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TREE COMPRESSION PUSHDOWN AUTOMATON

Martin Poliak, Jan Janoušek and Bořivoj Melichar

A new kind of a deterministic pushdown automaton, called a Tree Compression Automaton,
is presented. The tree compression automaton represents a complete compressed index of a set
of trees for subtrees and accepts all subtrees of given trees. The algorithm for constructing our
pushdown automaton is incremental. For a single tree with n nodes, the automaton has at most
n + 1 states, its transition function cardinality is at most 4n and there are 2n + 1 pushdown
store symbols. If hashing is used for storing automaton’s transitions, thus removing a factor of
log n, the construction of the automaton takes linear time and space with respect to the length
n of the input tree(s). Our pushdown automaton construction can also be used for finding all
subtree repeats without augmenting the overall complexity.
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1. INTRODUCTION

A new kind of a deterministic pushdown automaton, called a Tree Compression Au-
tomaton (TCA), is presented in this paper. The tree compression automaton represents
a complete and compressed index of a set of trees for subtrees and accepts all subtrees
of the given trees. The paper is one from the series of arbology papers, which repre-
sent a unifying approach to tree algorithms [4, 6, 8] whose model of computation is the
standard string pushdown automaton reading trees in a linear notation [10].

The TCA is proved to be deterministic and suitable for tree compression. A decom-
pression algorithm is provided. Our result corresponds to a related result [5], which
describes a technique for grammar compression of trees, where the result of the com-
pression is a context–free grammar. Our TCA accepts the same language as is generated
by that grammar, and works in a bottom–up way with the basic principle that each non-
terminal symbol of the slightly modified grammar corresponds to one pushdown symbol
of TCA. In comparison with [5], we further show some other properties and possible
applications of the TCA, such as its use for an efficient finding of subtree repeats in the
tree.

With TCA as the tree index using hashing for accessing values of the transition
function, an occurrence of subtree can be searched in time O(m), where m is the length
of the linear notation of the subtree.

Another interesting property of the TCA is that it can be used for searching of a
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subtree in a given tree with n nodes in time O(n), similarly to the pushdown automaton
[10], which does not perform any compression.

Section 2 provides definitions of notions used throughout the paper. The definitions
are based on [10] for greater compatibility with our previous arbology results.

Section 3 presents the Tree Compression Automaton (TCA) and provides formal
proofs of its properties. An example of a TCA is shown.

A tree compression and decompression algorithm is presented in the fourth Section.
The fifth Section shows how the construction algorithm for TCA can be exploited for

finding exact repeats in a tree and for building a tree repeats index. A formal proof of the
correctness of the algorithm is given. The time and space complexity of the algorithm
is established.

2. BASIC NOTIONS

The definitions of the basic notions are extracted from [10]. The following theoretical
concepts are introduced: alphabet, language, context–free grammar, pushdown automa-
ton, graph, tree, tree bar notation.

2.1. Alphabet, language, context–free grammar, pushdown automaton

Notions from the theory of string languages are defined similarly as they are defined
in [2].

An alphabet is a nonempty finite set of symbols. A language over an alphabet A is a
set of strings over A. Expression A∗ stands for the set of all strings over A including the
empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly, for string
x ∈ A∗, notation xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε. Set x∗

is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}. Given a string x,
|x| denotes the length of x.

A context-free grammar (CFG) is a 4-tuple G = (N,A, P, S), where N and A are
finite disjoint sets of nonterminal and terminal symbols, respectively. P is a finite set
of rules of the form A → α, where A ∈ N , α ∈ (N ∪ A)∗. S ∈ N is the start symbol.
Relation ⇒ is called derivation: if αAγ ⇒ αβγ, A ∈ N , and α, β, γ ∈ (N ∪ A)∗, then
rule A → β is in P . Symbols ⇒+, and ⇒∗ are used for the transitive closure, and
the transitive and reflexive closure of ⇒, respectively. The language generated by a G,
denoted by L(G), is the set of strings L(G) = {w : S ⇒∗ w, w ∈ A∗}.

An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is a
seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q×(A∪{ε})×G∗ into a set
of finite subsets of Q×G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store
symbol, and F ⊆ Q is the set of final (accepting) states. Triple (q, w, x) ∈ Q×A∗ ×G∗

denotes the configuration of a pushdown automaton. In this paper we will write the top
of the pushdown store x on its left hand side. The initial configuration of a pushdown
automaton is a triple (q0, w, Z0) for the input string w ∈ A∗.

The relation `M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a transition of a pushdown
automaton M . It holds that (q, aw, αβ) `M (p, w, γβ) if δ(q, a, α) 3 (p, γ). A transition
`M⊂ (Q×∅×G∗)× (Q×A∗×G∗) is called an ε-transition. The kth power, transitive
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closure, and transitive and reflexive closure of the relation `M is denoted `k
M , `+

M ,
`∗M , respectively. A pushdown automaton M is a deterministic pushdown automaton
(deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.

2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not
a suffix of α.

3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of
α.

A language L accepted by a pushdown automaton M is for the purposes of this article
defined by:

1. Accepting by empty pushdown store:
Lε(M) = {x : (q0, x, Z0) `∗M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

When PDA accepts the language by empty pushdown store, the set F of final states is
the empty set.

2.2. Graph, tree, prefix notation, bar notation

Notions on trees are defined similarly as they are defined in [2, 8, 9] and [10].
Based on concepts from graph theory (see [2]), a labelled, ordered tree over an alpha-

bet A can be defined as follows:
An ordered directed graph G is a pair (N,R), where N is a set of nodes and R

is a set of linearly ordered lists of edges such that each element of R is of the form
((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indi-
cate that, for node f , there are n edges leaving f , the first entering node g1, the second
entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to node
fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A cycle is
a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for Directed Acyclic
Graph) is an ordered directed graph that has no cycle. A labelling of an ordered graph
G = (A,R) is a mapping of A into a set of labels. We use af for a short declaration of
node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where g ∈ A.
By analogy, the in-degree of node f is the number of distinct pairs (g, f) ∈ R, where
g ∈ A.

A labelled, ordered and rooted tree t over a ranked alphabet A is an ordered dag
t = (N,R) with a special node r ∈ A, called the root, such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A.

Nodes with out-degree 0 are called leaves.
The subtree definition is inspired by [8]. A tree s with root rs is a subtree of a tree t

with root rt if:
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1. There exists a path p in the tree t in form (rt, . . . , rs). Path p′ is a copy of path p
without the last node rs.

2. A sequence of nodes formed by concatenating path p′ with a path from node rs to
any node n of tree s is a path that exists in tree t.

3. Let k = length(p). Any path q in tree t of length(q) > k that has as its prefix
path p can be created by concatenation of path p′ with a path from root rs to a
node n of tree s.

Path p is called a position path of subtree s in tree t.
A tree s with root rs is a child subtree of tree t with root rt if s is its subtree and its

position path in t has length 1.
Two trees t, t′ are identical if their roots r, r′ are labeled with the same label, the

roots have the same number k of child subtrees si, s′i for 1 ≤ i ≤ k and every two child
subtrees si, s′i for 1 ≤ i ≤ k are identical.

The prefix bar notation pref bar(t) of tree t is defined as follows:

1. pref bar(a) = a |

2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) |, where a is the root
of tree t and b1, b2, . . . bn are direct descendants of a.

3. TREE COMPRESSION AUTOMATON

3.1. Construction of Tree Compression Automaton

The tree compression automaton TCA({t}) is a deterministic pushdown automaton that
accepts a tree t and all of its subtrees. The structure of the TCA must satisfy certain
conditions in order to accept the language in a space-efficient manner. These conditions
are described in the General TCA definition and in the TCA-construction algorithm.
TCA is proved to be deterministic and to accept exactly all subtrees of the given tree(s).

Example 3.1 Figure 1 shows a tree t1 and its prefix bar notation.

a

a

a a

a

a

a a

a

pref bar(t1) = aaa|aa|||aa|aa||||

Fig. 1. Tree t1 and its prefix bar notation.
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Definition 3.2 Let T be a set of trees. Let I be a set of symbols. Let µ be an injective
mapping from the set of all subtrees of all trees from set T into set I such that two
subtrees are assigned the same element from set I if and only if they are identical. The
triplet (T, I, µ) is called subtree identification mapping for set T .

Example 3.3 An example of a subtree identification mapping is shown in Figure 2.
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Fig. 2. Subtree identification mapping ({t1}, {1, 2, 3, 4}, µ1) maps

every unique subtree of tree t1 from Example 3.1 to a unique

identifier.

Definition 3.4 Let T be a set of trees. Let (T, I, µ) be a subtree identification mapping
for set T . Let t be any ordered subtree of any tree in set T . Let it have k child subtrees
child subtreei for i from 1 to k in this order. Let tree t be written as a pair (r, L), where
r is the root of t and L is an ordered list (µ(child subtree1), µ(child subtree2), . . .).

Given (T, I, µ), the pair (r, L) is called a tree stub of tree t.

Example 3.5 Tree stubs that are derived from the subtree identification mapping
({t1}, {1, 2, 3, 4}, µ1) from Example 3.3:

− tree stub of tree tI , tI = a|, µ1(tI) = 1: (a, ()),

− tree stub of tree tII , tII = aa||, µ1(tII) = 2: (a, (1)),

− tree stub of tree tIII , tIII = aa|aa|||, µ1(tIII) = 3: (a, (1, 2)),

− tree stub of tree tIV , tIV = aaa|aa|||aa|aa||||, µ1(tIV ) = 4: (a, (3, 3)).

Theorem 3.6 Let (T ,I,µ) be a subtree identification mapping for a set of ordered trees
T . Let t be any ordered subtree of any tree in set T . Let pair (r,L) be the tree stub of
tree t. Tree t can be reconstructed from mapping (T ,I,µ) and tree stub (r,L). At the
same time, given mapping (T ,I,µ), exactly one tree stub exists for every subtree from
set of trees T .
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The proof shows that the prefix bar notation of tree t can be reconstructed from the
subtree identification mapping and its tree stub. Then it shows that a tree stub exists
for every subtree of any of the trees from the set of trees T . Lastly, it proves that the
tree stub can be only one for a given tree.

P r o o f . (1) Let tree t with k child subtrees be written as tree stub
(r, ( µ(child subtree1), µ(child subtree2), . . .)). The prefix bar notation of t is defined
as r pref bar(child subtree1) pref bar(child subtree2) . . . pref bar(child subtreek) |.
Since mapping µ assigns the same symbol only to identical trees, it is safe to use µ to
rewrite the tree stub that describes tree t into (r,(pref bar(child subtree1),
pref bar(child subtree2), . . .)). This pair can then be easily transformed into pref bar(t).
Tree t can be reconstructed.

(2) Suppose that there is a subtree t′ from set of trees T for which there exists no
tree stub. Tree t′ has a prefix bar notation and a root r. If the depth of tree t′ is 0 and
therefore pref bar(t′) = r|, tree t′ can be rewritten into a tree stub (r, ()), which contra-
dicts the initial assumption and therefore this tree t′ cannot exist. Suppose the depth of
t′ is d + 1. The pref bar(t′) can be rewritten into a pair (r, (pref bar(child subtree1),
pref bar(child subtree2), . . ., pref bar(child subtreek))). But pref bar (child subtreei)
for i from 1 to k is a prefix bar notation of a child subtree of the tree t′ that has depth at
most d and for which there is a tree stub. This child subtree was assigned an element from
set I. The pair can therefore be rewritten into (r,(µ(child subtree1), µ(child subtree2),
. . ., µ(child subtreek))), which is a tree stub of tree t′. Tree t′ therefore cannot exist.

(3) There can be only one tree stub (r,(µ(child subtree1), µ(child subtree2), . . .,
µ(child subtreek))) for an ordered tree t. This is because the root of tree t is always the
same node r, the identifier µ(child subtreei) for i from 1 to k maps to a single value by
definition and the order of the subtrees is only one for one tree t. �

Corollary 3.7 (extension of Theorem 3.6) Given a subtree identification mapping
(T, I, µ), there exists a unique mapping between the set of identifiers I and the set
of tree stubs of T .

P r o o f . By the previous theorem, every tree has exactly one tree stub and every tree
also has exactly one identifier from the set of identifiers I. �

Example 3.8 Reconstruction of tree t1 from Example 3.1 from the tree stubs from
Example 3.5:
− tI = a|, µ(tI) = 1: (a, ()) → a|,
− tII = aa||, µ(tII) = 2: (a, (1)) → (a, (a|)) → aa||,
− tIII = aa|aa|||, µ(tIII) = 3: (a, (1, 2)) → (a, (a|, aa||)) → aa|aa|||,
− tIV = aaa|aa|||aa|aa||||, µ(tIV ) = 4: (a, (3, 3)) → (a, (aa|aa|||, aa|aa|||)) →

aaa|aa|||aa|aa||||.

Definition 3.9 A General Tree Compression Automaton for a set of trees T – GTCA(T)
– is a pushdown automaton M = (Q,A ∪ {|,a},A ∪ I ∪ {#}, δ, q0,#, ∅). A is a set of
labels of the nodes of the trees from set T and I is a set of symbols. Symbol a is a
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marker symbol for the end of the input string. The automaton accepts input by an
empty pushdown store. A ∩ {#,a} = ∅, (A ∪ {#}) ∩ I = ∅.

GTCA constructed for a set T of trees is defined to accept exactly all subtrees of the
trees in set T in the prefix bar notation.

Definition 3.10 Initial General Tree Compression Automaton (Initial GTCA) is a
GTCA(∅) = (q0, {|,a}, {#}, ∅, q0,#, ∅).

Definition 3.11 Tree Compression Automaton – TCA
A GTCA(T ) is a Tree Compression Automaton (TCA(T )) if

1. T = ∅, or
2. T = T ′∪{t} and GTCA(T ) is the output of the TCA-construction algorithm with

input TCA(T ′) and t.

The following algorithm describes an online algorithm extending TCA(T ) to create
an automaton TCA(T ∪ {t}). As proved later, this automaton is a GTCA(T ∪ {t}).

If we consider pushdown store P used by the algorithm to be the pushdown store of
automaton TCA(T ), then it is clear that the algorithm simulates automaton TCA(T )
while trying to accept input tree t. If a transition is missing in automaton TCA(T ), the
algorithm extends the transition function to enable it. If automaton TCA(T ) does not
accept a subtree that it should accept, the transition function is extended in step 6.

Algorithm 1 TCA-construction
Input: A tree t in prefix bar notation and an automaton M = TCA(T )
Output: The automaton TCA(T ∪ {t})
Method:
Let M = (Q,A, G, δ, q0,#, ∅) be the input pushdown automaton. Let P be a pushdown
store. Let qact mark the current state.

1. Let the pushdown store P contain the symbol #.
2. Read a (next) symbol a from pref bar(t):

− If a 6= |, then A := A ∪ {a}, G := G ∪ {a}, δ(q0, a, ε) = (q0, a). Push the
symbol a on top of the pushdown store P . Repeat step 2.

− If δ(q0, |, ε) = (q1, ε), continue with step 3. Otherwise, set Q := Q∪ {q1} and
δ(q0, |, ε) := (q1, ε)}.

3. qact := q1.
4. Pop a symbol b from the top of the pushdown store P .
5. If b /∈ A, then:

(a) If δ(qact, ε, b) = (qb, ε), then qact := qb. Otherwise, create a state qnew.
Q := Q ∪ {qnew}, δ(qact, ε, b) := (qnew, ε), qact := qnew.

(b) Go back to step 4.

6. Else, if b ∈ A:
(a) If δ(qact, ε, b) = (qb, c), then push symbol c on top of the pushdown store

P . Otherwise, create a new pushdown store symbol snew. Set G := G ∪
{snew}, δ(qact, ε, b) := (q0, snew) and push snew on the pushdown store P .
δ(q0,a,snew#) := (q0, ε).
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(b) If the pushdown store P contains only s#, s /∈ A, then exit and the output
is the automaton M = TCA(T ∪ {t}). Else go to step 2.

Theorem 3.12 The output of the TCA-construction algorithm is a deterministic push-
down automaton.

P r o o f . The input of the TCA-construction algorithm is either an Initial GTCA, which
is trivially deterministic, or its own output automaton. The output automaton is shown
to be a deterministic pushdown automaton if one can show that it is deterministic
at every step of the algorithm. Assume that the input automaton is a deterministic
pushdown automaton. The output automaton M has a certain structure that follows
from the TCA-construction algorithm:
− There are three groups of “transitions” going out of the state q0:

1. δ(q0, |, ε) = (q1, ε),
2. δ(q0, a, ε) = (q0, ε), a ∈ (A \ {|,a}),
3. δ(q0,a, a#) = (q0, ε), a ∈ G.

If the automaton M is in the state q0, then δ is clearly a mapping for any input
symbol s. The algorithm ensures that the relation δ remains a mapping by carefully
checking if δ(q, a) is defined before attempting to define a value for δ(q, a).

− There are two types of “transitions” going out of all states q other than q0:
1. δ(q, ε, a) = (q0, i), a ∈ A, i ∈ G,
2. δ(q, ε, a) = (q′, ε), a /∈ A.

Again, if automaton M is in state q, then it is unambiguous which group of pairs
from mapping δ to choose from when looking for a transition for an input symbol
a. As before, the algorithm ensures that relation δ remains a mapping.

The trivial input automaton, Initial GTCA, is deterministic. The relation δ remains a
mapping throughout the algorithm. The output automaton of the TCA-construction
algorithm is a deterministic pushdown automaton. �

Theorem 3.13 (No cyclic configurations in a TCA) Let an automaton M be the output
of the TCA-construction algorithm. Let it be in configuration (q, α, β). The sequence
of transitions (q, α, β) `+ (q, α, β) is not possible.

P r o o f . There are two types of states that automaton M can be in: q0 and the others.
− Let automaton M be in configuration (q0, α, β). There are no ε-transitions from

this configuration. If automaton M reads a symbol from the input string, it cannot
get back into configuration (q0, α, β). Note that any input symbol a ∈ A is put on
the pushdown store only if it is also read from the input string.

− Let automaton M be in configuration (q, α, β), where q 6= q0. While q 6= q0, every
transition removes an element from the pushdown store and pushes no element
back. This means that even if automaton M can get from state q back to state q
by a nonempty sequence of transitions, the pushdown store contents in these two
configurations will be different, unless automaton M passes through state q0.

�
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Definition 3.14 Let δ(q, ε, a) = (q0, i) be a transition of an automaton TCA(T ). The
symbol i is called a subtree identifier.

It is shown later in this Section that for an automaton TCA(T ) there exists a sub-
tree identification mapping (T, I, µ) such that I is a set of the subtree identifiers from
automaton TCA(T ).

Theorem 3.15 Let t be a tree and T be a set of trees. Let M = (Q,A, G, δ, q0,#, ∅)
be the output automaton of the TCA-construction algorithm (Algorithm 1) for input
TCA(T ) and t. If automaton M is in the configuration (q0, pref bar(t)α, β), then there
exists a finite sequence of deterministic transitions such that (q0, pref bar(t)α, β) ` (q0,
α, iβ), where i is the subtree identifier of tree t.

P r o o f . Automaton M is a deterministic automaton. See the proof of Theorem 3.12.
The TCA-construction algorithm simulates the pushdown automaton it creates. When-

ever a transition is missing, the algorithm first extends the transition function to enable
it and then continues simulation. This proof shows that the TCA-construction algorithm
does not extend the transition function in a way that would contradict the Theorem.

State q0 is the only state in which automaton M reads symbols from the input string.
Let pref bar(t) = a|. Automaton M can only be in configuration (q0, a|α, β), if

it starts reading a| from its input string. It then takes the transition (q0, a|α, β) `
(q0, |α, aβ). Since automaton M is deterministic, the TCA-construction has to take this
transition while simulating TCA for input string a|. Symbol a is now on the top of the
pushdown store. A bar is the next input symbol, which forces the TCA-construction to
take the transition (q0, |α, aβ) ` (q1, α, aβ).

While in the configuration (q, α, γ), q 6= q0, γ = γ′aβ, γ′ ∈ G∗, automaton M has to
behave deterministically independent of the input, deciding the transitions only based
on the symbols from γ. The only transitions that lead automaton M back into the state
q0 are the transitions that read a symbol a, a ∈ A, from the top of the pushdown store.
The sequence of transitions (q1, α, γ) a+ (qx, α, aβ) is thus completely determined by γ
down to the first symbol a ∈ A. This sequence of transitions is finite because there can
be no “cycle” in the sequence of configurations (see the proof of Theorem 3.13).

Automaton M makes transition from configuration to configuration until it pops a
symbol a, a ∈ A from the top of the pushdown store. At that moment automaton M has
performed a sequence of transitions that uniquely identifies subtree a|. The automaton
M assigns a subtree identifier i to a| and pushes i on the pushdown store. Automaton
M performed the following transition: (q1, α, aβ) ` (q0, α, iβ).

Let pref bar(t) = a pref bar(t1) . . . pref bar(tk)|. Let automaton M be in the con-
figuration (q0, a pref bar(t1) . . . pref bar(tk)|α, β) when it starts reading symbols from
the input string. After pushing symbol a on top of the pushdown store, it will pro-
cess pref bar(t1) from the input string, eventually making a transition to the config-
uration (q0, pref bar(t2) . . . pref bar(tk)|α, i1aβ). This is repeated for the remaining
subtrees in the input string until automaton M makes a transition to the configuration
(q0, |α, ik . . . i1aβ). At this moment, the same reasoning as in the previous paragraph
can be applied. There is exactly one finite sequence of transitions that leads automaton
M from the configuration (q0, |α, ik . . . i1aβ) to the configuration (q0, α, iβ). �
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Theorem 3.16 Algorithm TCA-construction constructs a GTCA(T ∪ {t}) for a given
TCA(T ) and a tree t.

The proof consists of two parts. In the first part, it is shown that the output of the
TCA-construction algorithm still recognizes all subtrees of the trees from T .

In the second part of the proof, it is first proved that the constructed automaton
accepts all subtrees of tree t. Then it is shown that the constructed automaton does not
accept anything else than subtrees from T ∪ {t}.
P r o o f . Firstly, the input automaton TCA(T ) and the output automaton as well are
pushdown automata, which directly follows from the definition of the TCA. Throughout
the algorithm nothing is deleted from the input TCA(T ). The TCA(T ) is modified only
through additions to its sets Q,A, G and extension of the mapping δ. Since nothing is
deleted from the transition function, the language that the GTCA(T ∪ T ′) pushdown
automaton accepts must contain the language that TCA(T ) accepts.

Secondly, let pref bar(t) = a|. Let T ′ = {t}. Let the input of the algorithm be a
TCA(T ) automaton M and set T ′. Let the contents of the pushdown store of automaton
M be β. The algorithm starts simulating automaton M for input a|α. In this case
β = #, α =a. The algorithm puts the node label a on the pushdown store (simulating
either an existing mapping or a newly created mapping δ(q0, a, ε) = (q0, a)). It then
reads a bar from the input and has to transition to state q1. The tree that was read is
present on pushdown store P . On the top of pushdown store P is root a of a subtree,
a ∈ A. The automaton then performs a sequence of transitions that ends in state q0

and stores an identifier i for the just read subtree on the pushdown store. The content
of the input string is now α, the pushdown store holds iβ on the top. The transition
function is extended in automaton M to accept tree t by emptying the pushdown store
if it is the only tree on input. If the depth of tree t is zero, automaton M is constructed
to accept it.

Any tree or subtree on input of the TCA-construction algorithm should be accepted
by the constructed TCA. For input starting with pref bar(t), the automaton makes a
sequence of transitions from the configuration (q0,pref bar(t)α,β) to the configuration
(q0,α,iβ). The transition function is extended if necessary: δ(q0,a,i#)=(q0,ε). Automa-
ton M makes a transition using δ to accept a tree t if α =a.

Let us assume that every tree t′ of depth at most k that is a subtree of a tree t of
depth k + 1 is accepted by a TCA(T ∪ {t}) thanks to the TCA-construction algorithm.
This assumption implies that the TCA will have the subtree identifier of tree t′ on top
of its pushdown store after a recognized tree t′ of depth at most k is read by it from the
input string.

Let t denote a tree of depth k + 1 with n child subtrees that is put on the input of
TCA(T ) by the TCA-construction algorithm. When a bar symbol b that corresponds to
the root symbol a of tree t is reached while reading the pref bar(t), the subtree identifiers
of child subtrees subtreej of tree t for j = 1 to j = n of depth at most k present between
symbol a and its bar b are already present on the pushdown store in the reverse order
of appearance in the original tree, in the form of subtree identifiers. This follows from
Theorem 3.15.

The pushdown store looks like this: P = αnαn−1...α1a, a ∈ A, αj ∈ Q for j = n
to j = 1, i. e. on and just below the top of the pushdown store are subtree identifiers
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of all the subtrees that were sequentially identified after symbol a was read but before
bar symbol b was reached. The subtree identifiers are stored on the pushdown store in
reverse order of the subtrees of tree t.

The TCA-construction creates a sequence of new states and extends mapping δ for the
sequence of subtree identifiers, if necessary. If state q is the last state of this sequence,
the algorithm ensures that there will be a transition δ(q,ε,a)=(q0,m), a ∈ A, with a
unique m. As there exists a transition that empties the pushdown store in the case that
only m# is on it and there is nothing left on the input, the automaton M will accept
tree t.

It remains to show that TCA(T ) does not accept anything else but the subtrees of
trees from set T .

− Identifier i that is pushed on the pushdown store is always the same for the same
input tree t – that is based on the determinism of the automaton and on the fact
that if the automaton accepts tree t, then the sequence of transitions from the
configuration (q0,pref bar(t)α,β) to the configuration (q0,α,iβ) must be possible
within automaton M .

− Identifier i is also unique for tree t. That is, it is not possible for automaton
M to get from configuration (q0, pref bar(t′)α, β) to configuration (q0, α, iβ)
if pref bar(t) 6= pref bar(t′). It is easy to see that the in-degree (number of
transitions leading to the state) of every state except state q0 of automaton M
is 1. Whenever a transition is missing in automaton M (except for a transition
that should lead to state q0), the algorithm extends the transition function. The
algorithm also extends the mapping δ(q, ε, a ∈ A) = (q0,m), if necessary, using
a unique m. Therefore for two different δ(q1, ε, a) = (q0,m), δ(q2, ε, b) = (q0, n),
a, b ∈ A, it holds m 6= n. Identifier i is unique for tree t.

− The algorithm assigns only as many subtree identifiers as necessary – based on
the number of unique subtrees in input tree t that were not present in set T .
Therefore if a tree t′ is present in the input string of automaton M constructed by
the TCA-construction algorithm and t′ is not one of the subtrees of T ∪ {t}, then
after automaton M reads tree t′ from the input string and makes a transition out
from state q0, it cannot get back into state q0 and therefore cannot accept this
different tree t′.

Automaton M is a GTCA(T ∪ {t}). �

Corollary 3.17 A pushdown automaton TCA(T ), where T is a set of trees, is a deter-
ministic pushdown automaton.

P r o o f . The proof follows directly from the fact that the output of the TCA-construction
algorithm is a deterministic pushdown automaton. �

Theorem 3.18 Let T be a set of trees and let t be a subtree of any of the trees in T .
Let i be the subtree identifier of t. Let M = (Q,A ∪ {|,a},A ∪ I ∪ {#}, δ, q0,#, ∅) be
a TCA(T ) and there exists a subtree identification mapping (T, I, µ). If the mapping δ
contains the values δ(q0, |, ε) = (q1, ε), δ(q1, ε, C) = (q2, ε), . . ., δ(qk−1, ε,X) = (qk, ε),
δ(qk, ε, r) = (q0, i), then (r, (X, . . . , C)) is a tree stub of tree t.
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P r o o f . The set of pushdown store symbols G of automaton M consists of A∪I∪{#},
where every element from I is a subtree identifier of some subtree of some tree from
set T . As shown in the proof to the previous Theorem, every unique tree is assigned
a different element from set I. Also, if two subtrees are the same, automaton M will
assign them the same element from set I. This implies that automaton M defines a
bijective mapping µ between the set of subtrees of the trees in set T and set I. That
means that there exists a subtree identification mapping (T ,I,µ).

Let t be a subtree of any of the trees in set T . There must exist the following unique
sequence of transitions between configurations of automaton M :
(q0, pref bar(t), α) `+ (q0, ε, iα). Symbol i is then the subtree identifier of tree t. It is
unique because automaton M is deterministic.

Let pref bar(t) = rpref bar(t1) . . . pref bar(tk)|. There must exist a transition
(q0, pref bar(t), α) ` (q0, pref bar(t1) . . . pref bar(tk)|, rα). Then if i1,. . .,ik are the
subtree identifiers of t1,. . .,tk respectively, there must exist a sequence of transitions
(q0, pref bar(t), α) ` (q0, |, ik . . . i1rα). Since every subtree identifier is an element of
the I and there is a bijective mapping between set I and the subtrees of the trees in
the T , (r, (i1, . . . , ik)) is a tree stub of tree t, given the subtree identification mapping
(T ,I,µ). �

At this moment TCA is defined and it is shown to be a deterministic pushdown
automaton that accepts all subtrees of a given set of trees. An example TCA for a given
input is shown in the following Subsection.

3.2. TCA-construction: example

The input string of an example output of the TCA-construction algorithm is the prefix
bar notation of tree t1 from Example 3.1 and an Initial TCA(∅). The output TCA is
shown on Figure 3.

q0 q1

1

2 3

4 5

a, ε 7→ a

⊣, 1# 7→ ε

⊣, 2# 7→ ε

⊣, 3# 7→ ε

⊣, 4# 7→ ε

|, ε 7→ ε

ε, 1 7→ ε

ε, 2 7→ ε ε, 1 7→ ε

ε, 3 7→ ε

ε, 3 7→ ε

ε, a 7→ 1

ε, a 7→ 2

ε, a 7→ 3

ε, a 7→ 4

pref bar(t1) : aaa|aa|||aa|aa|||| a

Fig. 3. TCA{t1} constructed by Algorithm 1.



Tree compression pushdown automaton 441

3.3. Size of the output of the TCA-construction algorithm

Let automaton M be a TCA(T ), where T is a set of trees. Let t be a tree with n nodes.
When the TCA-construction algorithm is executed with tree t and automaton M as
input, it may add new states, transitions and pushdown store symbols to automaton M .
This Subsection computes the maximum and minimum number of states, transitions and
pushdown store symbols that can be added to automaton M by the TCA-construction
algorithm.

There are two cycles in Algorithm 1. It is first shown how many times each cycle is
executed, and then the size of the output is established.

The first cycle (step 2 of the algorithm) reads symbols from the input string. A
symbol a 6= | is read and pushed on the pushdown store n times in total. Every time
this happens the transition function is extended and one pushdown store symbol can be
added to automaton M , adding at maximum n pushdown store symbols to the pushdown
store alphabet of automaton M .

Symbol a = | is read n times as well. The execution then enters the second cycle that
starts with step 3. In total, the first cycle is executed 2n times.

The second cycle is the pushdown store contents processing cycle at steps 3 through 6
in the algorithm. It is reached n times from the first cycle, whenever a bar is read.

The execution of the TCA-construction algorithm returns from the second cycle to
the first cycle every time that a symbol from A is present on top of the pushdown store.
When and only when the execution returns to the first cycle, the algorithm pushes a
symbol b /∈ A onto the pushdown store and can add symbol b to the pushdown store
alphabet. Execution returns to the first cycle n times.

Exactly n symbols a ∈ A and n symbols b /∈ A are pushed onto the pushdown store
in total. At every execution of the body of the second cycle one symbol b /∈ A is popped
from the pushdown store. The algorithm leaves one symbol b /∈ A and one symbol #
on the pushdown store before exiting. Only 2n − 1 symbols can be and are popped
throughout the execution of the algorithm. Therefore the body of the second cycle is
executed 2n− 1 times.

This case of maximal output size is encountered when there are no subtree repeats
in input tree T .

Theorem 3.19 Let t be a tree with n nodes. Let M be the output TCA of the TCA-
construction algorithm for input consisting of tree t and an Initial GTCA. TCA M has
at most n+1 states, 2n+1 pushdown store symbols and the cardinality of the transition
function is 4m.

P r o o f . A new state can be added to automaton M in the body of the second cycle only
when a symbol b /∈ A is on top of the pushdown store. That happens n−1 times during
the execution of the algorithm (the nth time that symbol b is on top of the pushdown
store, the whole tree is accepted and no state is created). Only two states can be added
to automaton M outside the body of the second cycle (states q0 and q1). This means
that at maximum n + 1 states can be added to automaton M by the algorithm.

The pushdown store alphabet of an Initial GTCA contains one symbol, #. At max-
imum n symbols a ∈ A can be added to the pushdown store alphabet. Symbols b /∈ A
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can be added to the pushdown store alphabet every time a symbol a ∈ A is popped from
the pushdown store. This happens n times. Therefore at maximum n symbols b /∈ A
can be added to the pushdown store alphabet. In total, the pushdown store alphabet
has at most 2n + 1 symbols.

The transition function is extended δ(q0, a, ε) = (q0, a) for every symbol a ∈ A that is
read from the input. This can be at most n times. The transition function is extended
δ(q0, ε, b#) = (q0, ε) for every pushdown store symbol b /∈ A. This can be again at most
n times. One extension of δ can be added from state q0 to state q1. One extension of δ
can be added by step 6 for every symbol a ∈ A on top of the pushdown store. This is
again at most n extensions. One extension of δ is added by the second cycle every time
a new state is added. This is at most n − 1 times. In total, automaton M will have
cardinality of δ at most 4n. �

Trivially, the algorithm adds no new states, pushdown store symbols and extensions
of δ to the TCA(T ) if input tree t is a subtree of any of the trees in set T .

a

a a a a

a a a a

pref bar(t2) = aa|a|aa|a||aa|a|||

Fig. 4. Tree t2 and its prefix bar notation from Example 3.20.

Example 3.20 Figure 4 shows a tree t2 for which a TCA provides the best compression
it is capable of.

a

a

a

a

pref bar(t3) = aaaa||||

Fig. 5. Tree t3 and its prefix bar notation from Example 3.21.
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Example 3.21 Figure 5 shows a tree t3 for which a TCA provides the worst compression
it is capable of.

Theorem 3.22 Let t be a tree with n nodes. Let an automaton M be the output
TCA({t}) of the TCA-construction algorithm with input consisting of tree t in its prefix
bar notation and an Initial GTCA. If n = 3d, where d is the depth of tree t, TCA({t}) M
can have only 2 ∗ log3(n)+2 states, log3(n)+2 pushdown store symbols and cardinality
of δ 4∗ log3(n)+4. In general, automaton M cannot have less than dlog6(n)e+2 states,
dlog6(n)e+ 2 pushdown store symbols and 3dlog6(n)e+ 4 δ cardinality.

P r o o f . Let t be a tree for which the ratio r = (number of states plus δ cardinality in
TCA({t}))/(number of nodes in t) is minimal.

If two subtrees of tree t have the same depth, they have to be identical. If they were
not, then one could imagine a tree t′ in which the occurrences of the smaller of the two
subtrees are replaced by the greater one. TCA({t′}) would not need to create states
and extend δ, which would be needed to encode the smaller of the two subtrees while
encoding a tree with at least as many nodes as there are in tree t.

Let tk+1 be a subtree of depth k + 1. As child subtrees, this subtree will have all the
child subtrees of subtree tk of depth k. The child subtrees will be in the same order as in
subtree tk. Such a tree requires no new states and no extension of δ in automaton M to
encode the child subtrees copied from child subtree tk. The subtree tk+1 will also have
a number nk of copies of subtree tk as its leftmost child subtrees. To encode nk child
subtrees tk in subtree tk+1, the TCA({t}) requires nk new states and nk δ extensions.
To encode the root of subtree tk+1 and allow acceptance of subtree tk+1, the TCA({t})
needs 2 more δ extensions.

Let tree t have depth d. Let nk be the number of subtrees of depth k in the subtree
of depth k + 1. The tree t has (nd−1 + 1)(nd−2 + 1) . . . (n0 + 1) nodes. TCA({t}) will
have 4+2d+(nd−1 +nd−2 + ...+n0) cardinality of δ, 2+ (nd−1 +nd−2 + ...+n0) states
and 2 + d pushdown store symbols.

Number nk cannot be higher than 5. If there were 6 child subtrees of depth k in
subtree s, the subtree s would have 7 ∗ nodes(k) nodes, where nodes(k) is the number
of nodes in the subtree of depth k. The encoding of s would require 6+2 additional δ
extensions, 6 additional states and one additional pushdown store symbol in a TCA that
already accepts the subtree of depth k. One could imagine a subtree s1 with 2 child
subtrees of depth k and a subtree s2 with 2 child subtrees of depth k +1. s2 would have
3 ∗ 3 ∗ (nodes(k)) nodes, but s1 and s2 would require only 4+4 additional δ extensions,
4 additional states and 2 additional pushdown store symbols in the TCA. Therefore s
cannot be present in tree t. The same reasoning can be applied if s has 7 and 8 child
subtrees of depth k.

If s has 32 child subtrees of depth k and therefore has 10 ∗ (nodes(k)) nodes, one
would imagine a subtree s3 with two child subtrees of depth k + 2, which again requires
less space in the TCA and encodes the tree with more nodes, 27 ∗ (nodes(k)). Subtree
s has more than 27 ∗ (nodes(k)) nodes if it has at least 33 child subtrees of depth k.
Adding more (33, 34, . . .) child subtrees to s allows encoding of trees with 33, 34, . . . times
more nodes while requiring 33, 34, . . . times more space in TCA. Adding subtrees si with
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increasing depth (i = k + 3, i = k + 4, . . .) allows encoding of trees with as many nodes
while requiring only 3 ∗ 2, 4 ∗ 2, . . . times more space in the TCA.

Ratio r is equal to 8+3d+2(nd−1 +nd−2 + ...+n0)/(nd−1 +1)(nd−2 +1) . . . (n0 +1).
Ratio r is minimal for nk with values from {1, 2, 3, 4, 5}, where k ranges from 1 to d− 1.
The minimal value of ratio r therefore cannot be higher than (8 + 3d + 2 ∗ (d ∗ 5))/2d.
In fact, it cannot be higher than (8 + 3d + 2 ∗ (d ∗ 2))/3d, the value achieved if nk = 2.
Ratio r also cannot be lower than (8 + 3d + 2 ∗ (d))/6d. The exact lower bound for r is
not known. �

The best compression ratio is achieved for example for Fibonacci trees and complete
k-ary trees.

4. TREE COMPRESSION AND DECOMPRESSION

4.1. Algorithm TCA-decompression

The output of the TCA-construction algorithm (Algorithm 1), a TCA(T ), will be shown
as suitable for compression of trees that contain repeating subtrees. The compression
ratio ranges from linear to logarithmic. The worst case is encountered if the compressed
tree contains no repeating subtrees, as in Example 3.21. The best case is a tree that has
all subtrees of the same depth identical, while keeping number of child subtrees between
2 and 6. Such trees are found in the proof to Theorem 3.22. Example 3.20 shows such
a tree.

The decompression algorithm reconstructs tree t from TCA(T ) if t is a subtree of
any of the trees in set T . The main idea of the decompression algorithm is to trans-
form TCA(T ) into a straight-line grammar [5] that generates exactly one string, tree t.
The decompression algorithm needs two things on the input: TCA(T ) and the subtree
identifier i that was assigned to tree t by the TCA-construction algorithm.

The subtree identifier i of tree t has to be remembered if set T 6= {t}. Else it can be
found as the only subtree identifier for which δ(q, ε, i) = ∅ for all states q ∈ Q.

Algorithm 2 TCA-decompression
Input: Automaton TCA(T ). Tree t, which is a subtree of one of the trees in set T .
The subtree identifier i assigned to tree t by the TCA-construction algorithm
Output: Tree t in prefix bar notation.
Method:

1. Let M = (Q,A, G, δ, q0,#, ∅) be the TCA(T ). Let qact be a marked state.
2. Create a grammar R = (N,T, P, S), where N = G \ A \ {#}, T = A ∪ {|}, S = i

and P is an empty set of rules.
3. Reverse the transition function in TCA(T ), that is, replace every (p, v, α) → (q, β)

by (q, v, α) → (p, β).
4. For every element from the mapping δ δ(q0, ε, x) = (qy, C), C ∈ G, do:

(a) Create a rule r = C → x and set qact := qy.
(b) For every element D such that δ(qact, ε,D) = (qz, ε), append D to the right-

hand side of rule r and set qact := qz. If qact = q0, set the rules P := P ∪ {r}
and continue step 4 for the next element from mapping δ.
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5. The output is the content of language L(R). This language will be shown to
contain exactly one string, pref bar(t).

Theorem 4.1 Let t be a tree. Let M be a TCA(T ) such that tree t is a subtree of one
of the trees in set T . Let i be a subtree identifier assigned to tree t by automaton M .
Let w be the output of the TCA-decompression algorithm whose input was automaton
M and subtree identifier i. Then w = pref bar(t).

P r o o f . Let u be any subtree of any of the trees in set T . Let ru be the root of tree
u. Let iu be the subtree identifier of subtree u. Let pref bar(u) = r pref bar(s1) . . .
pref bar(sk)| and let i1, . . . , ik be the subtree identifiers of subtrees s1, . . . , sk, respec-
tively. Then for input < pref bar(u) > α, automaton M must be able to take a sequence
of transitions into a configuration (q0, |α, ik . . . i1r). From the TCA-construction algo-
rithm, it holds that
(q0, |α, ik . . . i1r) ` (q1, α, ik . . . i1r) ` (q2, α, ik−1 . . . i1r) ` . . . ` (q0, α, iu)
and all states qi, qj , i 6= j are pairwise different.

Let M ′ be a pushdown automaton equivalent to automaton M that has its δ map-
ping reversed. Directly following from the TCA-construction algorithm, δ(q0, ε, x) =
{(qy, C)} exists only if C is a subtree identifier of a subtree of any of the trees in
T . Also based on the TCA-construction algorithm, for every state other than q0 in
automaton M ′ there is exactly one outgoing transition δ(q, ε, x) = {(qy, C)}. Based
on the previous paragraph, it must then hold that δ(q0, ε, ru) = (qk, iu), δ(qk, ε, i1) =
(qk−1, ε), . . . , δ(q2, ε, ik) = (q1, ε), δ(q1, |, ε) = (q0, ε).

The TCA-decompression algorithm thus constructs the rules r of grammar R in the
form r = iu → rui1 . . . ik| for every subtree u. If u is a subtree of depth 0, then the right-
hand side of rule r is the prefix bar notation of u. If u is a subtree of depth d + 1, then
again the right-hand side of rule r is the prefix bar notation of u if the nonterminals
i1, . . . , ik are “transitively” rewritten to their right-hand sides. That is exactly how
grammar R generates its language if the initial symbol is set to be the nonterminal iu.

�

4.2. Time and space complexity of compression and decompression by
TCA-construction and TCA-decompression

The time and space complexity of the TCA-construction algorithm with input consisting
of a TCA(T ) and a tree t, length(pref bar(t)) = n, depends on the implementation of
the δ mapping lookup.

If the algorithm is provided with a zeroed space of size (n + 1)× |Q|, a lookup table
can be created for mapping δ. Finding an appropriate mapping δ in such table takes
constant time. The space taken by mapping δ is (n + 1)× |Q|.

If the algorithm does not construct a lookup table for mapping δ, then a searching
algorithm must be used for finding the appropriate mapping δ. The maximum size of a
set of outgoing “transitions” from a state is n + 1 in the case of state q0. The transition
lookup time is therefore at worst log2(n + 1). If each element of mapping δ takes up
space log2(n + 1), space taken by mapping δ is at worst 4n ∗ log2(n + 1).
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The total time and space requirements of the TCA-construction depend directly on
the implementation of mapping δ. The Section that computes the size of the output
TCA showed that there were two cycles in the algorithm. The first cycle is run n times,
and the second cycle is also run n times.

Every run of the body of the first cycle has to decide δ(q0, a, ε). If a lookup table is
available, then the body of the first cycle is executed in constant time. If a lookup table
is not available, then one run of the body of the first cycle requires c + log2+1n time,
where c is a constant.

One run of the body of the second cycle has to decide δ(qact, ε, b) and can add a new
transition to mapping δ. The rest of the body executes in constant time and can require
constant space. Again depending on the implementation of mapping δ, the execution of
the body of the second cycle can take either constant or c + log2+1n time.

Depending on the implementation of mapping δ, the TCA-construction algorithm
can either require at worst c1 ∗ n time and (n + 1) ∗ (|Q|+ c2) ≤ (n + 1) ∗ (n + c2) space
or at worst 2n ∗ log2(n + 1) + c3 time and 4n ∗ log2(n + 1) + c4n space. c1, c2, c3, c4 are
constants of the algorithm.

If mapping δ is implemented through a lookup table of size c, the δ lookup time is
constant and the transition reversal takes time n. If δ is not implemented through a
lookup table, then the transition lookup time is at worst log2(n + 1) and reversal of the
transitions will take time at worst (4n ∗ log2(n + 1)).

All operations in step 3 can be made within constant time c1. In total, step 3a can
be performed at most n/2 times and step 3b can be performed at most n/2 times. This
in total requires at most c1 ∗ n time.

The grammar R = (N,T, P, S) will generate its language in time less than or equal
to c2 ∗ |N | ∗ log2|N |. The size of the grammar will be c3 ∗ |N | ∗ log2|N |. The size of the
generated language will be n.

Let |TCA| be the size of the TCA on input. The TCA-decompression algorithm
requires operational space |TCA| + c3 ∗ |N | ∗ log2|N | + n. If the TCA on the input of
the TCA-decompression algorithm uses a lookup table to store mapping δ, the TCA-
decompression algorithm requires time (1+c1)n+c2∗|N |∗log2|N |. Otherwise it requires
time (log2(n + 1) + c1)n + c2 ∗ |N | ∗ log2|N |. |N | is guaranteed to be less than or equal
to n/2.

4.3. Compression and decompression conclusion

When TCA is transformed into a grammar using the TCA-decompression algorithm, it
is obvious that the compression method that uses the TCA-construction algorithm is
similar to a basic technique for grammar compression of trees [5].

The proposed compression algorithm for trees offers a good compression ratio for
trees with repeating subpatterns. It does not achieve such a good compression ratio as
the comparable LZ methods [16, 17], but exchanges this drawback for an output that is
easy to work with if one requires for example to search for a pattern in the compressed
tree.
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4.4. TCA as index of a tree

It is important to note at this moment that the TCA(t) is quite naturally an index of
tree t. If hashing is used for storing the transition function δ, deciding whether any tree
u is a subtree of tree t is an operation that takes time at most |u|. Even more, finding all
occurrences of tree t in some other tree v, given TCA(t), is an operation that requires
time |v| – a result comparable with [10].

5. EXACT REPEATS BY THE TREE COMPRESSION AUTOMATON

The Tree Compression Automaton can be easily used for searching subtree repeats in
tree t. For every subtree ts of t, a list of its occurrences in tree t can be created using
an extension of the TCA-construction algorithm.

The algorithm works by simulating the TCA({t}) automaton. Whenever the au-
tomaton reads a non-bar character from the input string, the index of the character is
remembered. This character is a root node of some subtree of tree t. After the last
symbol of this subtree is read from the input string, the subtree is identified and the
position of its root node is associated with the subtree identifier of the subtree.

Algorithm 3 TCA-repeats-search
Input: A tree t and TCA({t}) = (Q,A, G, δ, q0,#, ε)
Output: A relation occ ⊂ S ×N, S = G \ (A∪ {#}). (s, i) ∈ occ only if s is a subtree
identifier of a subtree ts of tree t and ts has a root at index i in pref bar(t).
Method:
Let P be a pushdown store. Let i be a counter.

1. Set i := 0.
2. Simulate automaton M for input string pref bar(t):

(a) Whenever a transition (q0, aα, β) ` (q0, α, aβ) is taken, increment i. If a 6= |,
push the value of counter i on top of pushdown store P .

(b) Whenever a transition (q, α, aβ) ` (q0, α, bβ) is taken, pop number x from
the top of the pushdown store and set x ∈ occ(b).

(c) When automaton M accepts the input string, output occ and exit.

This algorithm can be modified to accept TCA(T ) on the input, where t is a subtree of
any of the trees in T . The size of its output is affected by the ratio |TCA(T )|/|TCA({t})|.
Its running time is not affected by this ratio if mapping δ is implemented by a lookup
table.

Theorem 5.1 Relation occ maps the position of every subtree root to a subtree iden-
tifier. If two subtrees are the same, the indices of their roots are mapped to the same
subtree identifier.

P r o o f . The TCA-repeats-search algorithm can be viewed as a modified TCA-construction
algorithm that:
− pushes a pair (a, index(a)) on top of the pushdown store whenever a symbol a ∈
A, a 6= | is read from the input string

− pops a pair (a, index(a)) from the top of the pushdown store and replaces it there
with a whenever the transition (q, α, aβ) ` (q0, α, bβ) is to be taken.
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Since symbol b is the subtree identifier of the tree whose root is symbol a, index(a) ∈
occ(b) is set for all roots a that are read from the input. This means that every subtree
root is mapped to a subtree identifier.

Let ts be a subtree of tree t that is the input of the algorithm. Let is be the subtree
identifier of ts. Let TCA({t}) be in the configuration (q0, pref bar(ts)α, β). There is a
sequence of transitions that TCA({t}) can take ending in the configuration (q0, α, isβ).
It must hold that index(rs) ∈ occ(is). If two subtrees are identical, their prefix bar
notations are identical and therefore their subtree identifiers are identical. Therefore
their root indices must be mapped to the same subtree identifier. �

5.1. Time and space complexity of TCA-repeats-search

The time complexity depends directly on the complexity of the TCA-construction algo-
rithm. It also depends on the complexity of the simulation of the TCA automaton and
on the complexity of adding an element into occ(b).

The TCA automaton is constructed in linear time if a lookup table is used for mapping
δ. Otherwise it is constructed in n ∗ log2n time. If n is the length of an input tree, the
TCA automaton can be simulated in time either equal to n if a lookup table exists for
the mapping δ, or n ∗ log2n otherwise.

The complexity of adding an element into occ(b) is constant if a linked list is used for
holding elements of occ(b).

In total, the complexity of the TCA-repeats-search algorithm copies the complexity
of the TCA-construction algorithm (linear or O(n∗log2n), depending on implementation
of a lookup table by the TCA construction algorithm).

The size of the output is n ∗ log2n, which is the space required for storing pointers to
the subtrees of tree t.

The total space required by the algorithm again depends on the space required by
the TCA automaton – the number of repeats is bounded by n.

6. COMPARISON WITH RELATED RESULTS

As stated in the Introduction, a similar approach to tree compression was investi-
gated in [5]. There the tree is compressed into a grammar. We show the relation-
ship between the two methods on the example tree from Example 3.1. The grammar
G = (N = {1, 2, 3, 4}, T = {a}, P, 4) created by [5] that generates this tree has the
following rules in P :

4 → a33|
3 → a12|
2 → a1|
1 → a|

When we look at the TCA created for the example tree, we see that its pushdown store
symbols are the nonterminals of grammar G together with initial symbol #. The right-
hand side of the rules of grammar G is preserved in the form of states and mapping δ.
For example, when considering tree stub (a, (3, 3)), the rule 4 → a33| corresponds to the
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states q1, 4, 5 and mapping δ that involves them: δ(q0, |) = q1, δ(q1, 3) = 4, δ(4, 3) = 5,
delta(5, a) = q0. It holds that all words in the set {w : X ∈ N,X ⇒∗ w,w ∈ T ∗} are
accepted by the TCA. If the smallest grammar extension from [5] is omitted, this set
are exactly the words accepted by the TCA. Figure 6 illustrates this relationship.

a

3 3

4

a 3 3 |

Tree stub (a, (3, 3)) Grammar rule 4 → a33|

q0 q1

4 5

⊣, 4# 7→ ε

|, ε 7→ ε

ε, 3 7→ ε

ε, 3 7→ ε

ε, a 7→ 4

Excerpt from the TCA(t1) corresponding to the tree stub (a, (3, 3))

Fig. 6. A tree stub, its rule in a straight line grammar, its states

and transitions in TCA.

6.1. Experimental compression results

The TCA was compressed into two separate sections: the transition table and a label
lookup table. The transition table first indicates the incoming edges to each state that
is not q0 or q1. Then it indicates all incoming edges to state q0. The label lookup table
stores a mapping between node labels and internal alphabet symbols. The compressed
binary file also contains a header that indicates how many bits a fixed-length binary
representation of an automaton state, alphabet symbol and subtree identifier takes. The
compression achieved by TCA was compared with compression of the BPLEX algorithm.
As these two approaches are very close in nature, the compression ratios follow a similar
curve. The compression performance was tested on pruned XML files, where text was
removed from nodes. The sample data was retrieved from protein databases, linguistic
records and was generated using specialized tools. The protein xml data was obtained
from Swiss-Prot at UniProtKB [13] (first 1000 files) and Ligand Expo at Protein Data
Bank [3] (also first 1000 files). Sample auction web-site xml data was generated by
xMark [14], scaling factor was set to /f 0.1. Linguistic structures stored in xml were
retrieved from the Alpino Treebank [15] (first 1000 files again). All sample xml files
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Tab. 1. Compression performance compared to BPLEX.

Total = total size of xml files to compress. Stripped = total size of

xml files to compress, with text data removed from nodes.

Total Stripped BPLEX c.r. mod. TCA c.r.
BPLEX c.r.

Swiss-Prot 77.27M 61.05M 2.43 3.72 2.55
Ligand Expo 16.95M 12.55M 4.58 5.54 4.49

xMark 11.88M 3.71M 3.48 7.61 6.25
Alpino Treeb. 2.54M 2.06M 4.27 5.58 3.00

were stripped of text data (but not node labels) so that the tests measure solely the
compression performance on the tree structures themselves.

The column BPLEX c.r. stands for compression ratio achieved by BPLEX, whereas
modified BPLEX c.r. stands for compression ratio achieved by modified BPLEX algo-
rithm when no further compression of the straight-line grammar is performed.

The compression performance of the TCA is comparable with that of BPLEX, the
worse performance is some cases is expected due to the fact that TCA-compression
algorithm does not perform, compared to BPLEX, further compression of the generated
straight-line grammar (especially notable on the xMark benchmark). However, the TCA
outperforms BPLEX when compressing small XML files found in the Alpino Treebank
database, due to a better representation of the output. The same reason explains why
the TCA outperforms BPLEX when compressing protein data from the Ligand Expo
databank.

The TCA-construction algorithm does not apply any compression to the produced
TCA, similarly as the modified BPLEX algorithm which does not to perform any fur-
ther compression of the generated straight-line grammar. TCA outperforms the modi-
fied BPLEX. Due to similarities in nature between the TCA and BPLEX compression
approaches, it is probable that after applying further compression to the generated au-
tomaton, TCA could perform as well as unmodified BPLEX.

7. CONCLUSION AND FUTURE WORK

A method has been proposed for compression of trees based on finding subtree repeats
and using redundancy contained within such repeats. A special form of a pushdown
automaton, a Tree Compression Automaton (TCA) was introduced. An algorithm for
searching for subtree repeats based on TCA was shown. It has a linear time and space
complexity wrt the number of nodes of the subject tree.

There is much more work to be done in research on TCA. It is to be shown formally
that TCA can be used for searching for tree templates. Also, how efficiently it can be
used for searching for approximate repeats when the Relabel operation [4] is considered
is an open question.

It should be found out whether TCA can be used by efficient algorithms that search
for general approximate repeats, when not only the Relabel [4] operation is considered,



Tree compression pushdown automaton 451

but also Delete and Insert.
More information and sources related to the field of arbology can be found at [1].
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