5) will achieve consensus (qij = qim : 1 ≤ i ≤ 3, 1 ≤ j 6= m ≤ n) within
finite settling time T .

3. MAIN RESULTS

To solve the finite-time consensus problem, inspired by the idea of paper [7, 15, 16], we
divide the system (5) into a first-order subsystem

q̇1i = u1i (7)

and a second-order subsystem {
q̇2i = u2i

q̇3i = q2iu1i.
(8)
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3.1. Consensus within finite settling time

Theorem 3.1. Consider the system (5) for all i ∈ ν, and let c = [c1, c2, · · · , cn]T be
a suitably selected constant vector with ci, 1 ≤ i ≤ n being nonzero constants. If the
graph G is connected, then, the following distributed finite-time control law

u1i =

{
ci t < T1

k2(
∑

j∈Ni

aij(q1j − q1i))1/p t ≥ T1
(9)

u2i =
k1

ci
[kp

2(
∑
j∈Ni

aij(q3j − q3i))− (ciq2i)p]
2
p−1 (10)

solves the finite-time consensus problem after time T = T1 +T2 with T1 = V (0)1−d/2

b2(1−d/2) and

T2 = V0(T1)
p−1
2p

k2
p−1
2p (2λ2)

1+p
2p

, where

V0(T1) =
1
4

n∑
i=1

∑
j∈Ni

aij(q1i(T1)− q1j(T1))2

V (0) =
1
4

n∑
i=1

∑
j∈Ni

aij(q3i(0)− q3j(0))2 +
n∑

i=1

∫ ciq2i(0)

v∗i (0)

(sp − v∗i (0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds,

v∗i (0) = −k2

[ ∑
j∈Ni

aij(q3i(0)− q3j(0)
]1/p

,

and the definitions for k1, k2, p, d and b2 is the same as in Lemma 2.2.

P r o o f .

3.1.1. When t < T1

Because u1i = ci, hence the second-order subsystem is as follows.{
ciq̇2i = ciu2i

q̇3i = ciq2i.
(11)

Based on Lemma 2.2, we can get the distributed finite time control law for the second-
order subsystem (11) of agent i:

ciu2i = −k1

[
(ciq2i)p + kp

2

( ∑
j∈Ni

aij(q3i − q3j)
)] 2

p−1

,

hence, when 1 ≤ i ≤ n, the distributed finite time control law

u2i = −k1

ci

[
(ciq2i)p + kp

2

( ∑
j∈Ni

aij(q3i − q3j)
)] 2

p−1
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can make the second-order subsystem (8) reach consensus within finite time settling
time T ≤ T1 = V (0)1−d/2

b2(1−d/2) , where

V (0) =
1
4

n∑
i=1

∑
j∈Ni

aij(q3i(0)− q3j(0))2 +
n∑

i=1

∫ ciq2i(0)

v∗i (0)

(sp − v∗i (0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds,

v∗i (0) = −k2

[ ∑
j∈Ni

aij(q3i(0)− q3j(0)
]1/p

,

and the definitions for k1, k2, p, d and b2 is the same as in Lemma 2.2.

3.1.2. When t ≥ T1

All the agents have reached agreement on states q2i and q3i, where i : 1 ≤ i ≤ n. Thus,
we only consider the first order subsystem (7). According to Lemma 2.3, the distributed
finite time control laws of agent indexed by i is as following:

u1i(t) = k2

{ ∑
j∈Ni

aij(q1j − q1i)
}1/p

, (12)

and V̇0(t) ≤ −k2(2λ2V0(t))
1+p
2p with V0(t) = 1

4

∑n
i=1

∑
j∈Ni

aij(q1i − q1j)2. Hence it is
not difficult for us to get that all the agents can reach agreement on states q1i after

time T = T1 + T2 with T2 = V0(T1)
p−1
2p

k2
p−1
2p (2λ2)

1+p
2p

, where i : 1 ≤ i ≤ n. Hence we can have:

all the agents can reach agreement on states q1i, q2i, q3i after time T = T1 + T2, where
i : 1 ≤ i ≤ n. This completes the proof. �

3.2. Consensus within any given finite settling time

Theorem 3.2. Consider the system (5) for all i ∈ ν, and let c = [c1, c2, · · · , cn]T be
a suitably selected constant vector with ci, 1 ≤ i ≤ n being nonzero constants. If the
graph G is connected, then, for any given time T and design parameter 0 < α < 1,
through selecting suitable time-rescaling constants K1 ≥ 1 and K2 ≥ 1 the following
distributed finite-time control law

u1i =


ci t < αT

K2k2

( ∑
j∈Ni

aij(q1j − q1i)
)1/p

t ≥ αT

u2i =
K2

1k1

ci

[
kp
2

( ∑
j∈Ni

aij(q3j − q3i

)
−

(ciq2i

K1
)p

)] 2
p−1
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can solve the finite-time consensus problem within T 1
K1

≤ αT, T2
K2

≤ (1 − α)T with

T 1 = V (0)1−d/2

b2(1−d/2) and T2 ≤ V0(αT )
p−1
2p

k2
p−1
2p (2λ2)

1+p
2p

, where

V0(αT ) =
1
4

n∑
i=1

∑
j∈Ni

aij(q1i(αT )− q1j(αT ))2

V (0) =
1
4

n∑
i=1

∑
j∈Ni

aij(q3i(0)− q3j(0))2 +
n∑

i=1

∫ ciq2i(0)

v∗i (0)

(sp − v∗i (0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds,

v∗i (0) = −k2

[ ∑
j∈Ni

aij(q3i(0)− q3j(0)
]1/p

,

and the definitions for k1, k2, p, d and b2 is the same as in Lemma 2.2.

P r o o f . For any given finite settling time T , if T1 + T2 ≤ T , the distributed finite time
control laws u1i, u2i, 1 ≤ i ≤ n in the form of Theorem 3.1 solve the finite consensus
problem for system (5). If T1 + T2 > T , we will employ a time-rescaling technique to
reconstruct a distributed finite-time controller to make all the agents reach consensus
with agent kinematics (5) within a modified settling time T ∗ = T ∗1 + T ∗2 < T . Take t =
K1t, q3i = q3i, q2i = K−1

1 q2i, u2i = K−2
1 u2i,K1 ≥ 1, From the second order subsystem

(8) we can get {
dq2i

dt
= u2i

dq3i

dt
= u1iq2i.

(13)

Note that when t < T 1 = V (0)1−d/2

b2(1−d/2) with

V (0) = V (q21(0), q22(0), · · · , q2n(0), q31(0), q32(0), · · · , q3n(0)),

u1i = ci has the same form as in Theorem 3.1, therefore, u2j is still in the same form:

u2i = −k1

ci
[(ciq2i)

p + kp
2(

∑
j∈Ni

aij(q3i − q3j))]
2
p−1.

Hence

u2i =
K2

1k1

ci
[(kp

2(
∑
j∈Ni

aij(q3j − q3i)− ciq2i)
p)]

2
p−1

can make all the agents reach consensus with respect to states q2i, q3i, 1 ≤ i ≤ n within
T ∗1 = T 1

K1
= V (0)1−d/2

K1b2(1−d/2) . We can select suitable K1 such that T ∗1 = T 1
K1

= V (0)1−d/2

K1b2(1−d/2) ≤
αT with 0 < α < 1. In the following, we only make all the agents reach agreement
with respect to states q1i : 1 ≤ i ≤ n within finite time (1 − α)T . If the distributed
finite-time control law u1i = (

∑
j∈Ni

aij(q1j − q1i))1/p can not make all the agents reach
agreement with respect to states q1i : 1 ≤ i ≤ n within finite time (1−α)T , we can take
t̂ = K2t, q̂1i = q1i, û1i = K−1

2 u1i,K2 ≥ 1. Based on the first subsystem (7), we can have

dq̂1i

dt̂
= û1i. (14)



Finite-time consensus problem for multiple non-holonomic mobile agents 1187

Note that when t̂ ≥ T 1
K1

= V (0)1−d/2

K1b2(1−d/2) with

V (0) = V (q21(0), q22(0), · · · , q2n(0), q31(0), q32(0), · · · , q3n(0)),

û1i = k2(
∑

j∈Ni

aij(q1j − q1i))1/p has the same form as in Theorem 3.1. Hence u1i =

K2k2(
∑

j∈Ni
aij(q1j − q1i))1/p can make all the agents reach consensus with respect to

states q1i, 1 ≤ i ≤ n with finite time T ∗2 = T2
K2

= V0(αT )
p−1
2p

K2k2
p−1
2p (2λ2)

1+p
2p

. We can select suitable

K2 such that T ∗2 = T2
K2

= V0(αT )
p−1
2p

K2k2
p−1
2p (2λ2)

1+p
2p

≤ (1− α)T . This completes the proof. �

Remark 3.3. From Theorem 2 we can see that the estimation for the upper bound of
the settling time T1 and T2 can be made small by making both the values of K1 and K1

large.

4. SIMULATIONS

To verify the effectiveness of the proposed distributed finite time control law, we give
some simulation results for Section 3.

Here we give a 5-agent system described by an undirected graph G as shown in
Figure 1. Except a13 = a31 > 0, a34 = a43 > 0, a24 = a42 > 0, a25 = a52 > 0, all the

Fig. 1. The communication topology of the system.

other aij are zeros. In the simulations, we take all the nonzero aij as 1
2 , and then L =

D −A =


1
2 0 − 1

2 0 0
0 1 0 − 1

2 − 1
2

− 1
2 0 1 − 1

2 0
0 − 1

2 − 1
2 1 0

0 − 1
2 0 0 1

2

, λ2 = 0.1910, ci = 1
2 , 1 ≤ i ≤ 5, p = 9

7 , k3 = 1.

According to Theorem 3.1, β = max1≤i≤n{
∑

j∈Ni
aij} = 1, γ = max1≤i,j≤n{aij} = 0.5,

k2 ≥ p21−1/p + β + nγ

1 + p
+ k3

=
9
72

2
9 + 1 + 5× 0.5

1 + 9
7

+ 1 = 3.1874
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hence we can take k2 = 3.2.

k1 ≥ (2− 1/p)21−1/pk1+p
2 ×

(21−1/p + (β + nγ)p
1 + p

+
21−1/p(β + nγ)

k2
+ k3

)
≥

(11
9

)
2

2
9 3.2

16
7 ×

(2
2
9 + 9

7 (1 + 5× 0.5)
16
7

+
2

2
9 (1 + 5× 0.5)

3.2
+ 1

)
= 96.7887,

k1 can be taken as 96.8. The initial conditions are randomly selected as follows:

q11(0) = 5 q12(0) = 10 q13(0) = 15 q14(0) = −5
q15(0) = −10 q21(0) = 10 q22(0) = −5 q23(0) = 10
q24(0) = 2 q25(0) = 7 q31(0) = 5 q32(0) = 15
q33(0) = −10 q34(0) = 3 q35(0) = 6

hence
q1(0) = [5 10 15 −5 −10]T

q2(0) = [10 −5 10 2 7]T

q3(0) = [5 15 −10 3 6]T .

According to Theorem 3.1,

1
4

n∑
i=1

∑
j∈Ni

aij(q3i(0)− q3j(0))2

=
1
2
qT
30Lq30 = 154.7500.

v∗1(0) = −k2

[ ∑
j∈N1

a1j(q31(0)− q3j(0))
]1/p

= −3.2× 7.57/9 = −15.3375

v∗2(0) = −k2

[ ∑
j∈N2

a2j(q32(0)− q3j(0))
]1/p

= −3.2× 10.57/9 = −19.9255

v∗3(0) = −k2

[ ∑
j∈N3

a3j(q33(0)− q3j(0))
]1/p

= 3.2× (14)7/9 = 24.9220

v∗4(0) = −k2

[ ∑
j∈N4

a4j(q34(0)− q3j(0))
]1/p

= −3.2× (0.5)7/9 = −1.8664

v∗5(0) = −k2

[ ∑
j∈N5

a5j(q35(0)− q3j(0))
]1/p

= 3.2× (4.5)7/9 = 10.3087
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∫ q21(0)
2

v∗1 (0)

(sp − v∗1(0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds = 48.6332

∫ q22(0)
2

v∗2 (0)

(sp − v∗2(0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds = 42.6276

∫ q23(0)
2

v∗3 (0)

(sp − v∗3(0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds = 63.0730

∫ q24(0)
2

v∗4 (0)

(sp − v∗4(0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds = 0.2895

∫ q25(0)
2

v∗5 (0)

(sp − v∗5(0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds = 4.3790.

Hence we have

V (0) =
1
4

n∑
i=1

∑
j∈Ni

aij(q3i(0)− q3j(0))2 +
n∑

i=1

∫ ciq2i(0)

v∗i (0)

(sp − v∗i (0)p)2−1/p

(2− 1/p)21−1/pk1+p
2

ds,

= 154.7500 + 48.6332 + 42.6276 + 63.0730 + 0.2895 + 4.3790

= 313.7524

b1 = max
{ 1

2λ2
,

1
(2− 1/p)k1+p

2

}
= max

{ 1
2× 0.1910

,
1

(11/9)3.216/7

}
= 2.6180

b2 = k3/(2b
d/2
1 ) = 1/(2× 2.61788/9) = 0.2125

T1 =
V (0)1−d/2

b2(1− d/2)
=

9× 313.75231/9

0.2126
= 80.2056.

We can get: when t < T1,

u1i(t) = 0.5, 1 ≤ i ≤ 5, (15)

and

u21 = 193.6
[
3.2

9
7 ( q33−q31

2 )− ( q21
2 )

9
7

] 5
9

u22 = 193.6
[
3.2

9
7 ( q34+q35

2 − q32)− ( q22
2 )

9
7

] 5
9

u23 = 193.6
[
3.2

9
7 ( q31+q34

2 − q33)− ( q23
2 )

9
7

] 5
9

u24 = 193.6
[
3.2

9
7 ( q32+q33

2 − q34)− ( q24
2 )

9
7

] 5
9

u25 = 193.6
[
3.2

9
7 ( q32−q35

2 )− ( q25
2 )

9
7

] 5
9
.

(16)
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When t ≥ T1,

q1(T1) = [q11(0) + c1T1 q12(0) + c2T1 q13(0) + c3T1

q14(0) + c4T1 q15(0) + c5T1]T ,

based on ci = 0.5, 1 ≤ i ≤ 5 and Lemma 2.1 we can get

V0(T1) =
1
2
q1(T1)T Lq1(T1) =

1
2
q1(0)T Lq1(0) = 281.25,

and moreover

T2 =
V0(T1)

p−1
2p

k2
p−1
2p (2λ2)

1+p
2p

=
9× 281.251/9

3.2(2× 0.1910)8/9
= 12.3808,

u2i(t) = 0, 1 ≤ i ≤ 5, (17)

and

u11 = (1/2(q13 − q11))7/9

u12 = (1/2(q14 − q12) + 1/2(q15 − q12))7/9

u13 = (1/2(q11 − q13) + 1/2(q14 − q13))7/9

u14 = (1/2(q13 − q14) + 1/2(q12 − q14))7/9

u15 = (1/2(q12 − q15))7/9.

(18)

The numerical results in Figures 2, 3 and Figure 4 show that the effectiveness of the
proposed controller. From Figure 3 and Figure 4, we can get that the distributed finite
time controller (16) can make all the mobile non-holonomic agents reach consensus with
respect to states q2i, q3i, 1 ≤ i ≤ 5 within t < 2.5 < T1 = 83.8270. Hence in the
simulation when t ≥ T1 = 83.8270 we take the distributed finite time controllers as
(16)and (17), and the distributed finite time controllers (16)and (17) can make all the
mobile non-holonomic agents reach consensus with respect to states q1i, 1 ≤ i ≤ 5 within
t < 90− 83.8270 = 6.1730 < T2 = 12.3808 as demonstrated by Figure 2. For the space
limitation, the simulation for Theorem 3.2 is omitted.

5. CONCLUSION

In this paper, the problem of finite time consensus was discussed for multiple non-
holonomic mobile agents, and based on the result from paper [13] we proposed a dis-
tributed finite-time control law for each agent. And moreover, with help of time-rescaling
techniques from papers [7, 15, 16], we have achieved finite-time consensus within any
given settling time.
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Fig. 2. Trajectories of q1i, 1 ≤ i ≤ 5 with c = [1, 1, 1, 1, 1]T .
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Fig. 3. Trajectories of q2i, 1 ≤ i ≤ 5 with c = [1, 1, 1, 1, 1]T .
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Fig. 4. Trajectories of q3i, 1 ≤ i ≤ 5 with c = [1, 1, 1, 1, 1]T .
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