A CONSTRUCTION OF LARGE GRAPHS OF DIAMETER TWO AND GIVEN DEGREE FROM ABELIAN LIFTS OF DIPOLES

DÁvid MesEžnikov

For any $d \geq 11$ we construct graphs of degree d, diameter 2 , and order $\frac{8}{25} d^{2}+O(d)$, obtained as lifts of dipoles with voltages in cyclic groups. For Cayley Abelian graphs of diameter two a slightly better result of $\frac{9}{25} d^{2}+O(d)$ has been known [3] but it applies only to special values of degrees d depending on prime powers.

Keywords: the degree-diameter problem, voltage assignment and lift, dipole
Classification: 05C12, 05C35

1. INTRODUCTION

Two types of restrictions that appear frequently in the design of large interconnection networks are limitations on the number of links emanating from a node and on the length of the shortest path between a pair of nodes. If networks are modeled by undirected graphs, the two requirements lead to design of large graphs of a given maximum degree and a given diameter. The search for largest such graphs is known as the degree-diameter problem. Since we will be interested only in the case of diameter 2 , we just mention that by the Moore bound [5] the largest order (i. e., number of vertices) of a graph of diameter 2 and maximum degree d is $d^{2}+1$ and that graphs of such an order exist only for degrees $d=2,3,7$ and possibly 57 .

In the past decades a number of techniques for constructing large graphs of a given degree and diameter have been developed. A fruitful method appears to be lifting graphs of a small order to comparatively large graphs by means of voltage assignments in finite groups; if the groups are Abelian one speaks about Abelian lifts. To avoid repetitiousness we refer to the basics of the method of lifting to [5] and references therein. In particular, Abelian lifts of dipoles (graphs of order 2) gave rise to the largest vertex-transitive and almost vertex-transitive graphs of diameter 2 and a given degree $d=(3 q \pm 1) / 2, q$ an odd prime power, whose order is $\frac{8}{9} d^{2}+O(d)$, cf. [4, 8]. This led to interest in largest possible Abelian lifts of graphs of order 1 (equivalently, Cayley graphs of Abelian groups) and 2. From [7] it follows that the largest order of a graph of diameter 2 and degree d obtained as an Abelian lift of a dipole is $\leq 0.932 d^{2}+O(d)$. In the other direction, constructions of [3] furnish Cayley graphs of degree d and diameter 2 on Abelian groups
of order $\frac{1}{3}(d+1)^{2}$ if $d=3 q-1$ and $\frac{3}{8}\left(d^{2}-4\right)$ if $d=4 q-2$, where in both cases q is an odd prime power. Moreover, in [3] the authors gave a construction of a Cayley graph of diameter 2 and degree $d=5 p-3$, where p is a prime congruent to $2 \bmod 3$, on a cyclic group of order $\frac{9}{25} d^{2}+O(d)$.

In this note we offer a construction of graphs of degree d, diameter 2, and order $\frac{8}{25} d^{2}+O(d)$, obtained as lifts of dipoles with voltages in cyclic groups. This is slightly worse than the aforementioned result of [3] but has the advantage that the construction works for general degrees $d \geq 11$.

2. RESULTS

Our graphs will be always finite but may have loops and parallel (that is, multiple) edges. By $D_{r, s}$ we denote a dipole, that is, a graph consisting of exactly two vertices joined by r parallel edges and having s loops at each vertex. Such a dipole is a regular graph of degree $d=r+2 s$; with unspecified r and s we just speak about a dipole D of degree d.

We are now ready to present and prove our results.
Theorem 2.1. For any $d \geq 11$ there exists a graph of order $\frac{8}{25} d^{2}+O(d)$, degree d, and diameter 2 , arising as a lift of a dipole with voltages in a cyclic group.

Proof. Because of the nature of the statement it is sufficient to prove it for all sufficiently large d and we will do so for all $d \geq 11$. We begin with degrees $d \equiv 1 \bmod 10$, that is, we let $d=10 \ell+1$ where $\ell \geq 1$. For $r=8 \ell+1$ and $s=\ell$, consider the dipole $D=D_{r, s}$ as introduced before, of degree $d=r+2 s=10 \ell+1$ and with vertices u and v. Further, let $G=\mathbb{Z}_{n}$ be the cyclic group of order $n=16 \ell^{2}+8 \ell=\frac{4}{25} d^{2}+O(d)$. On the dipole D we introduce a voltage assignment α in G as follows. Letting $k=4 \ell+1$, the $r=2 k-1$ darts from u to v will be mapped bijectively by α onto the set $A=$ $\{0,-1,-2, \ldots,-k+1, k, 2 k, \ldots,(k-1) k\}$, and the set of all the $2 \ell=(k-1) / 2$ loops at both u and v are mapped bijectively by α onto the set $B=\{1,2,3, \ldots,(k-1) / 2\}$. The lift D^{α} has $2 n=2\left(k^{2}-1\right)=\frac{8}{25} d^{2}+O(d)$ vertices and has degree d.

We proceed by showing that the lift D^{α} has diameter 2 . It suffices to show that for any $g \in \mathbb{Z}_{n}$ there exists a walk W in D of length at most two starting and ending at any of the two vertices u, v of D and such that $\alpha(W)=g$. First we examine the $u \rightarrow v$ walks. If $g=k t \in A$ for some t such that $0 \leq t \leq k-1$, then W consists of the dart from u to v carrying the voltage $k t \in A$. For $g=i k+j$, where $i \in\{0,1,2, \ldots, k-1\}$ and $j \in B \cup-B$, we can take W of length 2 composed of the dart from u to v with voltage $i k$ and a suitable loop at u or at v carrying the voltage j. Considering $u \rightarrow u$ walks, for $g \in A \cup-A$ the walk W consists of the dart from u to v with voltage g followed by the v to u dart with voltage 0 . If $g=i k+h$, where $i, h \in\{1,2, \ldots k-1\}$, then we choose W consisting of the $u \rightarrow v$ dart with voltage $i k$ and the $v \rightarrow u$ dart with voltage h. The cases of $v \rightarrow v$ and $v \rightarrow u$ walks can be dealt with in a similar way. This implies that the lift D^{α} has diameter two.

We have thus proved the statement for all $d \geq 11$ such that $d \equiv 1 \bmod 10$. For the remaining $d=10 \ell+1+\delta$, where $\ell \geq 1$ and $1 \leq \delta \leq 9$ we modify the dipole D by
inserting extra $\lfloor\delta / 2\rfloor$ loops at both u and v that carry arbitrary distinct voltages in the set $\{2 \ell+1, \ldots, 2 \ell+\lfloor\delta / 2\rfloor\} \subset Z_{n}$; if δ is odd we also insert an extra dart from u to v carrying the voltage $1 \in Z_{n}$. By the above argument, the lift will have diameter 2 , degree d, and order $\frac{8}{25} d^{2}+O(d)$.

The natural question of possible vertex-transitivity of the graphs constructed above is answered in the negative by our next result.

Theorem 2.2. The graphs constructed in the proof of Theorem 2.1 are not vertextransitive if $d \geq 21$.

Proof. We keep to the notation introduced in the proof of Theorem 2.1. Let $F_{u}=$ $\left\{u_{i} ; i \in Z_{n}\right\}$ and $F_{v}=\left\{v_{i} ; i \in Z_{n}\right\}$ be the fibres above u and v, respectively, in the covering $D^{\alpha} \rightarrow D$ induced by the voltage assignment α in Z_{n}. Since k is relatively prime to $n=k^{2}-1$, the element $k \in Z_{n}$ has order n. Let $k_{0}=k(k-1) / 2$ and $k_{1}=k(k+1) / 2$ be elements of Z_{n}. If $k \geq 9$, which is the case if $d \geq 21$, the dart of D from u to v that carries the voltage k_{0} is contained in no walk of length 3 of zero voltage, and the same is true for the dart from u to v of voltage k_{1}. (The condition $k \geq 9$ is needed because of the additional loops in the construction for $d \not \equiv 1 \bmod 10$.) It follows that no edge of the form $u_{i} v_{i+m}$ for $m \in\left\{k_{0}, k_{1}\right\}$ in the lift D^{α} lies in a triangle for any $i \in Z_{n}$. But as $k_{1}-k_{0}=k$, the cycle C of the form

$$
u_{0} \rightarrow v_{k_{1}} \rightarrow u_{k} \rightarrow v_{k+k_{1}} \ldots \rightarrow u_{j k} \rightarrow v_{j k+k_{1}} \rightarrow u_{(j+1) k} \rightarrow v_{(j+1) k+k_{1}} \rightarrow \ldots
$$

is a Hamilton cycle of D^{α} consisting of edges belonging to no triangle. Note also that every edge of D^{α} with both ends in F_{u} lies in a triangle, with a similar conclusion for any edge with both ends in F_{v}.

Suppose now that D^{α} was a vertex-transitive graph and let f be an automorphism that takes a vertex from F_{u} onto a vertex from F_{v}. Since $f(C)$ is a Hamilton cycle again, with edges contained in no triangles, it follows that f must interchange the sets F_{u} and F_{v}. In other words, the fibres F_{u} and F_{v} form a block system for the automorphism group of D^{α}. By the construction of D^{α} it is obvious that any edge of D^{α} that is a lift of a loop lies in a triangle containing vertices from both fibres, and such an edge lies in a largest number of such triangles if and only if the edge is a lift of the loop carrying the voltage 1 . But such edges are either all in F_{u} or all in F_{v}. Consequently, no automorphism f as above exists, and we conclude that D^{α} is not a vertex-transitive graph.

Let us remark that there is a lot of flexibility regarding the voltage assignment α in the proof of Theorem 2.1. It might be possible that a better choice of a voltage assignment could give vertex-transitive graphs but we have not been able to identify such assignments for general degrees d, and not even for small d by computer [1].

ACKNOWLEDGEMENT

This work was partially supported by the APVV Research Grants 0104-07 and 0223-10, and the VEGA Research Grants 1/0280/10 and 1/0781/11.

REFERENCES

[1] E. Loz and J. Širáň: New record graphs in the degree-diameter problem. Austral. J. Combin. 41 (2008), 63-80.
[2] H. Macbeth, J. Šiagiová, J. Širáň, and T. Vetrík: Large Cayley graphs and vertextransitive non-Cayley graphs of given degree and diameter. J. Graph Theory 64 (2010), 2, 87-98.
[3] H. Macbeth, J. Šiagiová, and J. Širáñ: Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups. Discrete Math. 312 (2012), 1, 94-99.
[4] B. D. McKay, M. Miller, and J. Širáñ: A note on large graphs of diameter two and given maximum degree. J. Combinat. Theory Ser. B 74 (1998), 1, 110-118.
[5] M. Miller and J. Širáñ: Moore graphs and beyond: A survey of the degree/diameter problem. Electr. J. Combinatorics 2005, Dynamic Survey DS14.
[6] J. Šiagiová and J. Širáñ: A note on large Cayley graphs of diameter two and given degree. Discrete Math. 305 (2005), 1-3, 379-382.
[7] J. Šiagiová: A Moore-like bound for graphs of diameter 2 and given degree obtained as Abelian lifts of dipoles. Acta Math. Univ. Comen. 71 (2002), 2, 157-161.
[8] J. Šiagiová: A note on the McKay-Miller-Širáň graphs. J. Combinat. Theory Ser. B 81 (2001), 205-208.

Dávid Mesežnikov, Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava. Slovak Republic.
e-mail: meseznikov@math.sk

