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AN ITERATIVE ALGORITHM FOR TESTING
SOLVABILITY OF MAX-MIN INTERVAL SYSTEMS

Helena Myšková

This paper is dealing with solvability of interval systems of linear equations in max-min al-
gebra. Max-min algebra is the algebraic structure in which classical addition and multiplication
are replaced by ⊕ and ⊗, where a⊕ b = max{a, b}, a⊗ b = min{a, b}.

The notation A⊗ x = b represents an interval system of linear equations, where A = [A, A]
and b = [b, b] are given interval matrix and interval vector, respectively. We can define several
types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and
give necessary and sufficient conditions for them.
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1. INTRODUCTION

The last decades have seen a lot of attention given to studying systems of linear equa-
tions in the form A ⊗ x = b, where A is a matrix, b and x are vectors of suitable
dimensions and one or both of classical addition and multiplication operations are re-
placed by maximum and/or minimum. If addition and multiplication are replaced by
maximum and minimum, respectively, we call this algebraic structure max-min algebra.
If multiplication is replaced by addition, we talk about max-plus algebra. One of the
questions, which we can deal with in max-min algebra, is solving the systems of linear
equations.

Max-min (fuzzy relational) equations have found a broad area of applications in causal
models, which emphasize relationships between input and output variables. They are
used in diagnosis models [1, 10, 14, 15] or models of nondeterministic systems [16].
Diagnosis models are of particular interest, since they cope with uncertainty existing in
many real-life case, either concerning medical diagnosis or diagnosis of technical devices.
In the simplest formulation we are faced with a space of symptoms and a space of faults.
The elements of faults are related with the elements of symptoms by means of a fuzzy
relation. In this framework R(xi, yj) = rij stands for the degree to which the symptom
xi is related to the fault yj .

In the situation, when a set of symptoms is represented as a fuzzy set X, where the
degree of membership a(xi) = ai refers to the strength of evidence of ith symptom,
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by performing max-min composition (a ◦ R), we obtain the fuzzy set Y of faults which
indicates degrees of faults (b(yj) = bj). In this context we get not only an indication
of the fault element in the structure but a list of elements that are fault to a certain
degree. The solution of the equation a◦R = b provides a maximal set of symptoms that
produce the given effect (fault).

In practice, it may happen that a given system of max-min linear equations is un-
solvable. A possible method of restoring the solvability is to replace the matrix A and
vector b by an interval matrix and an interval vector. The resulting systems are the
so-called interval systems of linear equations. The theory of interval computations and
in particular of interval systems in the classical algebra is already quite developed, see
e. g. the monograph [6] or [12, 13]. Also, an interesting approach to interval computa-
tions in max-min algebra was published in [5, 11]. Interval systems of linear equations
in the max-min and max-plus algebra have been studied by K. Cechlárová and R. A.
Cuninghame-Green in [2, 3]. They dealt with the weak, strong and tolerance solvabil-
ity. In [7, 8, 9], we studied other solvability concepts. In this paper, the T4 and T5
solvability are presented and the necessary and sufficient conditions for them are given.

There is also motivation coming from applications for the use of interval systems.
One of possible applications is presented in the following example.

Example 1.1. Let us consider a situation, in which different transportation means
provide transporting goods from places P1, P2, . . . , Pm to a terminal T . We assume that
the connection between Pi and T is possible only via one of the places (e. g. cities)
Q1, Q2, . . . , Qn and the capacities of the roads between Pi and Qj are equal to aij >
0. If place Qj is linked with T by a road with a capacity xj , the capacity of the
connection between Pi and T via Qj is equal to min{aij , xj}. Our task is to choose
the appropriate capacities xj , j ∈ N = {1, 2, . . . , n}. Moreover, it is required that
the maximum capacity of the road from Pi to T is equal to a given number bi for all
i ∈ M = {1, 2, . . . ,m}, i. e.,

max
j∈N

min{aij , xj} = bi (1)

for each i ∈ M .
The entries of the vector of feasible capacities x = (x1, . . . , xn) are elements of the

set of solutions of system (1).

2. PRELIMINARIES

Max-min algebra B is the triple (B,⊕,⊗), where (B,≤) is a bounded linearly ordered
set with binary operations maximum and minimum, denoted by ⊕ and ⊗, respectively.
The least element in B will be denoted by O, the greatest one by I.

Denote by M and N the index sets {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively. The
set of all m × n matrices over B is denoted by B(m,n) and the set of all column n-
vectors over B by B(n).
Operations ⊕ and ⊗ are extended to matrices and vectors in the same way as in the
classical algebra. We will consider the ordering ≤ on the sets B(m,n) and B(n) defined
as follows:
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• for A,C ∈ B(m,n) : A ≤ C if aij ≤ cij for all i ∈ M, j ∈ N ,

• for x, y ∈ B(n) : x ≤ y if xj ≤ yj for all j ∈ N .

We will use the monotonicity of ⊗, which means that for each A,C ∈ B(m,n) and
x, y ∈ B(n) the implication

if A ≤ C and x ≤ y then A⊗ x ≤ C ⊗ y

holds true.
In max-min algebra we can rewrite the system of equations (1) in the form

A⊗ x = b, (2)

which represents a system of max-min linear equations.
The crucial role for the solvability of system (2) is played by a principal solution of

system (2), defined by
x∗j (A, b) = min

i∈M
{bi; aij > bi} (3)

for each j ∈ N , where min ∅ = I.
The following theorem describes the importance of the principal solution for the

solvability of (2).

Theorem 2.1. (Cuninghame-Green [4], Zimmermann [17]) Let A ∈ B(m,n) and b ∈
B(m) be given.

i) If A⊗ x = b for x ∈ B(n), then x ≤ x∗(A, b).

ii) A⊗ x∗(A, b) ≤ b.

iii) The system A⊗ x = b is solvable, if and only if x∗(A, b) is its solution.

The properties of a principal solution are expressed in the following assertions.

Lemma 2.2. (Cechlárová [2]) Let A ∈ B(m,n), b, d ∈ B(m) be such that b ≤ d. Then
x∗(A, b) ≤ x∗(A, d).

Lemma 2.3. (Myšková [7]) Let b ∈ B(m), C, D ∈ B(m,n) be such that D ≤ C. Then
x∗(C, b) ≤ x∗(D, b).

3. INTERVAL SYSTEMS

In practice, the capacities aij of roads in Example 1.1 may depend on external conditions,
so they are from an interval of possible values, i. e., aij ∈ [aij , aij ] for each i ∈ M, j ∈ N .
Due to this fact, we will require the maximal capacity of the road from Pi to T to be
from a given interval, i. e., bi ∈ [bi, bi] for each i ∈ M .
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Solvability concept Definition
Weak solvability [2] (∃x∈B(n))(∃A∈A)(∃b∈b) : A⊗ x = b
Strong solvability [3] (∀A∈A)(∀b∈b)(∃x∈B(n)) : A⊗ x = b

Tolerance solvability [2] (∃x∈B(n))(∀A∈A)(∃b∈b) : A⊗ x = b
Weak tolerance solvability [7] (∀A∈A)(∃x∈B(n))(∃b∈b) : A⊗ x = b
Control solvability [8] (∃x∈B(n))(∀b∈b)(∃A∈A) : A⊗ x = b
Weak control solvability [8] (∀b∈b)(∃x∈B(n))(∃A∈A) : A⊗ x = b
Universal solvability [7] (∃x∈B(n))(∀b∈b)(∀A∈A) : A⊗ x = b
Weak universal solvability [8] (∀b∈b)(∃x∈B(n))(∀A∈A) : A⊗ x = b
T1 solvability [9] (∃A∈A)(∀x∈B(n))(∃b∈b) : A⊗ x = b
T2 solvability [9] (∀x∈B(n))(∃A∈A)(∃b∈b) : A⊗ x = b
T3 solvability [9] (∀x∈B(n))(∃b ∈b)(∀A∈A) : A⊗ x = b

Tab. 1. Solvability concepts of (4).

Similarly to [2, 7, 8, 11], we define an interval matrix A and interval vector b as
follows:

A = [A,A] =
{

A ∈ B(m,n); A ≤ A ≤ A
}

b = [b, b] =
{

b ∈ B(n); b ≤ b ≤ b
}

.

Denote by
A⊗ x = b (4)

the set of all systems of linear max-min equations of the form (2) such that
A ∈ A, b ∈ b. We call (4) the interval system of linear equations. A system of
the form (2) is called the subsystem of (4) if A ∈ A, b ∈ b.

We say, that interval system (4) has the constant matrix, if A = A and has the
constant right-hand side, if b = b. Subsystem (2) is extremal, if each of the equations
has the form [A ⊗ x]i = bi or [A ⊗ x]i = bi and we call them an LU equation or an UL
equation, respectively.

We can define several conditions, which the given interval system has to fulfill. Ac-
cording to them, we will define several solvability concepts. Table 1 contains the list of
all up to now studied types of the solvability of (4) in max-min algebra. The solvability
concepts, which lead to trivial conditions, are omitted there.

4. T4 SOLVABILITY

The notions of a T4-vector and the T4 solvability of interval system (4), are defined in
the following section. We present the procedure for checking the T4 solvability.

Definition 4.1.

i) A vector b ∈ B(n) is called a T4-vector of interval system (4), if there exists
x ∈ B(n) such that A⊗ x = b for each A ∈ A.
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ii) Interval system (4) is T4 solvable, if there exists b ∈ b such that b is a T4-vector
of (4).

To give a necessary and sufficient condition for the T4 solvability, we recall the notion
of a universal solution, which has been studied by K. Cechlárová in [2].

Definition 4.2. A vector x ∈ B(n) is a universal solution of interval system (4), if for
each A ∈ A and for each b ∈ b, the equality A⊗ x = b holds.

Theorem 4.3. (Myšková [7]) Interval system (4) with the constant right-hand side
b = b = b has a universal solution, if and only if

A⊗ x∗(A, b) = b, (5)

and in this case x∗(A, b) is the maximal universal solution.

Lemma 4.4. A vector b ∈ b is a T4-vector of interval system (4), if and only if it fulfills
equality (5).

P r o o f . A vector b ∈ b is a T4-vector of interval system (4), if and only if interval
system (4) with the constant right-hand side b = b = b has a universal solution, which
is according to Theorem 4.3 equivalent to (5). �

The last lemma does not give an efficient method for finding a T4-vector. To suggest
polynomial procedure, we define a T4-sequence of interval system (4).

Definition 4.5. A T4-sequence of interval system (4) is the sequence {b(k)}∞k=0 defined
as follows:

b(k) =
{

b for k = 0,
A⊗ x∗(A, b(k−1)) for k ≥ 1.

(6)

Lemma 4.6. Let {b(k)}∞k=0 be the T4-sequence of interval system (4). The following
assertions hold true:

i) The sequence {b(k)}∞k=0 is decreasing.

ii) There exists l ∈ N0 such that b(l+1) = b(l).

P r o o f .

i) By Lemma 2.1 and by monotonicity of ⊗ we have

b(k+1) = A⊗ x∗(A, b(k)) ≤ A⊗ x∗(A, b(k)) ≤ b(k).

ii) From (3) and (6) it follows, that b
(k)
i ∈ {bi, i ∈ M}∪{aij , i ∈ M, j ∈ N} for each

i ∈ M, k ∈ N0 , i. e., at most m + mn different values in each entry of b(k), can
be considered. As the sequence {b(k)}∞k=1 is decreasing, the number of different
vectors b(k) is bounded by m(m + mn), which means that there exists l ∈ N0

(l ≤ m(m + mn)) such that b(l+1) = b(l).

�
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Theorem 4.7. Let b ∈ b be a T4-vector of interval system (4). Then for each k ∈ N0

the inequality b ≤ b(k) is satisfied.

P r o o f . By mathematical induction on k

1. For k = 0 the inequality b ≤ b = b(0) trivially holds.

2. Suppose that b ≤ b(k). We get

b = A⊗ x∗(A, b) ≤ A⊗ x∗(A, b(k)) = b(k+1).
�

Theorem 4.8. Interval system (4) is T4 solvable if and only if there exists l ∈ N0 such
that b(l+1) = b(l) ∈ b.

P r o o f . If b(l+1) = b(l) ∈ b then A⊗ x∗(A, b(l)) = b(l) ∈ b which means that vector b(l)

is a T4-vector of (4), so interval system (4) is T4 solvable.
For the converse implication suppose that interval system (4) is T4 solvable with a

T4-vector b ∈ b. According to Lemma 4.6ii) there exists l ∈ N0 such that b(l+1) = b(l).
Then

b ≤ b ≤ b(l) = b(l+1) ≤ b.

Hence b(l+1) = b(l) ∈ b. �

The above introduced assertions enable us to give the following algorithm for checking
the T4 solvability.

Algorithm T4
Input: A, b
Output: ’yes’ in variable t4, if the given interval system is T4 solvable, and ’no’ in t4

otherwise

begin
Step 1. b(0) = b, k = 0;
Step 2. b(k+1) = A⊗ x∗(A, b(k));
Step 3. If b � b(k+1) then t4 :=’no’, go to end;
Step 4. If b(k+1) = b(k) then t4 :=’yes’, b∗ = b(k), go to end;
Step 5. k := k + 1, go to Step 2 ;
end

Theorem 4.9. Let A = [A,A] with A,A ∈ B(m,n) and b = [b, b] be given. Then
Algorithm T4 decides whether the given interval system (4) is T4 solvable and in the
positive case finds the maximal T4-vector b∗ in O(m3n2) time.

P r o o f . The most time-consuming is Step 2 which requires O(mn) operations. The
question which arises is the number of repetitions of the loop 2–5 till the algorithm gives
an answer. This number is bounded by the number of different vectors b(k), which is
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maximally m(m + mn) (see the proof of Lemma 4.6ii)). Consequently, the complexity
of Algorithm T4 is O(m3n2). From Theorem 4.7 it follows that in the positive case the
vector b∗ is the maximal T4-vector. �

Denote X(A, b) = {x ∈ B(n); (∃b ∈ b)(∀A ∈ A) : A⊗ x = b}. It is easy to see that
the T4 solvability of (4) is equivalent to X(A, b) 6= ∅.

Corollary 4.10. If interval system is T4 solvable with the maximal T4-vector b∗, then
x∗(A, b∗) = maxX(A, b).

P r o o f . If x ∈ X(A, b) then there exists a T4-vector b ∈ b such that for each A ∈ A

the equality A⊗ x = b holds true. Then

x ≤ x∗(A, b) ≤ x∗(A, b∗),

where the first inequality follows from Theorem 4.3. �

Remark 4.11. Using Algorithm T4 for the situation described in Example 1.1 we can
find the maximal vector of capacities b∗ ∈ b which can be achieved by suitable choice of
the vector x (for example the maximal vector x∗(A, b∗)) independently of the capacities
of the roads from the places Pi to the places Qj , if such a vector of capacities b exists.

Example 4.12. Let B = [0, 1] and

A =

 [0.1, 0.8] [0.4, 0.6] [0.7, 0.7]
[0.5, 0.8] [0.4, 0.5] [0.3, 0.9]
[0.6, 0.9] [0.8, 0.8] [0.4, 0.6]

 and b =

 [0.4, 0.7]
[0.4, 0.8]
[0.5, 0.9]

 .

We check the T4 solvability of interval system A⊗ x = b. We get

x∗(A, b(0)) =

 0.7
1

0.8

 , b(1) =

 0.7
0.5
0.8

 ,

x∗(A, b(1)) =

 0.5
1

0.5

 , b(2) =

 0.5
0.5
0.8

 ,

x∗(A, b(2)) =

 0.5
0.5
0.5

 , b(3) =

 0.5
0.5
0.5

 ,

x∗(A, b(3)) = x∗(A, b(2)), b(4) = b(3).

Since b(4) = A ⊗ x∗(A, b(3)) = b(3) ∈ b, according to Theorem 4.3 the vector b(3) is a
T4-vector of (4). The given interval system is T4 solvable and the vector b∗ = b(3) is its
maximal T4-vector.
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5. T5 SOLVABILITY

The notions of a T5-vector and the T5 solvability of interval system (4) are defined in
this section. We will prove, that the T4 and T5 solvability are equivalent in max-min
algebra.

Definition 5.1.
i) A vector b ∈ B(n) is a T5-vector of interval system (4), if for each A ∈ A there

exists x ∈ B(n) such, that A⊗ x = b.

ii) Interval system (4) is T5 solvable, if there exists a vector b ∈ b such, that b is a
T5-vector of (4).

To give a necessary and sufficient condition for the T5 solvability we recall the notion
of a strong solvability, which has been studied in [3].

Definition 5.2. Interval system (4) is strongly solvable, if each of its subsystems of the
form (2) is solvable.

Theorem 5.3. [3] Interval system (4) is strongly solvable, if and only if all its extremal
subsystems with exactly one LU equation are solvable.

For each k = 1, 2, . . . ,m denote by A(k) = (a(k)
ij ) the matrix with entries

a
(k)
ij =

{
aij for i = k, j ∈ N,
aij for i 6= k, j ∈ N.

Lemma 5.4. A vector b ∈ b is a T5-vector of interval system (4), if and only if

A(k) ⊗ x∗(A(k), b) = b (7)

for each k ∈ M .

P r o o f . A vector b ∈ b is a T5-vector of interval system (4), if and only if interval
system (4) with the constant right-hand side b = b = b is strongly solvable, which is by
Theorem 2.1iii) and Theorem 5.3 fulfilled, if and only if equality (7) holds true for each
k ∈ M . �

Theorem 5.5. A vector b ∈ b is a T5-vector of interval system (4), if and only if b is a
T4-vector of interval system (4).

P r o o f . It is easy to see that, if b ∈ b is a T4-vector of (4), then b is a T5-vector of
(4). For the converse implication suppose that a vector b is not a T4-vector of (4), i. e.,
A ⊗ x∗(A, b) 6= b. According to the inequality A ⊗ x∗(A, b) ≤ b, there exists an index
r ∈ M such, that [A⊗ x∗(A, b)]r < br, i. e.,

arj ⊗ x∗j (A, b) < br (8)

for each j ∈ N .
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Denote by N1, N2 the sets N1 = {j ∈ N : arj < br}, N2 = {j ∈ N : arj ≥ br}.
For j ∈ N1 we have arj ⊗ x∗j (A

(r), b) < br which implies⊕
j∈N1

(
arj ⊗ x∗j (A

(r), b)
)

< br.

For j ∈ N2 inequality (8) implies the inequality x∗j (A, b) < br. We have to distinguish
two cases:

i) If arj > br then the equality {bi : aij > bi} = {bi : a
(r)
ij > bi} implies

x∗j (A, b) = x∗j (A
(r), b).

ii) If arj = br then x∗j (A, b)=min
i∈M

{bi :aij >bi}=min
i 6=r

{bi :aij >bi}= min
i 6=r

{bi :a
(r)
ij >bi}=

min
i∈M

{bi : a
(r)
ij > bi} = x∗j (A

(r), b).

In both cases we have x∗j (A
(r), b) = x∗j (A, b) < br, which implies arj ⊗ x∗j (A

(r), b) < br

and consequently
⊕

j∈N2

(
arj ⊗ x∗j (A

(r), b)
)

< br.

Hence

[
A(r) ⊗ x∗(A(r),b)

]
r

=

 ⊕
j∈N1

arj ⊗ x∗j (A
(r), b)

⊕

 ⊕
j∈N2

arj ⊗ x∗j (A
(r), b)

 < br.

Since equality (7) does not hold for k = r, the vector b is not a T5-vector of interval
system (4). �

Theorem 5.6. Interval system (4) is T5 solvable, if and only if it is T4 solvable.

P r o o f . From Theorem 5.5 it follows that the set of all T4-vectors of (4) is equal to the
set of all T5-vectors of interval system (4). This means that the existence of a T4-vector
of (4) is equivalent to the existence of a T5-vector of (4), i. e., interval system (4) is T4
solvable if and only if it is T5 solvable. �

Example 5.7. Let A ⊗ x = b be the interval system given in Example 4.12 and
b̃ = (0.4, 0.4, 0.4)T ∈ b. First, we check if the vector b̃ is a T5-vector of the given
interval system. We have

A(1) =

 0.1 0.4 0.7
0.8 0.5 0.9
0.9 0.8 0.6

, A(2) =

 0.8 0.6 0.7
0.5 0.4 0.3
0.9 0.8 0.6

, A(3) =

 0.8 0.6 0.7
0.8 0.5 0.9
0.6 0.8 0.4

.

We compute

x∗(A(1), b̃) =

 0.4
0.4
0.4

 , A(1) ⊗ x∗(A(1), b̃) =

 0.4
0.4
0.4

 = b̃,
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x∗(A(2), b̃) =

 0.4
0.4
0.4

 , A(2) ⊗ x∗(A(2), b̃) =

 0.4
0.4
0.4

 = b̃,

x∗(A(3), b̃) =

 0.4
0.4
0.4

 , A(3) ⊗ x∗(A(3), b̃) =

 0.4
0.4
0.4

 = b̃.

According to Lemma 5.4 the vector b̃ is a T5-vector of the given interval system. We
check if b̃ is a T4-vector. Since A⊗ x∗(A, b̃) = A⊗ (0.4, 0.4, 0.4)T = (0.4, 0.4, 0.4)T = b̃,
vector b̃ is a T4-vector of the given interval system.

(Received October 5, 2011)
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[7] H. Myšková: Interval systems of max-separable linear equations. Linear Algebra Appl.
403 (2005), 263–272.
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