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In memory of my dear friend and highly regarded colleague Igor Vajda.

The paper studies the relations between φ-divergences and fundamental concepts of decision
theory such as sufficiency, Bayes sufficiency, and LeCam’s deficiency. A new and considerably
simplified approach is given to the spectral representation of φ-divergences already established
in Österreicher and Feldman [28] under restrictive conditions and in Liese and Vajda [22],
[23] in the general form. The simplification is achieved by a new integral representation of
convex functions in terms of elementary convex functions which are strictly convex at one
point only. Bayes sufficiency is characterized with the help of a binary model that consists
of the joint distribution and the product of the marginal distributions of the observation and
the parameter, respectively. LeCam’s deficiency is expressed in terms of φ-divergences where
φ belongs to a class of convex functions whose curvature measures are finite and satisfy a
normalization condition.

Keywords: divergences, sufficiency, Bayes sufficiency, deficiency

Classification: 62B05, 62B10, 62B15, 62G10

1. INTRODUCTION

Csiszár [8] (and independently also Ali and Silvey [1]) introduced the φ-divergence

Dφ(P,Q) =
∫
φ

(
p

q

)
q dµ

for a convex φ : (0,∞) 7−→ R where µ is a σ-finite measure which dominates the
distributions P and Q and the integrand is appropriately specified at the points where
the densities p = dP/dµ and/or q = dQ/dµ are zero. For φ(t) = t ln t the φ-divergence
reduces to the classical information divergence

I(P,Q) =
∫

ln
(

dP
dQ

)
dP,

which was systematically studied by Kullback and Leibler [18] and others who recognized
its importance in information theory. For the convex or concave functions φ(t) = tα,
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α > 0 we obtain the so-called Hellinger integrals

Hα(P,Q) =
∫ (

dP
dµ

)α(dQ
dµ

)1−α

dµ, α > 0,

that for α > 0, α 6= 1 are closely related to the divergences

Rα(P,Q) = (α− 1)−1 lnHα(P,Q)

introduced by Rényi [33]. Note that the divergence measures − lnHα(P,Q) were con-
sidered for 0 < α < 1 already in Chernoff [6] and the special case for α = 1/2 in
Bhattacharyya [5] and Kakutani [17].

Among the φ-divergences one can find the basic divergence measures of probability
theory and mathematical statistics, such as the total variation ‖P −Q‖ for φ(t) = |t− 1|,
the Pearson divergence χ2(P,Q) for φ(t) = (t− 1)2 or, more generally, the likelihood
ratio cumulants χα(P,Q) for φ(t) = |t− 1|α , α ≥ 1, systematically studied in Vajda [42].

Statistical applications of φ-divergences were considered e. g. by Ali and Silvey [1],
Csiszár [9], Arimoto [2], Barron et al. [3], Berlinet et al. [4], and Vajda [45]. Decision-
theoretic applications of φ-divergences can be found e. g. in Kailath [16], Poor [31],
LeCam [20], Read and Cressie [32], Clarke and Barron [7], Guntuboyina [13], Nguyen
et al. [27], Torgersen [40], Österreicher and Vajda [29], and Topsoe [39]. Jager and
Wellner [15] used φ-divergences to construct goodness of fit statistics and studied their
asymptotic behavior.

Due to the growing importance of divergences in information theory, statistics and
probability theory the investigation of the structure of φ-divergences and their relations
to fundamental concepts of statistics and decision theory deserves attention. In this
sense the present paper is a continuation of Liese and Vajda [22] and [23] where a
representation of φ-divergences in terms of the minimum Bayes error bπ(P,Q) was used
to simplify the general theory of φ-divergences. A crucial point was a second order
generalized Taylor formula for convex functions. In this point we go one step further in
this paper. Let

φ̃(t) := φ(t)− φ(1)− (t− 1)D+φ(1),

where D+φ denotes the right derivative of φ. The convex function φ̃ is centered in the
sense that it is zero at t0 = 1 and has a vanishing right hand derivative at t0 = 1. It is
easy to see that

Dφ(P,Q)− φ(1) = Deφ(P,Q).

Hence it suffices to deal with φ̃ which is represented as a spectral representation

φ̃(t) =
∫
ψπ(t)γφ(dπ)

in terms of the convex functions ψπ that are elementary convex functions in the sense
that ψπ is piecewise linear and strictly convex only at the point t0 = (1 − π)/π. The
weight measure γφ is closely related to the curvature measure of the convex function φ.
The above representation of φ̃ is new and reduces the proof of the integral representation
of φ-divergences (spectral representation) to the application of the Fubini theorem.
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Similarly as in Liese and Vajda [22] and [23] the spectral representation of φ-divergen-
ces as averaged statistical information allows to prove the general form of the information
processing theorem for φ-divergences (cf. Csiszár [9]) in a much simpler way than this
was achieved in the previous literature (see Csiszár [8] and [9], Ali and Silvey [1], and
Liese and Vajda [21]). The spectral representation of φ-divergences, applied to suitably
chosen convex functions φ, provides a unified and considerably simplified approach to
the different characterizations of sufficiency in the literature. For a Bayes model (X,Θ)
consisting of the observation X and the random and unobservable Θ we show that
the Bayes sufficiency of a statistic T is equivalent with the sufficiency of (T,Θ) for the
binary model {L(X,Θ),L(X)⊗L(Θ)} that consists of the joint distribution L(X,Θ) and
the product of the marginal distributions L(X) ⊗ L(Θ). We also establish the relation
between Bayes sufficiency and a information processing theorem for the Bayes model.

Since for binary models {P,Q} sufficiency is equivalent to the equality in the informa-
tion processing theorem for at least one strictly convex function the question arise how
LeCam’s deficiency can be characterized in terms of φ-divergences. Using the known
relation between deficiency and the minimum Bayes error probabilities bπ(P,Q) we are
able to show that the deficiency of two binary models is identical with the maximum
error for φ-divergences if we replace the distributions from the one model by the distri-
butions of the other model. The formulation “maximum error” means that in contrast
to the sufficiency we have to consider not only one convex function but some family
of convex functions. This family is characterized by a normalization condition to the
curvature measures. The established relation between φ-divergences and deficiency gen-
eralizes the concave function criterion of decision theory.

This paper is devoted to my dear friend and colleague Igor Vajda, with whom I collabo-
rated for more than 30 years. I will remember Igor as an exceptional person, a careful
listener and a person with whom you could discuss any topic. He was an outstanding
mathematician who was full of innovative ideas. He enjoyed working with others and
was a highly appreciated colleague.

2. SPECTRAL REPRESENTATION OF φ-DIVERGENCES

In the first part of this section we collect well known facts on convex functions defined
on (0,∞) and establish some new technical results. A function φ : (0,∞)→ R is called
convex if for every s, t ∈ (0,∞) and 0 ≤ α ≤ 1 it holds

φ(αs+ (1− α)t) ≤ αφ(s) + (1− α)φ(t).

Every convex function φ : (0,∞) → R is continuous, the derivative from the right
D+φ(x) exists for every x ∈ (0,∞), the function D+φ is nondecreasing and continuous
from the right and the fundamental theorem of analysis holds

φ(t)− φ(s) =
∫ t

s

D+φ(τ) dτ, 0 < s < t <∞, (2.1)

see Roberts and Varberg [34]. As D+φ is continuous from the right and nondecreasing
there is a uniquely determined σ-finite measure γφ on the Borel sets of (0,∞) that



Divergences, sufficiency, and deficiency 693

satisfies
ρφ((s, t]) = D+φ(t)−D+φ(s), 0 < s < t <∞. (2.2)

The measure ρφ is called the curvature measure of φ. This notation origins from the fact
that

ρφ(B) =
∫
B

φ′′(t) dt (2.3)

for every twice continuously differentiable convex functions φ.
The classical Taylor formula can be obtained by a successive partial integration. We

use this idea and apply the integration be parts for measures. The representation (2.1)
yields for a < b

φ(b)− φ(a)−D+φ(a)(b− a) =
∫ b

a

(D+φ(τ)−D+φ(a)) dτ

=
∫

(a,b]

(b− x)ρφ(dx).

Similarly, for b < a

φ(b)− φ(a)−D+φ(a)(b− a) =
∫ a

b

(D+φ(τ)−D+φ(a)) dτ

=
∫

(b,a]

(x− b)ρφ(dx).

From here we get the generalized Taylor formula

φ(t)− φ(1)− (t− 1)D+φ(1) =



∫
(1,t]

(t− τ)ρφ(dτ) if 1 < t <∞

∫
(t,1]

(τ − t)ρφ(dτ) if 0 < t ≤ 1,

(2.4)

that appears already in Liese and Vajda [22] and [23]. As the right hand terms are
nonnegative it follows that

φ̃(t) := φ(t)− φ(1)− (t− 1)D+φ(1) ≥ 0. (2.5)

The application of the monotone convergence theorem to the right hand side of (2.4)
yields that the limits

φ(0) := lim
t↓0

φ(t) and
φ(∞)
∞

:= lim
t↑∞

φ(t)
t

exist but may take the value∞. Subsequently we use the convention 0 ·∞ = 0. A crucial
point for all further considerations is a representation of φ̃ in terms of elementary convex
functions. Let

ψπ(t) =

{
πt− (πt) ∧ (1− π) if 0 < π ≤ 1

2 , t > 0

(1− π)− (πt) ∧ (1− π) if 1
2 < π < 1, t > 0.

(2.6)
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The function ψπ is a nonnegative, it holds D+ψπ(t) = 0 for t 6= (1 − π)/π and D+ψπ
has a jump of high π at (1− π)/π so that the curvature measure is

ρψπ = πδ(1−π)/π. (2.7)

We see that ψπ elementary in the sense that it is piecewise linear and strictly convex
only at t0 = (1 − π)/π. Later these functions appear when studying the Bayes error in
hypothesis testing problems.

For every convex function we introduce the modified curvature measure on the Borel
sets B ⊆ (0, 1) by

γφ(B) =
∫
IB

(
1

1 + π

)
(1 + π)ρφ(dπ), (2.8)

where IB denotes the indicator function of the set B. Later we will use γφ as weight
measure for the Bayes error in binary models with prior π, 1 − π. The definition of γφ
implies ∫

(0,1)

g(π)γφ(dπ) =
∫

(0,∞)

g

(
1

1 + τ

)
(1 + τ)ρφ(dτ),∫

(0,∞)

h(τ)ρφ(dτ) =
∫

(0,1)

πh

(
1− π
π

)
γφ(dπ), (2.9)

for every measurable functions g : (0, 1) → [0,∞), h : (0,∞) → [0,∞). If φ is twice
continuously differentiable then ρφ(dτ) = φ′′(τ) dτ by (2.3) and∫

(0,1)

g(π)γφ(dπ) =
∫

(0,∞)

g

(
1

1 + τ

)
(1 + τ)φ′′(τ) dτ

=
∫

(0,1)

g(π)
1
π3
φ′′
(

1− π
π

)
dπ, (2.10)

where the last equality follows from the change of variables τ = (1− π)/π. To illustrate
γφ we consider ψπ in (2.6). Then by (2.7) and the first equation in (2.9) with g = 1

γψπ
((0, 1)) =

∫
(1 + τ)(πδ(1−π)/π)(dτ)

= π

(
1 +

1− π
π

)
= 1, (2.11)

so that the total mass of the modified curvature measure γψπ of the elementary convex
functions ψπ is one.

Now we use the modified curvature measure γφ to establish a generalized second
order Taylor expansion which may be considered as a spectral decomposition that gives
a decomposition of a convex function into the piecewise linear functions in (2.6).
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Theorem 2.1. If φ : (0,∞)→ R is convex, then φ̃ in (2.5) has the spectral representa-
tion

φ̃(t) =
∫

(0,1)

ψπ(t)γφ(dπ), 0 < t <∞, (2.12)

φ̃(0) =
∫

(0,1)

ψπ(0)γ
φ
(dπ), (2.13)

φ̃(∞
∞

=
∫

(0,1)

(
ψπ(∞)
∞

)
γ

φ
(dπ), (2.14)

where the functions ψπ, 0 < π < 1, are defined in (2.6).

P r o o f . For fixed t ≥ 1 we set h(τ) = (t−τ)I(1,t](τ) = t− t∧τ. Then by (2.4) and (2.9)

φ̃(t) =
∫

(0,∞)

h(τ)ρφ(dτ)

=
∫

(0, 12 ]

π

(
t− t ∧

(
1− π
π

))
γφ(dπ)

=
∫

(0, 12 ]

(πt− (πt) ∧ (1− π))γφ(dπ).

For 0 < t < 1 we set h(τ) = (τ − t)I[t,1)(τ) = τ − t ∧ τ . It follows

φ̃(t) =
∫

( 1
2 ,1)

π

(
1− π
π
− t ∧

(
1− π
π

))
γφ(dπ)

=
∫
( 1

2 ,1)
((1− π)− (πt) ∧ (1− π)) γφ(dπ).

To prove (2.13) we note that the family of functions π 7→ ψπ(t) is nondecreasing in t if
1 ≥ t ↓ 0 so that (2.13) follows from the monotone convergence theorem. The proof of
(2.14) is similar. �

Let P,Q be distributions on (X ,A). Suppose that µ is any σ-finite dominating mea-
sure and denote by p, q their respective µ-densities.

Definition 2.2. The functional

Dφ(P,Q) :=
∫
{p>0,q>0}

φ

(
p

q

)
q dµ+ φ(0)

∫
{p=0,q>0}

q dµ+
φ(∞)
∞

∫
{p>0,q=0}

pdµ

is called the φ-divergence of P with respect to Q.

To see that the first right-hand integral is well-defined we refer to the inequality
(2.5). We remark that Dφ(P,Q) may take on the value ∞. Moreover, the definition of
Dφ(P,Q) is independent of the special choice of µ.
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The concept of φ-divergence was independently introduced by Csiszár [8] and Ali and
Silvey [1]. This general class of functionals includes special cases which appeared in
Bhattacharyya [5], Kakutani [17], Kullback and Leibler [18], Chernoff [6], Matusita [25],
Rényi [33]), and others. φ-divergences have been systematically studied in Vajda [43],
Liese and Vajda [21], [22], [23] and in Liese and Miescke [24].

If φ : (0,∞)→ R is a convex function and ψ(t) = φ(t)+at+ b then ψ is again convex
and it holds

ψ(0) = φ(0) + b, ψ(1) = φ(1) + a+ b,
ψ(∞)
∞

=
φ(∞)
∞

+ a.

These relations in combination with Definition 2.2 yield the invariance

Dφ(P,Q)− φ(1) = Dψ(P,Q)− ψ(1), (2.15)

and especially for ψ = φ̃ in (2.5)

Dφ(P,Q)− φ(1) = Deφ(P,Q). (2.16)

Recall that a convex function φ is called strictly convex at t0 = 1 if φ not linear in
every interval (1− ε, 1 + ε), ε > 0. It follows from (2.4) that this condition is equivalent
with ρφ((1 − ε, 1 + ε)) > 0 for every ε > 0. As φ̃ ≥ 0 we see Dφ(P,Q) − φ(1) ≥ 0
where equality holds for P = Q. Conversely, if φ is strictly convex at t0 = 1 the equality
Dφ(P,Q)− φ(1) = 0 implies P = Q.

In general, the functional Dφ(P,Q) is not symmetric in the pair (P,Q). It is easy to
see that the adjoint function φ∗(t) = tφ( 1

t ), t > 0, is convex and it holds

Dφ(P,Q) = Dφ∗(Q,P ). (2.17)

This means that the selfadjointness condition

φ(t) = tφ

(
1
t

)
, t > 0, (2.18)

implies the symmetry
Dφ(P,Q) = Dφ(Q,P ). (2.19)

Even if the condition (2.18) is satisfied, in general, Dφ(P,Q) does not define a metric in
the space of distributions. The problem is that the triangle inequality

Dφ(P,R) ≤ Dφ(P,Q) +Dφ(Q,P )

is not satisfied, in general. For φ(t) = |t− 1| the special φ-divergence

‖P −Q‖ = Dφ(P,Q) =
∫
|p− q|dµ

is the variational distance that satisfies (2.19) and fulfils the triangle inequality. It
should be noted that the variational distance is the only φ-divergence that is a metric,
see Vajda [44]. The Hellinger distance

D(P,Q) =
[∫

(
√
p−√q)2 dµ

]1/2
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is also a metric, but it is not a φ-divergence; the square of the Hellinger distance is a
φ-divergence. The Vincze–LeCam distance LC(P,Q), with

LC2(P,Q) =
1
2

∫
(p− q)2

p+ q
dµ,

was independently introduced by Vincze [46] and LeCam [20]. The functional LC2(P,Q)
is obviously symmetric in P and Q and a φ-divergence for the strictly convex function

φ(t) =
(t− 1)2

2(t+ 1)
. (2.20)

Moreover, LC(P,Q) satisfies the triangle inequality, see Vajda [44] for details. We
consider LC2(P,Q) for the special dominating measure R = 1

2 (P +Q). Then

L(x) :=
dP
dR

(x) and 2− L(x) =
dQ
dR

(x), (2.21)

and with p = L, q = 2− L,

LC2(P,Q) =
∫

(L− 1)2 dR. (2.22)

For some purposes it is useful to turn to the symmetrized and normalized version

Dφ

(
P,

1
2
(P +Q)

)
+Dφ

(
Q,

1
2
(P +Q)

)
=
∫ [

φ

(
2p
p+ q

)
+ φ

(
2q
p+ q

)][
p+ q

2

]
dµ = Dbφ(P,Q),

where

φ̂(t) =
1 + t

2

(
φ

(
2t

1 + t

)
+ φ

(
2

1 + t

))
. (2.23)

The convexity of φ gives for 0 < α < 1 and t1 6= t2

1 + αt1 + (1− α)t2
2

φ

(
α(1 + t1)

1 + αt1 + (1− α)t2
2t1

1 + t1
+

(1− α)(1 + t2)
1 + αt1 + (1− α)t2

2t2
1 + t2

)
≤ α1 + t1

2
φ

(
2t1

1 + t1

)
+ (1− α)

1 + t2
2

φ

(
2t2

1 + t2

)
, (2.24)

where the smaller sign stands for a strictly convex φ. A similar inequality for 1+t
2 φ
(

2
1+t

)
shows that φ̂ is convex and even strictly convex if φ does. If we take φ(t) = (t−1)2 then

Dφ(P,Q) =
∫
{q>0}

(p− q)2

q
dµ+∞ · P (q = 0)

is the Pearson divergence and

φ̂(t) =
1 + t

2

((
2t

1 + t
− 1
)2

+
(

2
1 + t

− 1
)2
)

=
(t− 1)2

2(t+ 1)
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is just the convex function in (2.20) that appears in the definition of the Vincze–LeCam
distance. This means that the Vincze–LeCam distance is the symmetrized and normal-
ized version of the Pearson divergence.

Now we study a class of divergences which is closely related to the problem of testing
simple statistical hypotheses. For distributions P,Q on (X ,A) we want to find a test
ϕ : X → [0, 1] that minimizes the Bayes error∫

(πϕp+ (1− π)(1− ϕ)q) dµ = (1− π) +
∫
ϕ(πp− (1− π)q) dµ,

where 0 ≤ π ≤ 1. Obviously, a test ϕB , called a Bayes test, minimizes the Bayes error if
and only if µ-a.s.

ϕB = 1 if πp < (1− ϕ)q
ϕB = 0 if πp > (1− ϕ)q,

and the minimal Bayes error is

bπ(P,Q) =
∫

((πp) ∧ (1− π)q) dµ. (2.25)

The value π ∧ (1− π) is the a priori loss before making the experiment and bπ(P,Q) is
the a posteriori loss of the experiment so that the difference

Bπ(P,Q) = π ∧ (1− π)− bπ(P,Q) (2.26)

is the statistical information in the Bayes model ((X ,A), {P,Q}, {π, 1 − π}), see De
Groot [11]. It is easy to see that the statistical information Bπ(P,Q) has the structure
of a φ-divergence for the function ψπ, i. e.

Bπ(P,Q) = Dψπ
(P,Q). (2.27)

Note that the definition of Bπ(P,Q) implies Bπ(P,Q) = B1−π(Q,P ). The representation
(2.12) leads to the conjecture that every φ-divergence can be represented as a similar
superposition of the statistical informations Bπ(P,Q), 0 < π < 1. Such representations
connect the concept of the distance of distributions measured by the φ-divergence with
decision theoretic concepts based on the minimum Bayes risk.

Theorem 2.3. If φ : (0,∞)→ R is convex and P,Q are distributions on (X ,A) then

Dφ(P,Q)− φ(1) =
∫

(0,1)

Bπ(P,Q)γφ(dπ). (2.28)

Corollary 2.4. If φ is twice continuously differentiable then

Dφ(P,Q)− φ(1) =
∫

(0,1)

Bπ(P,Q)
1
π3
φ′′
(

1− π
π

)
dπ.

P r o o f . Definition 2.2 for φ replaced with φ̃ and (2.16) yield

Dφ(P,Q)− φ(1) =
∫
{p>0,q>0}

φ̃

(
p

q

)
q dµ+ φ̃(0)Q(p = 0) +

φ̃(∞)
∞

P (q = 0).
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It follows from (2.12) and the Theorem of Fubini that∫
{p>0,q>0}

φ̃

(
p

q

)
q dµ =

∫
(0,1)

(∫
{p>0,q>0}

ψπ

(
p

q

)
q dµ

)
γφ(dπ).

The statements (2.13) and (2.14) yield

φ̃(0)Q(p = 0) =
∫

(0,1)

ψπ(0)Q(p = 0)γ
φ
(dπ),

φ̃(∞)
∞

P (q = 0) =
∫

(0,1)

ψπ(∞)
∞

P (q = 0)γ
φ
(dπ).

The sum of the left hand terms is Dφ(P,Q)−φ(1) whereas the sum of the terms on the
right hand side gives ∫

Dψπ (P,Q)γ
φ
(dπ)

which is the right hand term in (2.28) in view of (2.27). The proof of the Corollary
follows from (2.10). �

The representation of φ-divergence in the previous theorem has been established by
Österreicher and Feldman [28], Österreicher and Vajda [29], Guttenbrunner [14] for twice
differentiable functions φ, and by Torgersen [40] for the special case of Hellinger integrals.
The general case was treated in Liese and Vajda [22] and [23]. The proof given here
is a considerable simplification of the approach given in [22] and [23] and is based on
Theorem 2.1.

Example 2.5. Set

ρα(t) =


t ln t− t+ 1 if α = 1

1
α(a−1) (t

α − α(t− 1)− 1) if α 6= 0, α 6= 1
− ln t if α = 0

(2.29)

and Iα(P,Q) = Dρα
(P,Q). Then I(P,Q) = I1(P,Q) is the Kullback–Leibler information

divergence. Furthermore

I 1
2
(P,Q) = 4

∫ (
1
2
p+

1
2
q −√pq

)
dµ = 2D2(P,Q),

where D(P,Q) is the Hellinger distance. Another example from the family Iα(P,Q) is
the Pearson divergence.

χ2(P,Q) = 2I2(P,Q) =
∫
{q>0}

(p− q)2

q
dµ+∞ · P (q = 0).

The convex functions ρα in (2.29) are twice continuously differentiable and ρ′′α(t) = tα−2,
ρα(1) = 0. Corollary 2.4 yields

Iα(P,Q) =
∫

(0,1)

(1− π)α−2

πα+1
Bπ(P,Q) dπ.
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For the most often considered α = 1/2, α = 1 and α = 2 we get

D2(P,Q) =
1
2

∫
(0,1)

Bπ(P,Q)
[(1− π)π]3/2

dπ, I(P,Q) =
∫

(0,1)

Bπ(P,Q)
(1− π)π2

dπ,

χ2(P,Q) = 2
∫

(0,1)

Bπ(P,Q)
π3

dπ.

Example 2.6. For the convex function φ(t) = −tα, 0 < α < 1, we have

Dφ(P,Q) = −Hα(P,Q).

Applying Corollary 2.4 to Dφ(P,Q) and using φ(1) = −1 we get

Hα(P,Q) + 1 = a(1− α)
∫

(0,1)

Bπ(P,Q)
(1− π)2−απ1+α

dπ.

Recall that Bπ(P,Q) = π ∧ (1− π)− bπ(P,Q) with bπ(P,Q) from (2.25) and note that

a(1− α)
∫

(0,1)

π ∧ (1− π)
(1− π)2−απ1+α

dπ = 1.

Hence

Hα(P,Q) = a(1− α)
∫

(0,1)

bπ(P,Q)
(1− π)2−απ1+α

dπ.

This formula was already established in Torgersen [40].

3. φ-DIVERGENCES, SUFFICIENCY, AND BAYES SUFFICIENCY

In addition to the binary modelM = (X ,A, {P,Q}) let now (Y,B) be another measur-
able space and K(B|x), B ∈ B, x ∈ X , be a stochastic kernel. Put

(KP )(B) =
∫
K(B|x)P (dx), B ∈ B,

and introduce KQ in a similar way. The model N = (Y,B, {KP,KQ}) is called the
randomization ofM. Intuitively it is clear that the model N is less informative thanM
as it is harder to distinguish between KP and KQ than to distinguish between P and Q.
Thus we can anticipate the inequality Dφ(KP,KQ) ≤ Dφ(P,Q), which is the content
of the information processing theorem firstly established by Csiszár [8] in the general
form. In preparation of this theorem we study the special φ-divergence Bπ(P,Q). For
every test ψ for N the function

ϕ(x) =
∫
ψ(y)K(dy|x)

is a test for M and it holds∫
ψ d(KP ) =

∫
ϕ dP and

∫
ψ d(KQ) =

∫
ϕ dQ.
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As bπ(KP,KQ) is the minimal Bayes risk we arrive at

bπ(KP,KQ) = inf
ψ

[
π

∫
ψ d(KP )− (1− π)

∫
(1− ψ) d(KQ)

]
≥ inf

ϕ

[
π

∫
ϕ dP − (1− π)

∫
(1− ϕ) dQ

]
,

where the first and second supremum are taken over all tests for N andM, respectively.
Hence

Bπ(KP,KQ) = π ∧ (1− π)− bπ(KP,KQ) (3.1)
≤ π ∧ (1− π)− bπ(P,Q) = Bπ(P,Q).

This inequality says that the original Bayes modelM = ((X ,A), {P,Q}) contains more
information than the randomized model N = ((Y,B), {KP,KQ}).

Theorem 3.1. If (X ,A) and (Y,B) are measurable spaces and K(B|x), B ∈ B, x ∈ X ,
is a stochastic kernel then for every distributions P,Q on (X ,A) and every convex
function φ : (0,∞)→ R,

Dφ(KP,KQ) ≤ Dφ(P,Q), (3.2)

with equality holding for

Bπ(KP,KQ) = Bπ(P,Q), 0 < π < 1. (3.3)

Conversely, if φ is strictly convex in (0,∞) then Dφ(KP,KQ) = Dφ(P,Q) < ∞ im-
plies (3.3).

P r o o f . The inequality (3.2) follows directly from (3.1) and Theorem 2.3 where equal-
ity holds if (3.3) is satisfied. Conversely, if Dφ(KP,KQ) = Dφ(P,Q) < ∞ then by
Theorem 2.3

0 = Dφ(P,Q)−Dφ(KP,KQ) =
∫

[Bπ(P,Q)−Bπ(KP,KQ)] γφ(dπ).

The integrand is nonnegative in view of (3.1). Consequently,

γφ({π : Bπ(P,Q)−Bπ(KP,KQ) = 0}) = 0. (3.4)

It follows from (2.4) that φ is strictly convex in (0,∞) if and only if ρφ((a, b)) > 0 for
every 0 < a < b < ∞ which is equivalent with γφ((c, d)) > 0 for every 0 < c < d < 1.
The continuity of the function

π 7→ Bπ(P,Q)−Bπ(KP,KQ)

and relation (3.4) provide (3.3). �

Now we specialize the kernel K. For a measurable mapping T : X → Y we consider
the special kernel

K(B|x) = δT (x)(B),
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where δa is the Delta measure on a. Then

(KP )(B) =
∫
δT (x)(B)P (dx)

= P (T−1(B)) = (P ◦ T−1)(B),

so that KP = P ◦ T−1, KQ = Q ◦ T−1 are the induced distributions. It turns out
that the equality in (3.2) is closely related to the sufficiency of T. We briefly recall to
the classical concept of sufficiency. LetM = (X ,A, (Pθ)θ∈∆) be a statistical model and
(Y,B) be another measurable space. If T : X → Y is a measurable mapping then the
statistic T is called sufficient for M if for every A ∈ A there is a measurable function
kA : Y → [0, 1] such that for every θ ∈ ∆

Eθ(IA|T ) = kA(T ), Pθ-a. s. (3.5)

If the family (Pθ)θ∈∆ is dominated by the σ-finite measure µ, fθ(x) := dPθ

dµ (x), θ ∈ ∆,
are the corresponding densities and T is sufficient then by the Neyman factorization
criterion there are measurable functions gθ(y) and h(x) such that

fθ(x) = gθ(T (x))h(x). (3.6)

This means for a binary model ((X ,A), {P,Q}) and

f1 =
dP
dµ

= g1(T (x))h(x), f2 =
dQ
dµ

= g2(T (x))h(x),

which implies that the density L in (2.21) satisfies

L =
f1

1
2 (f1 + f2)

=
g1(T )

1
2 (g1(T ) + g2(T ))

.

Therefore L is a measurable function of T. Otherwise, if this condition holds then the
Neyman criterion, applied to the dominating measure R = (P +Q)/2, yields the suffi-
ciency of T. Hence we have the following reformulation of the Neyman criterion.

Clonclusion 3.2. T : X → Y is sufficient for ((X ,A), {P,Q}) if and only if L =
dP

d( 1
2 (P+Q)) is a measurable function of T.

Now we are ready to give an information theoretic characterization of sufficiency.

Theorem 3.3. Suppose T : X → Y is a measurable mapping. Then the condition (3.3),
with K = δT , is equivalent to each of the following conditions

A) T is sufficient for the model (X ,A, {P,Q}),
B) LC(P ◦ T−1, Q ◦ T−1) = LC(P,Q),

C) Dφ(P ◦ T−1, Q ◦ T−1) = Dφ(P,Q) <∞ for a strictly convex φ,

D) Dφ(P ◦ T−1, Q ◦ T−1) = Dφ(P,Q) for every convex φ.
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P r o o f . The proof is carried out according to the following scheme

A) ←→ B) → C) → (3.3) → D) → B)

A)←→ B) : Recall that L is defined in (2.21). Then for every B ∈ B∫
B

ER(L|T = y)(R ◦ T−1)(dy) =
∫
T−1(B)

LR(dx)

= (P ◦ T−1)(B),

which gives the known relation

d(P ◦ T−1)
d(R ◦ T−1)

(y) = ER(L|T = y), R-a. s.

As in (2.22) we express the Vincze–LeCam distance of P,Q and P ◦ T−1, Q ◦ T−1 in
terms of L and ER(L|T ), respectively, and obtain

LC2(P,Q) = ER(L− 1)2,

LC2(P ◦ T−1, Q ◦ T−1) =
∫

(ER(L|T = y)− 1)2 (P ◦ T−1)(dy) (3.7)

= ER(ER(L|T )− 1)2.

Using
ERL = ER(ER(L|T )) = 1,

ER(LER(L|T )) = ER(ER(L|T ))2,

we get
ER(L− ER(L|T ))2 = LC2(P,Q)− LC2(P ◦ T−1, Q ◦ T−1).

From here we see that the condition B) holds if and only if L = dP/dR is a measurable
function of T . Applying Conclusion 3.2 we see that the conditions A) and B) are
equivalent.
B)→ C) is clear.
C)→ (3.3): If C) holds for some convex function, say φ0, then by the second part of

Theorem 3.1, applied to φ0, we get (3.3).
(3.3) → D) : For every convex function φ the first part of Theorem 3.1 yields D).
D)→ B) is clear. �

The equivalence of the conditions A) and C) in Theorem 3.3 is an information theo-
retic characterization of sufficiency that goes back to Csiszár [8].

To relate Theorem 3.3 to another testing theoretic characterizations of sufficiency let
gα(P,Q) denote the second error probability for the best level α test for testing H0 : P
versus HA : Q. Then by Torgersen [40], pp. 590–591:

bπ(P,Q) = min
0<α<1

[πα+ (1− π)gα(P,Q)], π ∈ (0, 1),

gα(P,Q) = max
0<π<1

1
1−π [bπ(P,Q)− πα], α ∈ (0, 1).

(3.8)
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Theorem 3.4. Suppose T : X → Y is a measurable mapping. Then the following
conditions are equivalent

A) T is sufficient for the model (X ,A, {P,Q}),
B) bπ(P ◦ T−1, Q ◦ T−1) = bπ(P,Q), π ∈ (0, 1),

C) gα(P ◦ T−1,K ◦ T−1) = gα(P,Q), α ∈ (0, 1).

P r o o f . Using (2.26) we see from Theorem 3.3 that the condition B) is equivalent with
condition A). The equivalence of B) and C) follows from (3.8). �

The equivalence of A) and B) is due to Torgersen [40] whereas the equivalence of A)
and C) is due to Pfanzagl [30].

Now we use the integral representation of the φ-divergence to give a simplified char-
acterization of sufficiency in terms of the variational distance of the measures P and aQ.
The following statement is due to Mussmann [26].

Theorem 3.5. Let ∆ be dense in (0,∞). T is sufficient for the model (X ,A, {P,Q}) if
and only if ∥∥P ◦ T−1 − aQ ◦ T−1

∥∥ = ‖P − aQ‖ , a ∈ ∆. (3.9)

P r o o f . Put φa(t) = |t− a|. Then

Dφa
(P,Q) = ‖P − aQ‖ and Dφa

(KP,KQ) = ‖KP − aKQ‖ ,

and the necessity of (3.9) follows from condition D) in Theorem 3.3. To establish the
converse statement we fix a countable dense subset ∆0 ⊆ ∆ and β(a) > 0, a ∈ ∆0 with∑
a∈∆0

β(a) < ∞ and put φ(t) =
∑
a∈∆0

β(a)|t − a|. The function φ is convex and has
the curvature measure

γφ =
∑

a∈∆0
β(a)γφa

=
∑

a∈∆0
β(a)2δa.

As ∆0 is dense we have γφ((s, t)) > 0 for every 0 < s < t < ∞ so that φ is strictly
convex. If (3.9) is fulfilled then

Dφ(P,Q)−Dφ(P ◦ T−1, Q ◦ T−1)

=
∑

a∈∆0
β(a)(Dφa(P,Q)−Dφa(P ◦ T−1,K ◦ T−1))

=
∑

a∈∆0
β(a)(‖P − aQ‖ −

∥∥P ◦ T−1 − aQ ◦ T−1
∥∥) = 0,

and the statement follows from the strict convexity of φ and Theorem 3.3. �

Now we deal with sufficiency in Bayes models. Given the model (X ,A, (Pθ)θ∈∆) we
now suppose that ∆ is equipped with a σ-algebra B∆ that contains all one point sets
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{θ}, θ ∈ ∆. Furthermore, we assume that θ 7→ Pθ(A) is measurable for every A ∈ A.
For a probability measure Π on (∆,B∆), called prior, we set

(P ⊗Π)(C) =
∫ (∫

IC(x, θ)Pθ(dx)
)

Π(dθ), C ∈ A⊗B∆,

(PΠ)(A) =
∫
Pθ(A)Π(dθ), A ∈ A.

To have a canonical probability space, on which the random vector (X,Θ) with distri-
bution P ⊗Π is defined, we use the probability space

(X ×∆,A⊗B∆,P), P = P ⊗Π, (3.10)

and denote by X and Θ the projections of X ×∆ on X and ∆, respectively. Then

L(X,Θ) = P ⊗Π, L(X) = PΠ, L(Θ) = Π.

In Bayesian statistics X is observable and we want to make inference on Θ. To study the
dependence between the random variables X and Θ we compare the joint distribution
P ⊗ Π with the product (PΠ) ⊗ Π of the marginal distributions. It is clear that the
smaller this distance is, the weaker is the dependence between X and Θ. To specify
the distance between the distributions P ⊗ Π and (PΠ) ⊗ Π we use the divergences
introduced in Definition 2.2. Set

Iφ(X,Θ) := Dφ(P ⊗Π, (PΠ)⊗Π), (3.11)

and call Iφ(X,Θ) the mutual φ-information of X and Θ. If φ(x) = x lnx then Iφ(X,Θ)
becomes the classical mutual information I(X,Θ) of information theory, see Shannon
[36] and Cover and Thomas [10].

If the family (Pθ)θ∈∆ is dominated by the σ-finite measure µ and the density fθ(x) :=
dPθ

dµ (x) is measurable in (x, θ), which will be assumed in the sequel, then

d(P ⊗Π)
d(µ⊗Π)

(x, θ) = fθ(x), µ⊗Π-a.e.,

m(x) :=
d(PΠ)

dµ
(x) =

∫
fθ(x)Π(dθ), µ-a.e. (3.12)

Furthermore,

π(θ|x) =

{
fθ(x)
m(x) if m(x) > 0
1 if m(x) = 0

, (3.13)

Π(B|x) =
∫
B

π(θ|x)Π(dθ), B ∈ B∆

are the posterior density and the posterior distribution, respectively. For the special
case of a binary prior Π = 1

2 (δθ1 + δθ2) the posterior distribution is concentrated on
{θ1, θ2} and it holds

Π({θ1}|x) =
fθ1(x)

fθ1(x) + fθ2(x)
, Π({θ2}|x) =

fθ2(x)
fθ1(x) + fθ2(x)

. (3.14)
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Using the notations in (3.12) and (3.13) we may write Iφ(X,Θ) in the following form

Iφ(X,Θ) =
∫ (∫

φ(π(θ|x))m(x)µ(dx)
)

Π(dθ)

=
∫
Dφ(Pθ, PΠ)Π(dθ). (3.15)

If we again specialize the prior to be Π = 1
2 (δθ1 + δθ2) we get

Iφ(X,Θ) =
1
2
Dφ

(
Pθ1 ,

1
2
(Pθ1 + Pθ2)

)
+

1
2
Dφ

(
Pθ2 ,

1
2
(Pθ1 + Pθ2)

)
= Dbφ(Pθ1 , Pθ2), (3.16)

where φ̂ in (2.23) is strictly convex for a strictly convex φ.

Definition 3.6. Given the model (X ,A, (Pθ)θ∈∆) and a family P of priors on (∆,B∆)
the statistic T : X → Y is called Bayes sufficient for P if for every Π ∈ P and every
B ∈ B∆ there exists a measurable function kB : Y → [0, 1] such that

P(Θ ∈ B|X) = kB(T (X)), P-a. s. (3.17)

where X and Θ are the projections defined on the probability space (3.10).

By P0 we denote the family of binary priors

P0 =
{

Π : Π =
1
2
(δθ1 + δθ2), θ1, θ2 ∈ ∆

}
.

Theorem 3.7. If the family (Pθ)θ∈∆ is dominated and P0 ⊆ P then the following
conditions are equivalent:

A) T is sufficient for the model (X ,A, (Pθ)θ∈∆),
B) T is Bayes sufficient for P,
C) (T,Θ) is sufficient for the model

(X×∆,A⊗B∆, {P ⊗Π, (PΠ)⊗Π)}) for every Π ∈ P,
D) Iφ(T (X),Θ) = Iφ(X,Θ) <∞

for a strictly convex function φ and every Π ∈ P,
E) Iφ(T (X),Θ) = Iφ(X,Θ)

for every convex function φ and every Π ∈ P.

P r o o f .
The proof is carried out according to the following scheme

A) ←→ B)
↓
C) → E) → D) → A)
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A) → B): If T is sufficient then by (3.6) and (3.13)

π(θ|x) =
[∫

gθ(T (x))Π(dθ)
]−1

gθ(T (x))

is a functions of T. Then the condition (3.17) is satisfied with

kB(T (X)) =
[∫

gθ(T (X))Π(dθ)
]−1 ∫

B

gθ(T (X))Π(dθ),

and T is Bayes sufficient.
B) → A): Put Π = 1

2 (δθ1 + δθ2). Then the posterior probabilities Π({θi}|x), i = 1, 2 in
(3.14) are functions of T. Hence in view of Conclusion 3.2 the statistic T is sufficient for
the binary model {Pθ1 , Pθ2}. As for dominated models the pairwise sufficiency implies
the sufficiency we get A).
A) → C): If A) is satisfied then by (3.6)

d(P ⊗Π)
d((PΠ)⊗Π)

(x, θ) =
gθ(T (x))∫

gθ(T (x))Π(dθ)
, (PΠ)⊗Π-a.s.,

so that the left hand term and is a measurable function of (T,Θ) and C) holds in view
of Neyman’s factorization criterion.
C) → E): If C) is fulfilled then by condition D) in Theorem 3.3 we get

Dφ(P ⊗Π, (PΠ)⊗Π)

= Dφ((P ⊗Π) ◦ (T,Θ)−1, ((PΠ)⊗Π) ◦ (T,Θ)−1).

If C ∈ B⊗B∆ then with Qθ = Pθ ◦ T−1

((P ⊗Π) ◦ (T,Θ)−1)(C) =
∫ (∫

IC(T (x), θ
)
Pθ(dx))Π(dθ)

=
∫ (∫

IC(y, θ)Qθ(dx)
)

Π(dθ) = (Q⊗Π)(C),

and similarly
(QΠ)⊗Π) ◦ (T,Θ)−1 = (QΠ)⊗Π).

The statement E) follows from (3.11).
E) → D) is obvious.
D) → A): If Π = 1

2 (δθ1 + δθ2) then by (3.16)

Iφ(X,Θ) = Dbφ(Pθ1 , Pθ2),
and similarly

Iφ(T (X),Θ) = Dbφ(Pθ1 ◦ T−1, Pθ2 ◦ T−1).

If D) is satisfied then we get

Dbφ(Pθ1 , Pθ2) = Dbφ(Pθ1 ◦ T−1, Pθ2 ◦ T−1).
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If φ is strictly convex then φ̂ is strictly convex as well, see (2.24). Using condition C)
in Theorem 3.3 we may conclude that T is sufficient for the model (X ,A, {Pθ1 , Pθ2}).
Since θ1, θ2 are arbitrary the statistic T is pairwise sufficient. As the family (Pθ)θ∈∆ is
dominated the statement A) follows. �

Remark 3.8. The equivalence of the conditions A) and B) in Theorem 3.7 is known,
see e. g. Schervisch [35] p. 86. It should be noted that for A) → B) the assumption
of dominance can be removed. The conditions C), D), and E) seem to be new. The
condition D) corresponds to the information theoretic characterization of sufficiency in
Theorem 3.3.

4. φ-DIVERGENCES AND DEFICIENCY OF MODELS

Let (X ,A, {P1, P2}) be a binary model and (Y,B) be another measurable space. If the
statistic T : X → Y is sufficient and (X ,A) is a standard Borel space then kA in (3.5)
can be chosen as a regular conditional distribution, i. e. there is a stochastic kernel
M(A|y), A ∈ A, y ∈ Y that satisfies for Qi = Pi ◦ T−1

Pi(A ∩ {x : T (x) ∈ B}) =
∫
B

M(A|y)Qi(dy), i = 1, 2.

For B = Y this implies Pi = MQi, i = 1, 2, so that the two models

M = (X ,A, {P1, P2}) and N = (Y,B, {Q1, Q2})

are mutual randomizations and therefore equivalent from the decision theoretic point
of view. This concept of sufficiency is referred to as Blackwell sufficiency. In order to
express that two models are at least approximately equivalent LeCam introduced the
concept of deficiency. Set

δ(M,N ) = inf
K

max
i=1,2

‖Qi −KPi‖ ,

where the infimum is taken over all kernels K(B|x), B ∈ B, x ∈ X , and put

∆(M,N ) = max(δ(M,N ), δ(N ,M)).

Then ∆(M,N ) becomes a semimetric in the space of all binary models. It is clear that
∆(M,N ) = 0 if M and N are mutual randomizations. Otherwise, two models M and
N with ∆-distance zero can be shown to be mutual randomizations by the so called
randomization theorem, see Strasser [37].

By the definition of ∆(M,N ) we find, for every ε > 0, a stochastic kernel K such
that

‖Qi −KPi‖ ≤ ∆(M,N ) + ε.

If ψ is a test for N then for i = 1, 2,∣∣∣∣∫ ψ(dQi − d(KPi))
∣∣∣∣ ≤ ∆(M,N ) + ε.



Divergences, sufficiency, and deficiency 709

As (K∗ψ)(x) :=
∫
ψ(y)K(dy|x) is a test forM and∫

ψ d(KPi) =
∫

(K∗ψ) dPi,

we get

bπ(Q1, Q2) = inf
ψ

(
π

∫
ψ dQ1 + (1− π)

∫
(1− ψ) dQ2

)
≥ inf

ϕ
(π
∫
ϕ dP1 + (1− π)

∫
(1− ϕ) dP2)−∆(M,N )− ε

= bπ(P1, P2)−∆(M,N )− ε.

Take ε→ 0, use (2.26) and interchange the role ofM and N to get

sup
π
|Bπ(P1, P2)−Bπ(Q1, Q2)| ≤ ∆(M,N ).

But one can even show that

sup
π
|Bπ(P1, P2)−Bπ(Q1, Q2)| = ∆(M,N ). (4.1)

For a proof of this statement we refer to Torgersen [40]. The functionals Bπ are the
φ-divergences that belong to the class of convex functions

F0 = {ψπ : 0 < π < 1, ψπ defined in (2.6)}, (4.2)

see (2.27). To study the relation between ∆(M,N ) and other φ-divergences different
from Bπ we recall to the modified curvature measure γφ introduced in (2.8). We have
already seen in (2.11) that γψπ ((0, 1)) = 1, 0 < π < 1. Next we calculate the total mass
γφ((0, 1)) of the modified curvature measure for another class of convex functions φ.

Lemma 4.1. For every convex and non-increasing function φ : (0,∞)→ R with

φ(0) = 0, φ(∞) = lim
t→∞

φ(t) > −∞, (4.3)

D+φ(0) = lim
t↓0

D+φ(t) > −∞,

it holds
γφ((0, 1)) = −D+φ(0)− φ(∞).

P r o o f . Take s ↓ 0 in (2.1) and use φ(0) = 0 to get∫
(0,t]

(1 + s)ρφ(ds) = D+φ(t)−D+φ(0) +
∫

(0,t]

(∫
I(0,s)(τ) dτρφ(ds)

)
= D+φ(t)−D+φ(0) +

∫
(0,t]

(D+φ(t)−D+φ(τ)) dτ

= D+φ(t)−D+φ(0) + tD+φ(t)− φ(t). (4.4)
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For t→∞ the limit of the left hand side in (4.4) exists. Furthermore, D+φ(t) ≤ 0 and
D+φ is nondecreasing. Hence limt→∞D+φ(t) exists and is finite. Finally, limt→∞ φ(t)
is finite by assumption and we may conclude that

A := lim
t→∞

tD+φ(t) ≤ 0

exists. If A < 0 then

φ(t)− φ(1) =
∫ t

1

1
τ

(τD+φ(τ)) dτ

implies limt→∞ φ(t) = −∞ which contradicts the assumption. Hence A = 0 and conse-
quently limτ→∞D+φ(τ) = 0. Taking t→∞ in (4.4) we get the statement. �

The next statement shows that the deficiency of two models is small if and only if
all distances of the two distributions, measured by special φ-divergences, are uniformly
close.

Theorem 4.2. For any two binary models

M = (X ,A, {P1, P2}) and N = (Y,B, {Q1, Q2})

and any convex function φ with γφ((0, 1)) <∞ it holds

|Dφ(P1, P2)−Dφ(Q1, Q2)| ≤ ∆(M,N )γφ((0, 1)). (4.5)

If F is any class of convex functions φ with γφ((0, 1)) = 1 that contains F0 in (4.2) then

sup
φ∈F
|Dφ(P1, P2)−Dφ(Q1, Q2)| = ∆(M,N ). (4.6)

Corollary 4.3. Let F1 be the class of all nondecreasing convex functions φ on (0,∞)
that satisfy

φ(0) = lim
t↓0

φ(t) = 0, lim
t→∞

φ(t) > −∞,

−D+φ(0)− φ(∞) = 1. (4.7)

Then the statement (4.6) holds with F replaced with F1.

P r o o f . The spectral representation (2.28) implies

|Dφ(P1, P2)−Dφ(Q1, Q2)| ≤
∫

sup
0<π<1

|Bπ(P1, P2)−Bπ(Q1, Q2)|γφ(dπ),

so that (4.5) follows from (4.1). If F0 ⊆ F then by (4.1) and

Dψπ (P1, P2) = Bπ(P1, P2) and Dψπ (Q1, Q2) = Bπ(Q1, Q2), (4.8)
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see (2.27), we get

∆(M,N ) = sup
φ∈F0

|Dφ(P1, P2)−Dφ(Q1, Q2)|

≤ sup
φ∈F
|Dφ(P1, P2)−Dφ(Q1, Q2)| ≤ ∆(M,N ),

where the last inequality follows from (4.5) and γφ((0, 1)) = 1 for φ ∈ F . To prove the
Corollary we set ψ0

π(t) = −((πt) ∧ (1− π)). Then ψ0
π(0) = 0 and

−D+ψ0
π(0)− ψ0

π(∞) = −(−π)− (−(1− π)) = 1,

so that ψ0
π ∈ F1. As ψ0

π and ψπ differ only by a linear function we get from (4.8) and
(2.15) that

Bπ(P1, P2)−Bπ(Q1, Q2) = Dψ0
π
(P1, P2)−Dψ0

π
(Q1, Q2).

Hence by (4.1)

∆(M,N ) = sup
0<π<1

|Dψ0
π
(P1, P2)−Dψ0

π
(Q1, Q2)|

≤ sup
φ∈F1

|Dφ(P1, P2)−Dφ(Q1, Q2)| ≤ ∆(M,N ),

where the last inequality follows from (4.5) and the fact that γφ((0, 1)) = −D+φ(0) −
φ(∞) = 1 by Lemma 4.1. �

Remark 4.4. In a somewhat different formulation that uses concave instead of convex
functions the statement (4.6) is the concave function criterion in decision theory, see
e. g. Strasser [37]. The above theorem extends this result and clarifies the role of the
condition (4.7), which appeared there as a purely technical condition. Now we see
that this condition is a normalizing condition for the modified curvature measure of the
convex function φ.
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