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ON EXTREMAL DEPENDENCE OF BLOCK VECTORS

Helena Ferreira and Marta Ferreira

Due to globalization and relaxed market regulation, we have assisted to an increasing of
extremal dependence in international markets. As a consequence, several measures of tail
dependence have been stated in literature in recent years, based on multivariate extreme-
value theory. In this paper we present a tail dependence function and an extremal coefficient
of dependence between two random vectors that extend existing ones. We shall see that in
weakening the usual required dependence allows to assess the amount of dependence in d-
variate random vectors based on bidimensional techniques. Simple estimators will be stated
and can be applied to the well-known stable tail dependence function. Asymptotic normality
and strong consistency will be derived too. An application to financial markets will be presented
at the end.

Keywords: multivariate extreme value theory, tail dependence, extremal coefficients

Classification: 60G70

1. INTRODUCTION

Dependence between extremal events have increased in recent time periods in financial
markets, especially during bear markets and market crashes. The globalization and the
lack of supervision are well-known contributions for this phenomena. Therefore, modern
risk management is highly interested in assessing the amount of extremal dependence.
The concept of tail dependence is the current tool used to this end, although it was first
introduced far back in the sixties (Sibuya [28], Tiago de Oliveira [29]). Tail dependence
coefficients measure the probability of occurring extreme values for one random variable
(r.v.) given that another assumes an extreme value too. These coefficients can be defined
via copulas of random vectors which refers to their dependence structure concerning
extreme events independently of their marginal distributions. The upper tail dependence
coefficient,

λ = lim
t↓0

P (FX(X) > 1− t|FY (Y ) > 1− t), (1)

where FX and FY are the distribution functions (d.f.’s) of X and Y , respectively, is
perhaps the most referred in literature and characterizes the dependence in the tail of
a random pair (X, Y ), i. e., λ > 0 corresponds to tail dependence and λ = 0 means tail
independence. Further references on this topic are Ledford and Tawn [14, 15], Joe [12],
Coles et al. [2], Embrechts et al. [5], among others.
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Multivariate formulations for tail dependence coefficients can be used to describe the
amount of dependence in the orthant tail of a multivariate distribution (Marshall-Olkin
[20], Wolff [30], Nelsen [21], Frahm [7], Schmid and Schmidt [24], Li [16, 17, 18], among
others). These have been increasingly used in the most recent and higher demanding
times. Most of the multivariate measures consider that extremal events must occur to
all the components of the random vector, and obviously they are more complicated to
deal with and to understand than in the bivariate case. Not surprisingly, applications
hardly go any further than the three-dimensional case.

But maybe this is a too demanding condition and the occurrence of at least one
extremal event in sub-vectors (blocks) of a random vector can be enough to assess
dependence. For instance, how the occurrence of at least one market crash in Europe
can influence the occurrence of a crash of at least one USA market too?

Based on this, we define a new tail dependence function for a random vector as a
measure of the probability of occurring extreme values for the maximum of one block
given that the maximum of another block assumes an extreme value too. At the unit
point, this function gives rise to the here called extremal coefficient of dependence since it
relates to the extremal coefficient (Tiago de Oliveira [29], Smith [26]). Connections with
other tail dependence concepts known from literature will also be stated. In deriving
moments we find simple estimators that can be also applied to the stable tail dependence
function. Asymptotic normality and strong consistency are proved.

This paper is organized as follows. In Section 2 we define our new upper-tail depen-
dence function and the extremal coefficient of dependence. We present some properties
and examples. We also analyze the case of asymptotic independence. In Section 3 we
present estimators and derive the respective properties of asymptotic normality and
strong consistency. An application to financial data will illustrate our approach.

2. EXTREMAL DEPENDENCE BETWEEN TWO RANDOM VECTORS

Let X = (X1, . . . , Xd) be a random vector with d.f. F and continuous marginal d.f.’s
Fi. For I ⊂ {1, . . . , d}, define M(I) =

∨
i∈I Fi(Xi) and XI the sub-vector of X having

r.v.’s with indexes in I. Consider CF the copula function of F , i. e.,

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (2)

We are going to study the dependence between extremal events concerning two sub-
vectors (blocks), XI1 and XI2 , where I1 and I2 are disjoint subsets of {1, . . . , d}.

We start by extending in Definition 2.1 the concept of upper tail dependence function
(see Schmidt and Stadtmüller (2006) and references therein) and from this we define a
new tail dependence coefficient between two block vectors.

Definition 2.1. Let I1 and I2 be two non-empty subsets of {1, . . . , d}. The upper-tail
dependence function of XI1 given XI2 is defined as, for (x, y) ∈ (0,∞)2,

Λ(I1|I2)
U (x, y) = lim

t→∞
P

(
M(I1) > 1− x

t

∣∣∣M(I2) > 1− y

t

)
,

provided the limit exists.
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By taking x = y = 1, we have

Λ(I1|I2)
U (1, 1) = lim

t→∞
P

(
M(I1) > 1− 1

t

∣∣∣M(I2) > 1− 1
t

)
,

which is a tail dependence coefficient greater than the one considered in Li and Sun [19],

γ = lim
t→∞

P
( ⋂

i∈I1

{
Fi(Xi) > 1− 1

t

}∣∣∣ ⋃
i∈I2

{
Fi(Xi) > 1− 1

t

})
,

which in turn is greater than the coefficient of Li [18] for I1 = {1, . . . , d} − I2,

τ = lim
t→∞

P
( ⋂

i∈I1

{
Fi(Xi) > 1− 1

t

}∣∣∣ ⋂
i∈I2

{
Fi(Xi) > 1− 1

t

})
.

The tail dependence coefficient Λ(I1|I2)
U (1, 1) give us information about the probabil-

ity of occurring some extreme value in block {Fi(Xi), i ∈ I1} given that some extreme
value occurs in block {Fi(Xi), i ∈ I2}. Observe also that if I1 = {1} and I2 = {2},
Λ(I1|I2)

U (1, 1) is the upper tail dependence coefficient λ in (1).

Before presenting the properties of function Λ(I1|I2)
U (x, y) that will be the basis for

the definition of our coefficient, consider the following notation:
for (x, y) ∈ (0,∞)2, ∅ 6= I1, I2 ⊆ {1, . . . , d} and i ∈ {1, . . . , d}, let

α
(I1,I2)
i (u, v) = u1I1(i) + v1I2(i) + 1I1∪I2

(i)

where 1(·) is the indicator function, and for G a multivariate extreme value distribution
(MEV) and CG the respective copula function, let

l(I1,I2)(x−1, y−1) = − log CG(α(I1,I2)
1

(
exp(−x), exp(−y)

)
, . . . , α

(I1,I2)
d

(
exp(−x), exp(−y)

)
).

The extremal coefficient of XI1∪I2 denoted εI1∪I2 , is defined as

CG(α(I1,I2)
1

(
exp(−x), exp(−x)

)
, . . . , α

(I1,I2)
d

(
exp(−x), exp(−x)

)
) = exp(−x)εI1∪I2

(Tiago de Oliveira 1962-63, Smith 1990), and hence we can write

l(I1,I2)(x−1, x−1) = xεI1∪I2 .

Proposition 2.2. If F is in the domain of attraction of an MEV distribution G, then
function Λ(I1|I2)

U (x, y) is defined and verifies

Λ(I1|I2)
U (x, y) = 1 +

xεI1

yεI2

− l(I1,I2)(x−1, y−1)
yεI2

.

P r o o f . We have

Λ(I1|I2)
U (x, y)

= lim
t→∞

(
1 +

1− P
(
M(I1) ≤ 1− x

t

)
1− P

(
M(I2) ≤ 1− y

t

) − 1− P
(
M(I1) ≤ 1− x

t ,M(I2) ≤ 1− y
t

)
1− P

(
M(I2) ≤ 1− y

t

) )
.

(3)
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On the other hand, it holds

lim
t→∞

− t log P
(
M(I1) ≤ 1− x

t ,M(I2) ≤ 1− y
t

)
= lim

t→∞
− t log CF

(
α

(I1,I2)
1

(
1− x

t , 1− y
t

)
, . . . , α

(I1,I2)
d

(
1− x

t , 1− y
t

))
= lim

t→∞
− log CF

(
α

(I1,I2)
1

((
1− x

t

)t
,
(
1− y

t

)t)
, . . . , α

(I1,I2)
d

((
1− x

t

)t
,
(
1− y

t

)t))
= − log CG

(
α

(I1,I2)
1

(
exp(−x), exp(−y)

)
, . . . , α

(I1,I2)
d

(
exp(−x), exp(−y)

))
= l(I1,I2)

(
x−1, y−1

)
.

Therefore, dividing the numerator and denominator of the fractions in (3) by t, we
obtain

Λ(I1|I2)
U (x, y) = 1 +

l(I1,∅)(x−1, x−1)
l(∅,I2)(y−1, y−1)

− l(I1,I2)(x−1, y−1)
l(∅,I2)(y−1, y−1)

= 1 +
− log(exp(−x))εI1

− log(exp(−y))εI2
− l(I1,I2)(x−1, y−1)
− log(exp(−y))εI2

.

�

Therefore, under the conditions of Proposition 2.2, we have

yεI2Λ
(I1|I2)
U (x, y) = xεI1Λ

(I2|I1)
U (y, x) = xεI1 + yεI2 − l(I1,I2)(x−1, y−1)

and we will denote this common value as Λ(I1,I2)
U (x, y), corresponding to the probability

of occurring simultaneously some extreme value in block {Fi(Xi), i ∈ I1} and in block
{Fi(Xi), i ∈ I2}.

Definition 2.3. The upper-tail dependence function for random vector (XI1 ,XI2) with
d.f. in the domain of attraction of an MEV is defined as

Λ(I1,I2)
U (x, y) = xεI1 + yεI2 − l(I1,I2)(x−1, y−1) (4)

and the extremal coefficient of dependence between XI1 and XI2 is given by Λ(I1,I2)
U (1, 1),

which we denote ε(I1,I2) and hence

ε(I1,I2) = εI1 + εI2 − εI1∪I2 . (5)

The upper-tail dependence function (4) generalizes the relation of Huang [11] corre-
sponding to I1 = {1} and I2 = {2},

ΛU (x, y) = x + y − l(x, y),

where the bivariate stable tail dependence function in the right-side is given by

l(x, y) = lim
t→∞

tP
({

F1(X1) > 1− x

t

}
or

{
F2(X2) > 1− y

t

})
. (6)
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In the following, we present the expression of the tail-dependence function Λ(I1,I2)
U (x, y)

and the value of the corresponding extremal coefficient ε(I1,I2) for a d-variate random
vector X with well-known distribution functions for its margins.

Example 2.4. Consider vector X with unit Fréchet margins and copula function
CX(u1, . . . , ud) =

∏∞
l=1

∏∞
k=−∞ uαlk1

1 ∧ . . . ∧ uαlkd

d , where uj ∈ [0, 1], j = 1, . . . , d, and
{αlkj ,−∞ < k < ∞, 1 ≤ j ≤ d, l ≥ 1} is a family of non negative constants such that∑∞

l=1

∑∞
k=−∞ αlkj = 1, j = 1, . . . , d. The distribution of X is the MEV marginal dis-

tribution of multivariate maxima of moving maxima processes considered in Smith and
Weissman [27]. We have

l(I1,I2)(x−1, y−1) =
∞∑

l=1

∞∑
k=−∞

d∨
j=1

− log α
(I1,I2)
j

(
exp(−x), exp(−y)

)
αlkj .

Therefore,

Λ(I1,I2)
U (x, y) = l(I1,∅)(x−1, x−1) + l(∅,I2)(y−1, y−1)− l(I1,I2)(x−1, y−1)

= x

∞∑
l=1

∞∑
k=−∞

∨
j∈I1

αlkj + y

∞∑
l=1

∞∑
k=−∞

∨
j∈I2

αlkj

−
∞∑

l=1

∞∑
k=−∞

((
x

∨
j∈I1

αlkj

)
∨

(
y

∨
j∈I2

αlkj

))
and

ε(I1,I2)(x, y) =
∞∑

l=1

∞∑
k=−∞

∨
j∈I1

αlkj +
∞∑

l=1

∞∑
k=−∞

∨
j∈I2

αlkj −
∞∑

l=1

∞∑
k=−∞

∨
j∈I1∪I2

αlkj .

Illustrating with

CX(u1, u2, u3, u4)

= (
∧4

i=1 u
1/8
i ).(u5/8

1 ∧ u
4/8
2 ∧ u

7/8
3 ∧ u

1/8
4 ).(u1/8

1 ∧ u
2/8
2 ).(u1/8

1 ∧ u
1/8
2 ∧ u

6/8
4 ),

I1 = {1, 2} and I2 = {3, 4}, we obtain

Λ(I1,I2)
U (x, y)

=
(

1
8 + 5

8 + 2
8 + 1

8

)
x +

(
1
8 + 7

8 + 6
8

)
y −

((
x 1

8 ∨ y 1
8

)
+

(
x 5

8 ∨ y 7
8

)
+

(
x 2

8

)
+

(
x 1

8 ∨ y 6
8

))
= 9

8x + 14
8 y −

((
x 1

8 ∨ y 1
8

)
+

(
x 5

8 ∨ y 7
8

)
+ x 2

8 +
(
x 1

8 ∨ y 6
8

))
and

ε(I1,I2) = 9
8 + 14

8 −
(

1
8 + 7

8 + 2
8 + 6

8

)
= 7

8 .



Extremal dependence of block vectors 993

Similarly, if I1 = {1, 2} and I2 = {4} we obtain

Λ(I1,I2)
U (x, y) = 9

8x + y −
((

x 1
8 ∨ y 1

8

)
+

(
x 5

8 ∨ y 1
8

)
+ x 2

8 +
(
x 1

8 ∨ y 6
8

))
and

ε(I1,I2) = 9
8 + 1−

(
1
8 + 5

8 + 2
8 + 6

8

)
= 3

8 .

Example 2.5. For the symmetric logistic model we have

l(I1,I2)(x, y) = − log F (a(I1,I2)
1 (x, y), . . . , a(I1,I2)

d (x, y)) =
( d∑

j=1

(a(I1,I2)
j (x, y))−1/θ

)θ

with θ ∈ (0, 1], x, y > 0. Therefore,

Λ(I1,I2)
U (x, y) = l(I1,∅)(x−1, x−1) + l(∅,I2)(y−1, y−1)− l(I1,I2)(x−1, y−1)

=
( ∑

j∈I1

x1/θ
)θ

+
( ∑

j∈I2

y1/θ
)θ

−
( ∑

j∈I1

x1/θ +
∑
j∈I2

y1/θ
)θ

= |I1|θx + |I2|θy −
(
|I1|x1/θ + |I2|y1/θ

)θ

and
ε(I1,I2) = |I1|θ + |I2|θ −

(
|I1|+ |I2|

)θ
.

Proposition 2.6. Under the conditions of Proposition 2.2 we have

(i) 0 ≤ Λ(I1,I2)
U (x, y) ≤ xεI1 ∧ yεI2

(ii) 0 ≤ ε(I1,I2) ≤ εI1 ∧ εI2 .

The result in (i) agrees with the one for the bivariate case. Observe that the bound-
ary cases correspond to, respectively, independence and total dependence.

Remark 2.7. With the conventions 1/0 := ∞ and 1/∞ := 0, we can define Λ(I1,I2)
U (x, y)

in [0,∞]2\{(∞,∞)} and found Λ(I1,I2)
U (0, y) = 0 = Λ(I1,I2)

U (x, 0), Λ(I1,I2)
U (∞, y) = yεI2

and Λ(I1,I2)
U (x,∞) = xεI1 .

Proposition 2.8. Under the conditions of Proposition 2.2 and Remark 2.7, for each
y ≥ 0, the partial derivative ∂Λ(I1,I2)

U /∂x exists for almost all x > 0, and

0 ≤ ∂
∂xΛ(I1,I2)

U (x, y) ≤ |I1|.
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Similarly, for each x ≥ 0, the partial derivative ∂Λ(I1,I2)
U /∂x exists for almost all y > 0,

and
0 ≤ ∂

∂y Λ(I1,I2)
U (x, y) ≤ |I2|.

Also, the functions x 7→ ∂Λ(I1,I2)
U (x, y)/∂y and y 7→ ∂Λ(I1,I2)

U (x, y)/∂x are defined and
non decreasing almost everywhere on [0,∞).

P r o o f . The function Λ(I1,I2)
U (x, y) is 2-increasing since a bivariate d.f. is 2-increasing.

By Remark 2.7 we conclude that Λ(I1,I2)
U (x, y) is grounded. Hence, applying Lemma

2.1.5. in Nelsen [22] we have, for (x, y), (x∗, y∗) ∈ [0,∞]2\{(∞,∞)},

|Λ(I1,I2)
U (x, y)− Λ(I1,I2)

U (x∗, y∗)|

≤ lim
t→∞

t|P (M(I1) > 1− x
t )− P (M(I1) > 1− x∗

t )|

+ lim
t→∞

t|P (M(I2) > 1− y
t )− P (M(I2) > 1− y∗

t )|

≤ |I1||x− x∗|+ |I2||y − y∗|.

Now, the proof is straightforward from Theorem 3 in Schmidt and Stadtmüller [25]. �

Remark 2.7 and Propositions 2.6.(i) and 2.8 extend, respectively, Theorems 1.i), 2.i)
and 3 of Schmidt and Stadtmüller [25]. Moreover, the properties ii)-v) of Theorems 1
and 2 of Schmidt and Stadtmüller [25] are straightforward for Λ(I1,I2)

U (x, y).

We now discuss the case of tail independence between M(I1) and M(I2) and hence
extend our context beyond an MEV distribution.

Notice that, in case of tail dependence between r.v.’s F1(X1) and F2(X2), the mapping

t 7→ P
(
F1(X1) > 1− x

t
, F2(X2) > 1− y

t

)
(7)

is regularly varying of order −1 at ∞, and so an homogeneity property holds for large
t. However, if (F1(X1), F2(X2)) is tail independent, this latter does not hold and an
adjusted homogeneity property can be obtained by assuming that (7) is regularly varying
of order −1/η at ∞, η < 1 (the case η = 1 corresponds to tail dependence). Coefficient
η is the coefficient of tail dependence introduced in Ledford and Tawn (1996, 1997).

Thus being, if we assume that (7) is regularly varying of order −1/η at ∞, i. e.,

lim
t→∞

P
(
F1(X1) > 1− x/t, F2(X2) > 1− y/t

)
P

(
F1(X1) > 1− 1/t, F2(X2) > 1− 1/t

) = c∗(x, y) (8)

for (x, y) ∈ [0,∞)2, where c∗ is homogeneous of order 1/η for some η ∈ (0, 1] and
c∗(1, 1) = 1, then t 7→ P

(
F1(X1) > 1− 1/t, F2(X2) > 1− 1/t

)
is regularly varying at ∞

with index −1/η (choose x = y in (8)), and hence we can write

P
(
F1(X1) > 1− 1/t, F2(X2) > 1− 1/t

)
= t−1/ηL(t)
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where L is a slowly varying function at ∞ (i. e., L(tx)/L(t) → 1, as t →∞, for any x >
0). Observe that η dominates the speed of convergence of P

(
F1(X1) > 1−1/t, F2(X2) >

1−1/t
)

to 0. If η < 1 then F1(X1) and F2(X2) (and thus X1 and X2) are asymptotically
independent (or tail independent). In this case, the tail dependence coefficient λ in (1)
is null. Conversely, asymptotic dependence holds if η = 1 and L(t) → a > 0, as
t → ∞, and we have λ > 0. If η = 1/2 we have (almost) independence (perfect
independence if L(t) = 1 and (8) holds with c∗(x, y) = xy). The cases η ∈ (0, 1/2) and
η ∈ (1/2, 1) correspond to asymptotically negative independence and to asymptotically
positive independence, respectively. Roughly speaking, coefficient η governs a kind of a
pre-asymptotic tail behavior that allows to better estimate the probability of extreme
events in case of tail independence. A bivariate extreme value distribution (BEV) allows
only tail dependence (η = 1) or independence (η = 1/2), since

P (F1(X1) > 1− 1/t, F2(X2) > 1− 1/t)

∼ (2− l({1},{2})(1, 1))/t + ((l({1},{2})(1, 1))2/2− 1)/t2

as t → ∞. For a discussion on this topic see, for instance, Ledford and Tawn [14],
Draisma et al. [3] and Drees and Müller [4].

Now assume that (8) holds for random pair (M(I1),M(I2)), i. e.,

lim
t→∞

P
(
M(I1) > 1− x/t,M(I2) > 1− y/t

)
P

(
M(I1) > 1− 1/t, M(I2) > 1− 1/t

) = c(I1,I2)(x, y) (9)

for (x, y) ∈ [0,∞)2, where c(I1,I2) is homogeneous of order 1/η(I1,I2) for some η(I1,I2) ∈
(0, 1] and c(I1,I2)(1, 1) = 1. Taking x = y in (9), one obtains that P

(
M(I1) > 1 −

1/t, M(I2) > 1− 1/t
)

is regularly varying at ∞, i. e.,

P
(
M(I1) > 1− 1/t, M(I2) > 1− 1/t

)
= t−1/η(I1,I2)L(I1,I2)(t), (10)

where L(I1,I2)(t) is a slowly varying function at ∞. Coefficient η(I1,I2) is now a measure
of the speed of convergence of P

(
M(I1) > 1−1/t, M(I2) > 1−1/t

)
to 0 and is, therefore,

a coefficient of tail dependence between M(I1) and M(I2), with analogous conclusions
derived for η above. Similarly, in an MEV we obtain, as t →∞,

P (M(I1) > 1− 1/t, M(I2) > 1− 1/t) ∼ (εI1 + εI2 − εI1∪I2)/t + (ε2I1∪I2
− ε2I1

− ε2I2
)/(2t2).

Hence it only occurs asymptotic dependence whenever ε(I1,I2) = εI1 + εI2 − εI1∪I2 > 0
(with η(I1,I2) = 1), and otherwise independence (η(I1,I2) = 1/2).

In the next result we compute η(I1,I2) and found that it is given by the maximum
coefficient η{i},{j}, ∀ i ∈ I1, j ∈ I2.

Proposition 2.9. Suppose that (10) holds and

P
(

min
i∈I,j∈J

(Fi(Xi), Fj(Xj)) > 1− 1/t
)

= t−1/ηI,J LηI,J
(t) (11)
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holds for all ∅ 6= I ⊂ I1 and ∅ 6= J ⊂ I2, where LηI,J
is a slowly varying function at ∞.

Then η(I1,I2) = max{η{i},{j} : i ∈ I1, j ∈ I2}.

P r o o f . First observe that if I ′ ⊂ I and J ′ ⊂ J then

1 ≥ t−1/ηI′,J′LηI′,J′ (t) ≥ t−1/ηI,J LηI,J
(t).

We have that

P
( ∨

i∈I1

Fi(Xi) > 1− 1/t,
∨

j∈I2

Fj(Xj) > 1− 1/t
)

= P
( ⋃

i∈I1

{Fi(Xi) > 1− 1/t},
⋃

j∈I2

{Fj(Xj) > 1− 1/t}
)

=
∑

∅6=S⊆I1

(−1)|S|+1P
( ⋂

i∈S

{Fi(Xi) > 1− 1/t},
⋃

j∈I2

{Fj(Xj) > 1− 1/t}
)

=
∑

∅6=S⊆I1

∑
∅6=T⊆I2

(−1)|S|+|T |P
( ⋂

i∈S

{Fi(Xi) > 1− 1/t},
⋂
j∈T

{Fj(Xj) > 1− 1/t}
)

=
∑

∅6=S⊆I1

∑
∅6=T⊆I2

(−1)|S|+|T |t−1/ηS,T LηS,T
(t),

(12)

where in the last equality we have applied (11). Let

η = max
∅6=S⊆I1∅6=T⊆I2

ηS,T (13)

From (12) and (13) we have that

P (
∨

i∈I1
Fi(Xi) > 1− 1/t,

∨
j∈I2

Fj(Xj) > 1− 1/t)

= t−1/ηLη(t)
∑

∅6=S⊆I1

∑
∅6=T⊆I2

(−1)|S|+|T |AS,T (t)

where AS,T (t) = t−(1/ηS,T−1/η)L∗ηS,T
(t) and L∗ηS,T

(t) = LηS,T
(t)/Lη(t) is a slowly varying

function. Observe that, if S′ ⊂ S and T ′ ⊂ T , then +∞ > AS′,T ′(t) ≥ AS,T (t) and, by
the definition of η, we have AS,T (t) = 1 or AS,T (t) → 0 as t → ∞, for all S ⊂ I1 and
T ⊂ I2. Therefore,

P (M(I1) > 1− 1/t, M(I2) > 1− 1/t) ∼ t−1/ηLη(t).

Moreover, considering η = ηS0,T0 for some S0 ⊂ I1, T0 ⊂ I2, and so AS0,T0(t) =
1 ≤ A{i},{j}(t), ∀ i ∈ S0, j ∈ T0, we must have A{i},{j}(t) = 1, ∀ i ∈ S0, j ∈ T0.
Then η = η{i},{j}, ∀ i ∈ S0, j ∈ T0 and η ≤ maxi∈I1,j∈I2 η{i},{j}. But, by (13),
η ≥ maxi∈I1,j∈I2 η{i},{j} which leads to the result. �

In the following we present some examples where tail independence takes place.
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Example 2.10. Consider {Vn}n≥1 an i.i.d. sequence of r.v.’s with distribution U(0, 1)
and X = (X1, X2, X3, X4) a random vector such that, X1 = min(V3, V2, V1), X2 =
min(V4, V2, V1), X3 = min(V4, V3, V1) and X4 = V5. Observe that, for 0 ≤ x ≤ 1,
FX1(x) = 1 − (1 − x)3 = FX2(x) = FX3(x) and FX4(x) = x and hence F−1

X1
(x) =

1−(1−x)1/3 = F−1
X2

(x) = F−1
X3

(x) and F−1
X4

(x) = x. Consider I1 = {1, 2} and I2 = {3, 4}.
We have successively,

P (min(F1(X1), F3(X3)) > 1− t−1) = P (min(F2(X2), F3(X3)) > 1− t−1) = t−4/3,

and

P (min(F1(X1), F4(X4)) > 1− t−1) = P (min(F2(X2), F4(X4)) > 1− t−1) = t−2.

Hence, by Proposition 2.9, we must derive η({1,2},{3,4}) = 3/4.

In fact, applying (12), after some calculations we have

P (M(I1) > 1− t−1x,M(I2) > 1− t−1y)

=

{
2t−4/3xy1/3 + 2t−2xy − t−4/3x4/3 − 2t−7/3xy4/3 − 2t−7/3x4/3y , x ≤ y

t−4/3yx1/3 + 2t−2xy − 3t−7/3x1/3y2 − t−7/3x4/3y , x > y.

According to (10), coefficient η(I1,I2) can be obtained by taking x = y = 1 in the
expression above, and by (9) we obtain

c({1,2},{3,4})(x, y) =

{
2xy1/3 − x4/3, x ≤ y

yx1/3, x > y.

which is homogeneous of order 4/3.
Similarly, if we consider I1 = {1, 2, 3} and I2 = {4} we obtain η({1,2,3},{4}) = 1/2 and

c({1,2,3},{4})(x, y) = xy, and if I1 = {1} and I2 = {2, 3, 4} we have η({1},{2,3,4}) = 3/4
and

c({1},{2,3,4})(x, y) =

{
xy1/3, x ≤ y

2yx1/3 − y4/3, x > y
= c({1,2},{3,4})(y, x).

Example 2.11. Consider X = (X1, . . . Xd) a standard d-variate Gaussian random vec-
tor with positive definite correlation matrix.The bivariate tail-dependence structure is
given by

P (Fi(Xi) > 1− 1/t, Fj(Xj) > 1− 1/t) ∼ Cρi,j t
−2/(1+ρi,j)(log(t))−ρi,j/(1+ρi,j), as t →∞,

for i, j ∈ {1, . . . , d}, i < j, where ρi,j = corr(Xi, Xj) 6∈ {−1, 1} and

Cρi,j = (1 + ρi,j)3/2(1− ρi,j)−1/2(4π)−ρi,j/(1+ρi,j).

Hence (11) holds for I = {i} and J = {j} with ηi,j = (1+ρi,j)/2 (see Ledford and Tawn
[14], Draisma et al. [3]). According to Hua and Joe [10], (11) also holds for non-empty
sets I1, I2 ⊂ {1, . . . , d}. If we consider ρ(I1,I2) = max{ρi,j : i ∈ I1, j ∈ I2} then, by
Proposition 2.9, we find η(I1,I2) = (1 + ρ(I1,I2))/2, provided the left-hand side of (10) is
non-null.
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3. ESTIMATION

Several estimators for the bivariate stable tail dependence function in (6) or even for the
more general d-variate stable tail dependence function

lim
t→∞

tP
({

F1(X1) > 1− x1

t

}
or . . . or

{
Fd(Xd) > 1− xd

t

})
(14)

have been considered in literature. For a survey, see Krajina [13]. Parametric and
semi-parametric estimators perform quite well under right model assumptions but can
be disastrous otherwise (see, for instance, Frahm et al. [8]). Nonparametric estimators
avoid wrong model assumptions but usually have to deal with a bias-variance trade-off
arising from the following two sources. The first one is the number of block maxima, m.
Thus, the larger m the smaller the variance but the larger the bias. The second source is
the fact that the estimators are based on asymptotic results that depend on a sequence
of positive integers, {kn}, going to infinity at a lower rate than n. For instance, the
estimator based on (6) by plugging-in the respective empirical counterparts given by

n

kn
Pn

({
F̂1(X1) > 1− kn

n
x
}

or
{
F̂2(X2) > 1− kn

n
y
})

=
1
kn

n∑
i=1

1{{ bF1(X1)>1− kn
n x} or { bF2(X2)>1− kn

n y}},

where F̂l(u) = n−1
∑n

k=1 1{Xk≤u} is the empirical d.f. of Fl, l = 1, 2, is consistent and
asymptotically normal if {kn} is an intermediate sequence, i. e., kn →∞ and kn/n → 0,
as n → ∞ (Huang [11]). The choose of the value k in the sequence {kn} that allows
the better trade-off between bias and variance is of major difficulty, since small values
of k come along with a large variance whenever an increasing k results in a strong bias.
Therefore, simulation studies have been carried out in order to find the best value of k
that allows this compromise.

3.1. Some Properties

The following result suggests a nonparametric estimation procedure for the d-variate
stable tail dependence function in (14) that only evolves a sample mean.

Proposition 3.1. If F is an MEV distribution with copula function CF given in (2),
we have, for l(x1, . . . , xd) = − log CF (exp(−x−1

1 ), . . . , exp(−x−1
d )),

l(x1, . . . , xd) =
E(F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd)

1− E(F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd)
.
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P r o o f . Observe that the d.f. of F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd is given by

P (F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd ≤ u) = CF

(
u1/x1 , . . . , u1/xd

)
= exp

(
− l

(
− 1/ log u1/x1 , . . . ,−1/ log u1/xd

))
= exp

(
− (− log u)l(x1, . . . , xd)

)
= ul(x1,...,xd).

Hence

E(F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd)=
∫ 1

0

ul(x1,...,xd)l(x1, . . . , xd)du =
l
(
x1, . . . , xd

)
1+l

(
x1, . . . , xd

) . (15)

�

Remark 3.2. Observe that the d-variate stable tail dependence function in (14) corre-
sponds to − log CF (exp(−x1), . . . , exp(−xd)).

By applying Proposition 3.1 with xj replaced by x−1
j , j = 1, . . . , d, we get the follow-

ing corollary.

Corollary 3.3. Under the conditions of Proposition 3.1, we have

xεI1 ≡ l(I1,∅)(x−1, x−1) =
E(M(I1)1/x)

1− E(M(I1)1/x)
,

yεI2 ≡ l(∅,I2)(y−1, y−1) =
E(M(I2)1/y)

1− E(M(I2)1/y)

and

l(I1,I2)(x−1, y−1) =
E(M(I1)1/x ∨M(I2)1/y)

1− E(M(I1)1/x ∨M(I2)1/y)
.

Consider the estimators derived from Proposition 3.1 and Corollary 3.3 by plugging-in
the respective sample means, respectively,

l̃(x1, . . . , xd) =
F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd

1− F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd

, (16)

and

xε̃I1 =
M(I1)1/x

1−M(I1)1/x
, yε̃I2 =

M(I2)1/y

1−M(I2)1/y

and l̃(I1,I2)(x−1, y−1) =
M(I1)1/x ∨M(I2)1/y

1−M(I1)1/x ∨M(I2)1/y
,

(17)
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where

M(I1)1/x =
1
n

n∑
i=1

∨
j∈I1

Fj(X
(i)
j )1/x, M(I2)1/y =

1
n

n∑
i=1

∨
j∈I2

Fj(X
(i)
j )1/y

and

M(I1)1/x ∨M(I2)1/y =
1
n

n∑
i=1

( ∨
j∈I1

Fj(X
(i)
j )1/x ∨

∨
j∈I2

Fj(X
(i)
j )1/y

)
.

We will consider two situations: the first one for known margins and the second one for
unknown margins.

3.1.1. The case of known margins

In case the margins are known, it is quite straightforward to deduce the consistency and
asymptotic normality of estimators (16) and (17) by the well-known Delta Method.

Proposition 3.4. Under the conditions of Proposition 3.1, we have
√

n(l̃(x1, . . . , xd)− l(x1, . . . , xd)) → N(0, σ2),

where l̃(x1, . . . , xd) is the estimator derived from Proposition 3.1 by plugging-in the
respective sample mean given in (16) and

σ2 =
l(x1,...,xd)

(
1+l(x1,...,xd)

)2(
2+l(x1,...,xd)

) .

P r o o f . Let Yi, i = 1, . . . , n, be independent copies of Y = F1(X1)x1 ∨ . . .∨ Fd(Xd)xd .
We have that

√
n(Y − µY ) → N(0, σ2

Y ), where µY = E(F1(X1)x1 ∨ . . .∨ Fd(Xd)xd) and
σ2

Y = V ar(F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd). By a similar reasoning of (15) we derive

E((F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd)2) = l(x1,...,xd)
2+l(x1,...,xd)

and hence,

V ar((F1(X1)x1 ∨ . . . ∨ Fd(Xd)xd)2) = l(x1,...,xd)(
2+l(x1,...,xd)

)(
1+l(x1,...,xd)

)2 .

Let g(x) = (1 − x)−1 − 1. We have [g′(µY )]2 = (1 − µY )−4 and, by the Delta Method,√
n(g(Y )− xεI1) → N(0, σ2

Y (1− µY )−4). �

Corollary 3.5. Under the conditions of Proposition 3.1, we have
√

n(xε̃I1 − xεI1) → N(0, σ2
1),

√
n(yε̃I2 − yεI2) → N(0, σ2

2)
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and

√
n(l̃(I1,I2)(x−1, y−1)− l(I1,I2)(x−1, y−1)) → N(0, σ2

3),

where xε̃I1 , yε̃I2 and l̃(I1,I2)(x−1, y−1) are given in (17) and

σ2
1 =

xεI1

(
1 + xεI1

)2(
2 + xεI1

) ,

σ2
2 =

yεI2

(
1 + yεI2

)2(
2 + yεI2

)
and

σ2
3 =

l(I1,I2)
(
x−1, y−1

)(
1 + l(I1,I2)

(
x−1, y−1

))2(
2 + l(I1,I2)

(
x−1, y−1

)) .

Based on the definition in (4), a natural estimator for the upper-tail dependence
function is

Λ̃(I1,I2)
U (x, y) = xε̃I1 + yε̃I2 − l̃(I1,I2)(x−1, y−1),

with xε̃I1 , yε̃I2 and l̃(I1,I2)(x−1, y−1) stated in (17). Hence we have the following esti-
mator for the extremal coefficient of dependence between XI1 and XI2 :

ε̃(I1,I2) = ε̃I1 + ε̃I2 − ε̃I1∪I2

where ε̃I1∪I2 = l̃(I1,I2)(1, 1).

Proposition 3.6. Estimators l̃(x1, . . . , xd) and Λ̃(I1,I2)
U (x, y) are strong consistent. Con-

sequently, the same holds for ε̃(I1,I2).

P r o o f . Just observe that, as the sample mean M(I1)1/x converges almost surely to the
mean value E(M(I1)1/x), i. e., M(I1)1/x a.s.−→E(M(I1)1/x), then xε̃I1 = g(M(I1)1/x) a.s.−→xεI1

= g(E(M(I1)1/x)), where g(x) = (1− x)−1 − 1. Analogously for yε̃I2 , l̃(I1,I2)(x−1, y−1)
and l̃(x1, . . . , xd). Now, the strong consistency of Λ̃(I1,I2)

U (x, y) is straightforward from

|Λ̃(I1,I2)
U (x, y)− Λ(I1,I2)

U (x, y)|

≤ |xε̃I1 − xεI1 |+ |yε̃I2 − yεI2 |+ |l̃(I1,I2)(x−1, y−1)− l(I1,I2)(x−1, y−1)|.

�
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3.1.2. The case of unknown margins

In case of unknown margins, we can replace Fj by an estimate F̂j , j = 1, . . . , d. A very
common approach in multivariate extreme vale statistics is to use a modified version of
the empirical d.f. of Fj , j = 1, . . . , d, e. g.,

F̂j(u) =
1

n + 1

n∑
k=1

1{X(k)
j ≤u},

where the denominator n + 1 concerns estimation accuracy. Other modifications can
also be used (see, for instance, Beirlant et al. [1]). Under this approach we denote,
respectively, l̂(x1, . . . , xd), xε̂I1 , yε̂I2 and l̂(I1,I2)(x−1, y−1), the estimators in (16) – (17)
replacing Fj with F̂j , i. e., by considering,

∨
j∈A

F̂j(Xj)xj =
1
n

n∑
i=1

∨
j∈A

F̂j(X
(i)
j )xj , (18)

for each A ⊆ {1, . . . , d}.
We still have asymptotic normality of (18) from the following result stated in Ferma-

nian et al. [6] (Theorem 6).

Theorem 3.7. (Fermanian et al. [6], Theorem 6) Let F have continuous marginals and
let copula CF in (2) have continuous partial derivatives. Then

1√
n

n∑
i=1

{J(F̂1(X
(i)
1 ), . . . , F̂d(X

(i)
d ))− E(J(F1(X

(i)
1 ), . . . , Fd(X

(i)
d )))}

→
∫
[0,1]d

G(u1, . . . , ud) dJ(u1, . . . , ud)

in distribution in `∞([0, 1]d), where the limiting process and G are centered Gaussian,
and J : [0, 1]d → R is of bounded variation, continuous from above and with discontinu-
ities of the first kind (Neuhaus [23]).

The asymptotic normality of l̂(x1, . . . , xd), xε̂I1 , yε̂I2 and l̂(I1,I2)(x−1, y−1) is now
derived from a general version of the Delta Method as considered in Schmidt and
Stadtmüller [25] (Theorem 13).

Strong consistency of

Λ̂(I1,I2)
U (x, y) = xε̂I1 + yε̂I2 − l̂(I1,I2)(x−1, y−1),

and hence of

ε̂(I1,I2) = ε̂I1 + ε̂I2 − ε̂I1∪I2 , (19)

where ε̂I1∪I2 = l̂(I1,I2)(1, 1) can also be stated.
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Proposition 3.8. Estimators l̂(x1, . . . , xd) and Λ̂(I1,I2)
U (x, y) are strong consistent. There-

fore, the same holds for ε̂(I1,I2).

P r o o f . The proof runs along the same lines as the one of Proposition 3.6. We only
prove the more general case l̂(x1, . . . , xd)

a.s.−→ l(x1, . . . , xd). Observe that∣∣∣ 1
n

n∑
i=1

∨
j∈{1,...,d}

F̂j(X
(i)
j )xj − E

( ∨
j∈{1,...,d}

Fj(Xj)xj
)∣∣∣

≤
∣∣∣ 1
n

n∑
i=1

∨
j∈{1,...,d}

F̂j(X
(i)
j )xj − 1

n

n∑
i=1

∨
j∈{1,...,d}

Fj(X
(i)
j )xj

∣∣∣
+

∣∣∣ 1
n

n∑
i=1

∨
j∈{1,...,d}

Fj(X
(i)
j )xj − E

( ∨
j∈{1,...,d}

Fj(Xj)xj
)∣∣∣,

where the second term converges almost surely to zero by the Strong Law of Large Num-
bers.

For the first term we have, successively,

| 1n
∑n

i=1

∨
j∈{1,...,d} F̂j(X

(i)
j )xj − 1

n

∑n
i=1

∨
j∈{1,...,d} Fj(X

(i)
j )xj |

≤ 1
n

∑n
i=1

∨
j∈{1,...,d} |F̂j(X

(i)
j )xj − Fj(X

(i)
j )xj |

≤ 1
n

∑n
i=1

∑
j∈{1,...,d} |F̂j(X

(i)
j )xj − Fj(X

(i)
j )xj |,

which converges almost surely to zero according to Gilat and Hill ([9], proof of Theorem
1.1). �

3.2. An application to financial data

In this section we show that tail dependence is present in financial data. Our analysis is
based on negative log-returns of daily closing values of the stock market indexes, CAC 40
(France), FTSE100 (UK), SMI (Swiss), XDAX (German), Dow Jones (USA), Nasdaq
(USA), SP500 (USA), HSI (China), Nikkei (Japan). The period covered is January
1993 to March 2004. Since we do not have a sample of maximum values, we consider the
monthly maximums in each market and group the indexes in Europe (CAC 40, FTSE100,
SMI, XDAX), USA (Dow Jones, Nasdaq) and Far East (HSI, Nikkei). The scatter plots
in Figure 1 show the presence of dependence between the monthly maximums in Europe
and USA, Europe and Far East, USA and Far East, respectively. We are interested in
assessing the amount of tail dependence between the three big world markets referred:
Europe, USA and Far East, and this can be achieved through the extremal coefficient
of dependence ε(I1,I2), defined in (5). As we do not know the margins distribution, we
use estimator ε̂(I1,I2) in (19) based on ranks. In Table 1 are the obtained estimates for
several groups, I1 and I2. One can see that the Far East market has less influence (lower
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Fig. 1. Scatter plots of the monthly maximums (84 data points) in

Europe versus USA, Europe versus Far East and USA versus Far East.

values of the coefficient) but Europe and USA have a stronger effect on each other and
on the respective group of foreign markets. Observe that the difference between these
two magnitudes of dependence is almost in the proportion 1:2.

I1 I2 ε̂(I1,I2)

Europe USA 1.0083
Europe Far East 0.5688
USA Far East 0.3644

Europe USA ∪ Far East 1.1259
USA Europe ∪ Far East 0.9215

Far East USA ∪ Europe 0.4820

Tab. 1. Estimates of the extremal coefficient of dependence bε(I1,I2)

for the indicated groups, I1 and I2.

4. CONCLUSION

In this work we introduce a new upper-tail dependence concept for a random vector
which extends the relation of Huang [11]. Our approach weakens the usual imposed
multivariate tail dependence and can be treated with bivariate techniques. The new
function gives rise to the extremal coefficient of dependence once it is expressed through
the extremal coefficient in Tiago de Oliveira [29] and Smith [26]. We also enlarge our
discussion to tail independence in the sense of Ledford and Tawn [14, 15]. At this
point we are beyond MEV distributions which only admit tail dependence or (exact)
independence.

In calculating moments we arrive at simple estimators whose asymptotic normality is
stated. These can also be applied to the well-known stable tail dependence function. We
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also prove strong consistency of the proposed estimators for our measures. We end with
an illustrative application to financial data presenting tail dependence. In a future work
we intend to carry out simulation studies to analyze the finite sample properties of our
estimators, as well as assess their performance by comparing to other existing methods.
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