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A NOTE ON PREDICTION FOR DISCRETE TIME SERIES

Gusztáv Morvai and Benjamin Weiss

Let {Xn} be a stationary and ergodic time series taking values from a finite or countably infi-
nite set X and that f(X) is a function of the process with finite second moment. Assume that the
distribution of the process is otherwise unknown. We construct a sequence of stopping times λn

along which we will be able to estimate the conditional expectation E(f(Xλn+1)|X0, . . . , Xλn)
from the observations (X0, . . . , Xλn) in a point wise consistent way for a restricted class of
stationary and ergodic finite or countably infinite alphabet time series which includes among
others all stationary and ergodic finitarily Markovian processes. If the stationary and ergodic
process turns out to be finitarily Markovian (in particular, all stationary and ergodic Markov
chains are included in this class) then limn→∞

n
λn

> 0 almost surely. If the stationary and er-
godic process turns out to possess finite entropy rate then λn is upper bounded by a polynomial,
eventually almost surely.
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1. INTRODUCTION

I. Vajda wrote a number of papers on estimating certain parameters and functions from
observations [2, 7, 15, 21] and on statistical tests [8, 14, 10, 22]. In this paper, which
we dedicate to his memory, we will consider the particular problem of estimating the
conditional expectations by an algorithm which will involve a scheme for discriminating
processes.

One of the basic problems in nonparametric estimation is the problem of estimating
the conditional probability P (Xn+1 = 1|X0, . . . , Xn) for a binary time series. While
there are universal schemes that converge in probability Bailey [1] showed that one
cannot estimate this quantity from the data (X0, . . . , Xn) such that the difference tends
to zero almost surely as n increases, for all stationary and ergodic binary time series (a
simpler proof was given later by Ryabko [19]).

For special classes of processes universal point wise schemes can be given. For ex-
ample, if one knows in advance that the process is Markov of some order, then one can
estimate the order (cf. Csiszár and Shields [5], Csiszár [6]), and using this estimate for
the order, one can count empirical averages of blocks with lengths one plus the order and
obtain in this way a point wise consistent estimator. In an earlier paper (Morvai and
Weiss [16]) we took up the case when it is not known in advance if the process is Markov
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or not. To circumvent the negative results we used the idea of restricting the estimation
to stopping times and treated processes whose conditional distribution is almost surely
continuous. This class includes all Markov processes with arbitrary order and the much
wider class of finitarily Markovian processes.

Compared to the earlier results we were able to show that in this case the sequence
of stopping times grows less rapidly and if it is indeed finitarily Markov then it will have
positive density, while if the process has finite entropy then the growth rate is upper
bounded by a polynomial, eventually almost surely.

While we did include the possibility of a countably infinite alphabet we assumed
that the function, f(x),whose conditional probability we are estimating is bounded. In
this note we will give a somewhat simpler scheme and allow an unbounded function of
the process, f(Xi), as long as it has a finite second moment. Our main result is the
construction of a sequences of stopping times λn and corresponding estimator fn such
that for any process with almost sure conditional probabilities,

lim
n→∞

∣∣∣fn − E(f(Xλn+1)|Xλn
0 )
∣∣∣ = 0.

The parameters defining these stopping times may be chosen in such a fashion that
whenever the stationary and ergodic time series {Xn} has finite entropy rate then λn
grows no faster than a polynomial in n.

If the stationary and ergodic time series {Xn} turns out to be finitarily Markovian
then

lim
n→∞

λn
n
<∞ almost surely.

Moreover, if the stationary and ergodic time series {Xn} turns out to be independent
and identically distributed then λn = λn−1 + 1 eventually almost surely.

For related problems see Ryabko [20].

2. RESULTS

Let {Xn}∞n=−∞ be a stationary and ergodic time series taking values from a discrete
(finite or countably infinite) alphabet X . (Note that all stationary time series {Xn}∞n=0

can be thought to be a two sided time series, that is, {Xn}∞n=−∞.) For notational
convenience, let Xn

m = (Xm, . . . , Xn), where m ≤ n. Note that if m > n then Xn
m is the

empty string and X 0 is a set that contains exactly the empty string ∅.

For k ≥ 1, let 1 ≤ lk ≤ k be a nondecreasing unbounded sequence of integers, that
is, 1 = l1 ≤ l2 . . . and limk→∞ lk = ∞.
Define auxiliary stopping times as follows. Set ζ0 = 0. For n = 1, 2, . . ., let

ζn = ζn−1 + min
{
t > 0 : Xζn−1+t

ζn−1−(ln−1)+t = X
ζn−1

ζn−1−(ln−1)

}
. (1)

Among other things, using ζn and ln we can define a very useful process {X̃n}0
n=−∞ as

a function of X∞
0 as follows. Let J(n) = min{j ≥ 1 : lj+1 > n} and define

X̃−i = XζJ(i)−i for i ≥ 0. (2)
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As we will see in the next lemma, the {X̃n}0
n=−∞ has the same distribution as the

original process.

Lemma 2.1. The time series {X̃n}0
n=−∞ and {Xn}0

n=−∞ have identical distribution
and for j = 0, 1, 2, . . . the random variables Xζj+1 are identically distributed.

P r o o f . For all k ≥ 1 and 1 ≤ i ≤ k define ζ̂k0 = 0 and

ζ̂ki = ζ̂ki−1 −min
{
t > 0 : X

ζ̂ki−1−t
ζ̂ki−1−(lk−i+1−1)−t

= X
ζ̂ki−1

ζ̂ki−1−(lk−i+1−1)

}
.

Let T denote the left shift operator, that is, (Tx∞−∞)i = xi+1. It is easy to see that if
ζk(x∞−∞) = l then ζ̂kk (T lx∞−∞) = −l.
Now the statement follows from stationarity and the fact that for k ≥ 0, m ≥ 0, n ≥ 0,
xm−n ∈ Xm+n+1, l ≥ 0,

T l{Xζk+m
ζk−n = xm−n, ζk = l} = {Xm

−n = xm−n, ζ̂
k
k (X0

−∞) = −l}. (3)

The proof of Lemma 2.1 is complete. �

For convenience let p(x0
−k+1) and p(y|x0

−k+1) denote the distribution P (X0
−k+1 =

x0
−k+1) and the conditional distribution P (X1 = y|X0

−k+1 = x0
−k+1), respectively. Note

that P (Xt
t+1 = ∅) = 1, P (X1 = y|X0

1 = ∅) = P (X1 = y).

Definition 2.2. For some 0 ≤ k and w0
−k+1 ∈ X k. We say that w0

−k+1 is a memory
word if p(w0

−k+1) > 0 and for all i ≥ 1, all y ∈ X , all z−k−k−i+1 ∈ X i

p(y|w0
−k+1) = p(y|z−k−k−i+1, w

0
−k+1)

provided p(z−k−k−i+1, w
0
−k+1, y) > 0. If no proper suffix of w is a memory word then w is

called a minimal memory word.

Define the set Wk of those memory words w0
−k+1 with length k, that is,

Wk = {w0
−k+1 ∈ X k : w0

−k+1 is a memory word}.
Let

W∗ =
∞⋃
k=0

Wk.

Definition 2.3. For a stationary time series {Xn} the (random) length K(X0
−∞) of the

memory of the sample path X0
−∞ is the smallest possible 0 ≤ K < ∞ such that for all

i ≥ 1, all y ∈ X , all z−K−K−i+1 ∈ X i

p(y|X0
−K+1) = p(y|z−K−K−i+1, X

0
−K+1)

provided p(z−K−K−i+1, X
0
−K+1, y) > 0, and K(X0

−∞) = ∞ if there is no such K.



812 G. MORVAI AND B. WEISS

Remark 2.4. For stationary and ergodic time series {Xn}, K(x0
−∞) is the smallest

k ≥ 0 such that x0
−k+1 ∈ Wk and K(x0

−∞) = ∞ if there is no such k.

In order to estimate K(X̃0
−∞) we need to define some explicit statistics.

Define

∆r,k = sup
1≤i

sup
{zr−kr−k−i+1∈X i,x∈X :p(zr−kr−k−i+1,X

r
r−k+1,x)>0}∣∣p(x|Xr

r−k+1)− p(x|z−k−k−i+1, X
r
r−k+1)

∣∣
and

Γk(X̃0
−k+1) = sup

1≤i
sup

{z−k−k−i+1∈X i,x∈X :p(z−k−k−i+1,X̃
0
−k+1,x)>0}∣∣∣p(x|X̃0

−k+1)− p(x|z−k−k−i+1, X̃
0
−k+1)

∣∣∣ .
Let us agree that if the set over which the sup is taken is empty then the sup is zero.

We need to define an empirical version of this based on the observation of a finite data
segment Xn

0 . To this end first define the empirical version of the conditional probability
as

p̂n(x|w0
−k+1) =

(
#{k − 1 ≤ t ≤ n− 1 : Xt+1

t−k+1 = (w0
−k+1, x)} − 1

)+(
#{k − 1 ≤ t ≤ n− 1 : Xt

t−k+1 = w0
−k+1} − 1

)+
where 0

0 = 0.
These empirical distributions, as well as the sets we are about to introduce are func-

tions of Xn
0 , but we suppress the dependence to keep the notation manageable.

For a fixed 0 < γ < 1 let Lnk denote the set of strings with length k+ 1 which appear
more than n1−γ times in Xn

0 . That is,

Lnk = {x0
−k ∈ X k+1 : #{k ≤ t ≤ n− 1 : Xt

t−k = x0
−k} > n1−γ + 1}.

Define

∆̂r,k
n (Xn

0 ) = max
1≤i≤n

max
(z−k−k−i+1,X

r
r−k+1,x)∈L

n
k+i∣∣p̂n(x|Xr

r−k+1)− p̂n(x|z−k−k−i+1, X
r
r−k+1)

∣∣ .
Let us agree by convention that if the smallest of the sets over which we are maximizing
is empty then ∆̂r,k

n = 0.
Observe, that by ergodicity, the ergodic theorem implies that almost surely the em-

pirical distributions p̂n converge to the true distributions p and so for any r, k,

lim inf
n→∞

∆̂r,k
n ≥ ∆r,k almost surely.

Finally, define the empirical version of Γk as follows:

Γ̂kn(X
n
0 ) = I{k≤l(max{j:ζj≤n}}∆̂

max {ζj≤n:j=0,1,2,... },k
n .



A note on prediction for discrete time series 813

Since
lim inf
n→∞

∆̂r,k
n ≥ ∆r,k almost surely.

thus
lim inf
n→∞

Γ̂kn ≥ Γk almost surely. (4)

We define an estimate χn for K(X̃0
−∞) from samples Xn

0 as follows. Let 0 < β < 1−γ
2

be arbitrary. Set χ0 = 0, and for n ≥ 1 let

χn(Xn
0 ) = min

{
0 ≤ k ≤ l(max{j:ζj≤n}) : Γ̂kn ≤ n−β or k = l(max{j:ζj≤n})

}
. (5)

Here the idea is (cf. the proof of Theorem 2.6) that if K(X̃0
−∞) < ∞ then χn will be

equal to K(X̃0
−∞) eventually and if K(X̃0

−∞) = ∞ then χn →∞.

Now we define the sequence of stopping times λn along which we will be able to estimate.
Set λ0 = ζ0, and for n ≥ 1 if ζj ≤ λn−1 < ζj+1 then put

λn = min
{
t > λn−1 : Xt

t−χt+1 = X
ζj
ζj−χt+1

}
(6)

and
κn = χλn . (7)

Observe that if ζj ≤ λn−1 < ζj+1 then ζj ≤ λn−1 < λn ≤ ζj+1. If χλn−1+1 = 0 then
λn = λn−1 + 1. Note that λn is a stopping time and κn is our estimate for K(X̃0

−∞)
from samples Xλn

0 .

Let X ∗− be the set of all one-sided sequences, that is,

X ∗− = {(. . . , x−1, x0) : xi ∈ X for all −∞ < i ≤ 0}.

Let f : X → (−∞,∞) be arbitrary. Define the function F : X ∗− → (−∞,∞) as

F (x0
−∞) = E(f(X1)|X0

−∞ = x0
−∞).

E.g. if f(x) = 1{x=z} for a fixed z ∈ X then F (y0
−∞) = P (X1 = z|X0

−∞ = y0
−∞).

If X is a finite or countably infinite subset of the reals and f(x) = x then F (y0
−∞) =

E(X1|X0
−∞ = y0

−∞).

One denotes the nth auxiliary estimate of E(f(Xζn+1)|Xζn
0 ) from samples Xζn

0 by gn,
and defines it to be

gn =
1
n

n−1∑
j=0

f(Xζj+1). (8)

One denotes the nth estimate of E(f(Xλn+1)|Xλn
0 ) from samples Xλn

0 by fn, and defines
it to be f0 = g0 and for n > 0

fn(Xλn
0 ) = gmin {t≥0:ζt≤λn<ζt+1}. (9)
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Note that the same estimate will be used for a while and this will help us to get rid of
the boundedness condition in Morvai and Weiss in [16].

Define the distance d∗(·, ·) on X ∗− as follows. For x0
−∞, y0

−∞ ∈ X ∗− let

d∗(x0
−∞, y

0
−∞) =

∞∑
i=0

2−i−11{x−i 6=y−i}. (10)

Definition 2.5. We say that F (X0
−∞) is almost surely continuous if for some set

C ⊆ X ∗− which has probability one the function F (X0
−∞) restricted to this set C

is continuous with respect to metric d∗(·, ·).

The processes with almost surely continuous conditional expectation generalizes the
processes for which it is actually continuous, cf. Kalikow [12] and Keane [13]. The
stationary finitarily Markovian processes with E(|f(X1)|) <∞ are included in the class
of stationary processes with almost surely continuous E(f(X1)|X0

−∞).

Note that Ryabko [19], and Györfi, Morvai, Yakowitz [9] showed that one cannot
estimate P (Xn+1 = 1|Xn

0 ) for all n in a pointwise consistent way even for the class of
all stationary and ergodic binary finitarily Markovian time series.

The entropy rate H associated with a stationary finite or countably infinite alphabet
time series {Xn} is defined as

H = lim
n→∞

−1
n+ 1

∑
x0
−n∈Xn+1

pn(x0
−n) log2 pn(x

0
−n).

We note that the entropy rate of a stationary finite alphabet time series is finite. For
details cf. Cover, Thomas [4], pp. 63–64.

Before stating the theorem let us recapitulate what we have done. For a fixed sequence
1 = l1 ≤ l2, . . . , ln → ∞ and for any stationary and ergodic process {Xn} we define a
sequence of stopping times {ζn} in such a way that {Xζn−i}∞i=0 converges to the process
{X̃−i}∞i=0 which has the same distribution as {X−i}∞i=0. If f is a real valued function
defined on the alphabet X of the process {Xn} then the estimators of the conditional
expectation of E(f(Xζn+1)|Xζn

0 ) are defined in (8). Now fix 0 < β, γ < 1 such that
2β + γ < 1 and define the estimators χn for the memory length K(X̃0

−∞) as in (5). In
turn these are used to define the stopping times λn as in (6) and finally the estimators
fn(Xλn

0 ) are defined in (9).

Theorem 2.6. Let {Xn} be a stationary and ergodic time series taking values from a
finite or countably infinite set X . Assume that f is a real valued function defined on X
such that

E
(
f(X1)2

)
<∞.

1. If the conditional expectation F (X0
−∞) = E(f(X1)|X0

−∞) is almost surely contin-
uous then for the stopping times λn (see (6) ) and the estimators fn (see (9) ) we
have

lim
n→∞

fn = F (X̃0
−∞) and lim

n→∞

∣∣∣fn − E(f(Xλn+1)|Xλn
0 )
∣∣∣ = 0



A note on prediction for discrete time series 815

almost surely.

2. The ln may be chosen in such a fashion that whenever the stationary and ergodic
time series {Xn} has finite entropy rate then the stopping times λn grow no faster
than a polynomial in n.

3. If the stationary and ergodic time series {Xn} turns out to be finitarily Markovian
then

lim
n→∞

λn
n

=
1

p(X̃0
−K(X̃0

−∞)+1
)
<∞ almost surely

where K(X̃0
−∞) is the length of the memory word. Moreover, if the stationary and

ergodic time series {Xn} turns out to be independent and identically distributed
then λn = λn−1 + 1 eventually almost surely.

P r o o f . Step 1. We show that P (χn = K(X̃0
−∞) eventually |K(X̃0

−∞) < ∞) = 1 and
P (limn→∞ χn = ∞|K(X̃0

−∞) = ∞) = 1.

By Lemma 2.1, {X̃n}0
n=−∞ is stationary and ergodic with the same distribution as

{Xn}0
n=−∞. We may assume that the sample path X̃0

−∞ is such that all finite blocks
that appear have positive probability. It is immediate that if K(X̃0

−∞) < ∞ then for
all k ≥ K(X̃0

−∞), Γk = 0 and Γ(K(X̃0
−∞)−1) > 0 (otherwise the length of the memory

would be not greater than K(X̃0
−∞) − 1). If K(X̃0

−∞) = ∞ then Γk > 0 for all k,
(otherwise K(X̃0

−∞) would be finite). Thus by (4) if K(X̃0
−∞) = ∞ then χn →∞ and

if K(X̃0
−∞) < ∞ then χn ≥ K(X̃0

−∞) eventually almost surely. We have to show that
χn ≤ K(X̃0

−∞) eventually almost surely provided that K(X̃0
−∞) <∞.

Fix now k < n. We will estimate the probability of the undesirable event as follows:

Set ψ+
l,k,0 = 0, ψ−l,k,0 = 0 and for i > 0 define

ψ+
l,k,i = ψ+

l,k,i−1+min
{
t > 0 : X

l+ψ+
l,k,i−1+t

l+ψ+
l,k,i−1−k+1+t

= X
l+ψ+

l,k,i−1

l+ψ+
l,k,i−1−k+1

}
and

ψ−l,k,i = ψ−l,k,i−1+min
{
t > 0 : X

l−ψ−l,k,i−1−t
l−ψ−l,k,i−1−k+1−t = X

l−ψ−l,k,i−1

l−ψ−l,k,i−1−k+1

}
.

For a given 0 ≤ k < n, k − 1 ≤ l ≤ n− 1 assume that X l+1
l−k+1 = w0

−k+1x and w0
−k+1

is a memory word. Since w0
−k+1 is a memory word, by Lemma 1 in [17] for any i, j ≥ 1,

Xl−ψ−l,k,i+1, . . . , Xl−ψ−l,k,1+1, Xl+ψ+
l,k,1+1, . . . , Xl+ψ+

l,k,j+1

are conditionally independent and identically distributed random variables given X l
l−k+1

= w0
−k+1, Xl+1 = x, where the identical distribution is p(·|w0

−k+1). By Hoeffding’s
inequality for sums of bounded independent random variables (cf. Lemma 3.1 in the
Appendix) the probability that∣∣∣∣∣∣∣

∑i
h=1 1{X

l−ψ−
l,k,h

+1
=x} +

∑j
h=1 1{X

l+ψ+
l,k,h

+1
=x}

i+ j
− p(x|w0

l−k+1)

∣∣∣∣∣∣∣
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is greater than 0.5n−β is not greater than 2e−0.5n−2β(i+j) given the condition X l+1
l−k+1

= w0
−k+1x. Multiplying both sides by P (X l+1

l−k+1 = w0
−k+1x) and summing over all

possible memory words w0
−k+1 and x we get that

P
(
K(X l

−∞) ≤ k, X l+1
l−k+1 ∈ L

n
k+1,∣∣∣∣∣∣∣

∑i
h=1 1{X

l−ψ−
l,k,h

+1
=Xl+1} +

∑j
h=1 1{X

l+ψ+
l,k,h

+1
=Xl+1}

i+ j
− p(Xl+1|X l

l−k+1)

∣∣∣∣∣∣∣ > n−β/2
)

≤ 2e−0.5n−2β(i+j).

Summing over all pairs (k, l) such that 0 ≤ k < n and all k − 1 ≤ l ≤ n− 1 and over all
pairs (i, j) such that i ≥ 0, j ≥ 0, i+ j ≥ dn1−γe we get that

P
(
For some 0 ≤ k < n, k − 1 ≤ l ≤ n− 1 : X l+1

l−k+1 ∈ L
n
k+1, K(X l

−∞) ≤ k,∣∣∣p̂n(Xl+1|X l
l−k+1)− p(Xl+1|X l

l−k+1)
∣∣∣ > n−β/2

)
≤ n2

∞∑
h=dn1−γe

h2e−0.5n−2βh.

Now

P
(
I{k≤l(max{j:ζj≤n}}∆̂

max{ζj≤n:j=0,1,2,... },k
n > n−β ,K(X̃0

−∞) ≤ k
)

≤ P
(

max
0≤k<∞

max
w0
−k+1∈Wk

max
1≤i≤n

max
(z−k−k−i+1,w

0
−k+1,x)∈L

n
k+i∣∣p̂n(x|w0

−k+1)− p̂n(x|z−k−k−i+1, w
0
−k+1)

∣∣ > n−β
)

≤
n−1∑
k=0

P
(

max
w0
−k+1∈Wk

max
1≤i≤n

max
(z−k−k−i+1,w

0
−k+1,x)∈L

n
k+i∣∣p̂n(x|w0

−k+1)− p̂n(x|z−k−k−i+1, w
0
−k+1)

∣∣ > n−β
)

≤
n−1∑
k=0

n∑
i=1

P
(

max
w0
−k+1∈Wk

max
(z−k−k−i+1,w

0
−k+1,x)∈L

n
k+i∣∣p̂n(x|w0

−k+1)− p̂n(x|z−k−k−i+1, w
0
−k+1)

∣∣ > n−β
)

≤
n−1∑
k=0

n∑
i=1

P
(

max
w0
−k+1∈Wk

max
(z−k−k−i+1,w

0
−k+1,x)∈L

n
k+i

∣∣p̂n(x|w0
−k+1)− p(x|w0

−k+1)
∣∣ > n−β/2

)
+
n−1∑
k=0

n∑
i=1

P
(

max
w0
−k+1∈Wk

max
(z−k−k−i+1,w

0
−k+1,x)∈L

n
k+i∣∣p(x|z−k−k−i+1, w

0
−k+1)− p̂n(x|z−k−k−i+1, w

0
−k+1)

∣∣ > n−β/2
)
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≤ 2n4
∞∑

h=dn1−γe

h2e
−n−2βh

2 .

Now we give an upper bound on the sum on the right hand side. Observe that he
−n−2βh

2

is monotone decreasing in h as soon as the derivative

e
−n−2βh

2 − h0.5n−2βhe
−n−2βh

2

is negative for h > n1−γ which is the case for n > 2
1

(1−γ−2β) . Using this fact, we bound
the sum by the integral

∞∑
h=dn1−γe

he
−n−2βh

2 ≤
∫ ∞

n1−γ
he

−n−2βh
2 dh.

Integrating by parts we get that∫ ∞

n1−γ
he

−n−2βh
2 dh =

[
h
−1
n−2β

2

e
−n−2βh

2

]∞
n1−γ

−
∫ ∞

n1−γ

−1
n−2β

2

e
−n−2βh

2 dh

=
n1−γ

n−2β

2

e
−n−2βn1−γ

2 −

 1(
n−2β

2

)2 e
−n−2βh

2


∞

n1−γ

=
n1−γ

n−2β

2

e
−n1−γ−2β

2 +
1(

n−2β

2

)2 e
−n1−γ−2β

2

=
(
2n1−γ+2β + 4n4β

)
e
−n1−γ−2β

2

≤
(
2n2 + 4n2

)
e
−n1−γ−2β

2

since by assumption 0 < γ < 1 and 0 < β < 1−γ
2 .

The right hand side is summable provided 2β+γ < 1 and the Borel–Cantelli Lemma
yields that

I{K(X̃0
−∞)≤k}I{k≤l(max{j:ζj≤n})}∆̂

(maxj:ζj≤n ζj),k
n ≤ n−β

eventually almost surely. Since

I{k≤l(max{j:ζj≤n}} = 1

eventually almost surely thus

I{K(X̃0
−∞)≤k}Γ̂

k
n(X

n
0 ) ≤ n−β

eventually almost surely. Thus χn ≤ k eventually almost surely on K(X̃0
−∞) = k.
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Step 2. We show that gn → F (X̃0
−∞) almost surely.

Recalling (8) we can write

gn =
1
n

n−1∑
j=0

[f(Xζj+1)− E(f(Xζj+1)|X
ζj
−∞)] +

1
n

n−1∑
j=0

E(f(Xζj+1)|X
ζj
−∞) (11)

Consider the first term and observe that {Θj = f(Xζj+1) − E(f(Xζj+1)|X
ζj
−∞)} is a

sequence of orthogonal random variables with EΘj = 0 and, by Lemma 2.1, Xζj+1 has
the same distribution as X1. Now by Theorem 3.2.2 in [18] (cf. Lemma 3.2 in the
Appendix),

1
k

k−1∑
j=0

Θj → 0 almost surely.

Now we deal with the second term. For arbitrary j ≥ 0, by (7) and (6) and the
construction in (2),

X
ζj
ζj−lj+1 = X̃0

−lj+1 and lim
j→∞

d∗(X̃0
−∞, X

ζj
−∞) = 0 almost surely. (12)

By Lemma 2.1 and the almost sure continuity of F (·), for some set C ⊆ X ∗− with full
measure, F (·) is continuous on C and

X̃0
−∞ ∈ C,Xn

−∞ ∈ C for all n ≥ 0 almost surely. (13)

By the continuity of F (·) on the set C and (12),

E(f(Xζj+1)|X
ζj
−∞) = F (Xζj

−∞) → F (X̃0
−∞)

and gn → F (X̃0
−∞) almost surely.

Step 3. We prove the first part of Theorem 2.6.
By (9) and the fact that ζn → ∞ Step 2 yields immediately fn → F (X̃0

−∞) almost
surely. What remains to be proven is that

E(f(Xλj+1)|X
λj
0 ) → F (X̃0

−∞).

If K(X̃0
−∞) < ∞ then by Step 1, χn = K(X̃0

−∞) eventually and by (1), (2), (6) and
Lemma 2.1, eventually,

E(f(Xλj+1)|X
λj
0 ) = E(f(Xλj+1)|X

λj
−∞) = F (X̃0

−∞).

We may deal with the case when K(X̃0
−∞) = ∞ and by Step 1, χn →∞. For arbitrary

j ≥ 0, by (7) and (6) and the construction in (2),

X
λj
λj−κj+1 = X̃0

−κj+1 and lim
j→∞

d∗(X̃0
−∞, X

λj
−∞) = 0 almost surely. (14)
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By Lemma 2.1 and the almost sure continuity of F (·), for some set C ⊆ X ∗− with full
measure, F (·) is continuous on C and

X̃0
−∞ ∈ C,Xn

−∞ ∈ C for all n ≥ 0 almost surely. (15)

By the continuity of F (·) on the set C and (14),

E(f(Xλj+1)|X
λj
−∞) = F (Xλj

−∞) → F (X̃0
−∞).

Define the random neighborhood Nj(X
λj
0 ) of Xλj

0 depending on the random data seg-
ment Xλj

0 itself as

Nj(X
λj
0 ) = {z0

−∞ ∈ X ∗− : z−κj+1 = Xλj−κj+1, . . . , z0 = Xλj}.

Note that by (1), (2), (7) and (6), X̃0
−∞ ∈ Nj(X

λj
0 ) and by (15) and the continuity of

F (·) on the set C, and since κj →∞, by (12), almost surely,

lim
j→∞

∣∣∣E(f(Xλj+1)|X
λj
0 )− F (X̃0

−∞)
∣∣∣

= lim
j→∞

∣∣∣E{F (Xλj
−∞)|Xλj

0 } − F (X̃0
−∞)

∣∣∣
≤ lim

j→∞
sup

y0
−∞,z

0
−∞∈Nj(X

λj
0 )

T
C

|F (y0
−∞)− F (z0

−∞)| = 0.

Step 4. We prove the second part of Theorem 2.6.
Now we assume that the stationary and ergodic finite or countably infinite alphabet time
series {Xn} possesses finite entropy rate H. (A stationary finite alphabet time series
always has finite entropy rate.)
We will in fact obtain a more precise estimate, namely, if for some 0 < ε2 < ε1,

∞∑
k=1

(k + 1)2−lk(ε1−ε2) <∞

then
λn < 2ln(H+ε1) eventually almost surely.

In particular, for arbitrary δ > 0, 0 < ε2 < ε1, if

ln = min
(
n,max

(
1, b 2 + δ

ε1 − ε2
log2 nc

))
then

λn < n
2+δ
ε1−ε2

(H+ε1)

eventually almost surely, and the upper bound is a polynomial.

Since λn ≤ ζn, it is enough to prove the result for ζn. Let X ∗ be the set of all two-sided
sequences, that is,

X ∗ = {(. . . , x−1, x0, x1, . . . ) : xi ∈ X for all −∞ ≤ i <∞}.
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Define Bk ⊆ X lk as

Bk =
{
x0
−lk+1 ∈ X lk : 2−lk(H+ε2) < plk−1(x0

−lk+1)
}
.

Note that there is a trivial bound on the cardinality of the set Bk, namely,

|Bk| ≤ 2lk(H+ε2). (16)

Define the set Υk(y0
−k+1) as follows:

Υk(y0
−lk+1) =

{
z∞−∞ ∈ X ∗ : −ζ̂kk (z0

−∞) ≥ 2lk(H+ε1), z0
−lk+1 = y0

−lk+1)
}
.

We will estimate the probability of Υk(y0
−lk+1) by a frequency argument. Let x∞−∞ ∈ X ∗

be a typical sequence of the time series {Xn}. Define ρ0(y0
−lk+1, x

∞
−∞) = 0 and for i ≥ 1

let

ρi(y0
−lk+1, x

∞
−∞) = min

{
l > ρi−1(y0

−lk+1, x
∞
−∞) : T−lx∞−∞ ∈ Υk(y0

−lk+1)
}
.

Define also τ0(y0
−lk+1, x

∞
−∞) = 0 and for i ≥ 1 let

τi(y0
−lk+1, x

∞
−∞) = min

{
l ≥ τi−1(y0

−lk+1, x
∞
−∞) + 2lk(H+ε1) : T−lx∞−∞ ∈ Υk(y0

−lk+1)
}
.

Notice that if τi−1 = ρm then τi ≤ ρm+k+1. Indeed, since there are at least k + 1
occurrences of the block y0

−lk+1 in the data segment Xρm+1
−ρm+k+1−lk+1 hence

2lk(H+ε1) ≤ −ζ̂kk (T−ρmx∞−∞) ≤ ρm+k+1 − τi−1.

By the ergodicity of the time series {Xn},

P (X∞
−∞ ∈ Υk(y0

−lk+1))

= lim
t→∞

#{j ≥ 1 : ρj(y0
−lk+1, x

∞
−∞) ≤ τt(y0

−lk+1, x
∞
−∞)}

τt(y0
−lk+1, x

∞
−∞)

= lim
t→∞

∑t
l=1 #{j ≥ 1 : τl−1(y0

−lk+1, x
∞
−∞) < ρj(y0

−lk+1, x
∞
−∞) ≤ τl(y0

−lk+1, x
∞
−∞)}

τt(y0
−lk+1, x

∞
−∞)

≤ lim
t→∞

t(k + 1)
t2lk(H+ε1)

=
(k + 1)

2lk(H+ε1)
. (17)

Since
T l{ζk = l,Xζk

ζk−lk+1 ∈ Bk} = {ζ̂kk = −l,X0
−lk+1 ∈ Bk}

by stationarity and the upper bound on the cardinality of the set Bk in (16) and by
(17), we get

P (ζk ≥ 2lk(H+ε1), X̃0
−lk+1 ∈ Bk) = P (ζk ≥ 2lk(H+ε1), Xζk

ζk−lk+1 ∈ Bk)

= P (−ζ̂kk ≥ 2lk(H+ε1), X0
−lk+1 ∈ Bk)

=
∑

y0
−lk+1∈Bk

P (X∞
−∞ ∈ Υk(y0

−lk+1))

≤ (k + 1)2−lk(ε1−ε2).
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By assumption, the right hand side sums and the Borel–Cantelli Lemma yields that the
event

{ζk ≥ 2lk(H+ε1), X̃0
−lk+1 ∈ Bk}

cannot happen infinitely many times. By Lemma 2.1, the distribution of the time series
{X̃n} is the same as the distribution of {Xn} and by the Shannon–McMillan–Breiman
Theorem (cf. Chung [3]) X̃0

−lk+1 ∈ Bk eventually almost surely and so ζk ≥ 2lk(H+ε1)

cannot happen infinitely many times.

Step 5. We prove the third part of Theorem 2.6.
By Step 1, if 1 ≤ K(X̃0

−∞) <∞ then χn = K(X̃0
−∞) eventually, and by ergodicity,

n

λn
→ pK(X̃0

−∞)−1(X̃
0
−K(X̃0

−∞)+1
) > 0.

If K(X̃0
−∞) = 0 then by Step 1, χn = 0 eventually, and by (6),

λn = λn−1 + 1

eventually almost surely. The proof of Theorem 2.6 is complete. �

3. APPENDIX

In the appendix we give the statement of two of the less familiar results thar we used.
The first is due to Hoeffding, cf. [11].

Lemma 3.1. (Hoeffding’s inequality, Hoeffding [11]) Let X1, X2, . . . , Xn be indepen-
dent real valued random variables, and a1, b1, . . . , an, bn be real numbers such that
ai ≤ Xi ≤ bi with probability one for all 1 ≤ i ≤ n. Then, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ > ε

)
≤ 2e−(2nε2/ 1

n

Pn
i=1 |bi−ai|

2).

The next is due to Révész, cf. [18].

Lemma 3.2. (Theorem 3.2.2 in Révész [18]) LetX1, X2, . . . , Xn be a sequence of square
integrable random variables such that

E(Xi) = E(XiXj) = 0 for i < j, i, j = 1, 2, . . .

and
∞∑
i=1

E(X2
i )

i2
log2 i <∞.

Then ∑n
i=1Xi

n
→ 0 almost surely.
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